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ON A LOCAL LIMIT THEOREM FOR LATTICE DISTRIBUTIONS

N. GAMKRELIDZE AND T. SHERVASHIDZE

Dedicated to the memory of A.B. Mukhin

Abstract. Sufficient conditions for a local limit theorem for sums of

independent integer-valued random variables to be valid are discussed

in terms of a characteristic of “smoothness” of distributions of sums

of separate groups of summands.

The notion of “smoothness” of the probability distribution Pξ of an
integer-valued random variable ξ (see [3], [13]) was for the first time used in
[4] to derive a local limit theorem (l.l.t.) for sums of independent integer-
valued random variables. In [3] this notion is introduced as a variation norm
of the signed measure Pξ − Pξ+1, i.e.,

δ(Pξ) = δ(ξ) =
∑

m∈Z

|P (ξ = m) − P (ξ = m − 1)|.

The investigation by Mukhin in his remarkable paper [8] include the case
treated in [4]. Later, in [5] an attempt was made at extending somehow
the class of sequences from [4] for which conditions for the l.l.t. to be
valid are given in terms of δ(·). Below we try to get an insight into the
real possibilities of δ(·) in the l.l.t. and discuss the connection of the l.l.t.
proved by us with some known results.

1. Let Ξ = {ξ1, ξ2, . . . } be a sequence of independent integer-valued
random variables with finite variances,

Sn = ξ1 + · · · + ξn, B2
n = DSn, Sn,m = Sn+m − Sn, n, m ∈ N,

and Φ(x) and ϕ(x) be the standard normal distribution function and the
corresponding density, respectively. We will deal with the conditions under
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which the central limit theorem (c.l.t.) for Ξ, i.e., the relation P (B−1
n (Sn −

ESn) < x) → Φ(x) as n → ∞ for each x ∈ R implies the l.l.t., i.e., the
convergence

∆n = sup
m∈Z

∣

∣

∣
BnP (Sn = m) − ϕ

(m − ESn

Bn

)∣

∣

∣
→ 0

as n → ∞.

Before formulating the l.l.t. in terms of δ(·), we would like to recall the
following properties of the characteristic δ(·), where ξ, η and ηn, n ∈ N, are
integer-valued random variables with maximal span 1 (cf. [3], [4]):

1◦. If ξ and η are independent, then δ(ξ + η) ≤ min(δ(ξ), δ(η)).

2◦. If Pk∗
ξ denotes the k-th convolution power of Pξ, then δ(Pk∗

ξ ) <

Ck−1/2 with the constant C depending on Pξ.

3◦. For the characteristic function (c.f.) f(t, ξ) = E exp(itξ) of ξ we have
the inequality

|f(t, ξ)| ≤ δ(ξ)/
√

2 if π/2 ≤ |t| ≤ π.

4◦. If ηn converges to 0 in probability as n → ∞, then δ(ηn) → 2.

Let now Ij , j ∈ N, be nonempty, finite and pairwise disjoint subsets of
N. Denote

S(j) =
∑

i∈Ij

ξi, rn = #
{

j : Ij ⊂ {1, . . . , n}
}

, j, n ∈ N.

Theorem. If for the sequence Ξ:

(a) the c.l.t.holds,

(b) for any j ∈ N, PS(j)
has a maximal span 1 and there exists ℓ ∈ N

such that δ(Pℓ∗
S(j)

) ≤ λ <
√

2,

(c) there exist c, 0 < c ≤ π, and a function g(t) ∈ L(R) such that

|f(B−1
n t, Sn)| ≤ g(t) for |t| ≤ cBn,

and if c < π, the following extra condition holds

(d) Bn = o(eµc2rn) with µ = (1 − λ2/2)/(2π2ℓ),
then the l.l.t. also holds for the sequence Ξ.

This theorem agrees with the general picture of the l.l.t. given in [8]:
only the conditions imposed on the arithmetic structure of summands (one
can assume (b) to be such a condition) do not guarantee the l.l.t.

2. We begin proving the theorem by noting that the modified version of
the classical Cramér’s inequality ([1], Ch. IV, p. 27) gives for the c.f. f(t)
the estimate

|f(t)| ≤ 1 − (1 − γ2)t2/(8τ2), |t| < τ, τ > 0,

if it is known that |f(t)| ≤ γ < 1 for τ ≤ |t| < 2τ (the right-hand side
of Cramér’s inequality being greater than γ as τ ≤ |t| < 2τ). Hence by
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property 3◦ of the characteristic δ(·) and the condition (b) we find that the
following inequality holds:

|f(t, S(j))| ≤ exp(−µt2), |t| ≤ π, j ∈ N.

Using the standard way of proving the l.l.t., by the inversion formulas
for the c.f., we arrive at an estimate

2π∆n ≤
∫

|t|≤A

|f(t, B−1
n (Sn − ESn)) − e−t2/2|dt +

∫

|t|>A

e−t2/2dt +

+

∫

A<|t|≤cBn

|f(t, B−1
n Sn)|dt + Bn

∫

c<|t|≤π

|f(t, Sn)|dt =

= I1 + I2 + I31 + I32,

where A > 0 is a fixed number to be chosen next. It can be taken large
enough for I2 and, by the condition (c), I31 must be less than a given positive
ε. By the condition (a), if A is fixed, then I1 → 0 as n → ∞. Further, I32

does not exceed 2(π − c)Bne−µc2rn which, by the condition (d), tends to 0
as n → ∞. The theorem is proved.

3. If B2
n = O(nα), 0 < α ≤ 1, i.e., when the variance of the sum Sn grows

not faster than linearly with respect to n, and if in the condition (b) one
takes S(j) = ξj , j ∈ N, then for all t in [−π, π] we obtain that

|f(t, B−1
n Sn)| ≤ e

− n

B2
n

µt2 ≤ e−Cµn1−αt2

with a positive constant C. Thus for α < 1 and fixed A the sum I31 +
I32 tends to 0 as n → ∞; for α = 1 it can be done sufficiently small by
chosing A large enough (cf. [4]). Property 2◦ of the characteristic δ(·) then
immediately gives the sufficiency part of the classical Gnedenko theorem for
identically distributed summands [6].

In the case of random variables uniformly bounded by a constant K,
Liapunoff’s inequality (see, e.g., [1], Ch. VII, p. 75) implies, that

|f(t, B−1
n Sn)| ≤ e−t2/3, |t| ≤ (4K)−1Bn (1)

(the same follows from Doob’s inequality for c.f.; see [2], p. 47). Even when
Bn → ∞, i.e., both conditions (a) and (c) are fulfilled, this case needs
extra information about the arithmetic structure of summands in order to
be covered by our theorem (cf. [11]). In [5] it is stated that if B2

n = O(nα),
α > 1, the c.l.t. holds and the condition (b)is fulfilled in a weaker sense
than in [4], being imposed on Sj,m for a fixed m and each j ∈ N, then
the l.l.t. holds too; in the proof (1) is misused. Had this l.l.t. been true,
the well-known l.l.t. from [7] would be its consequence for Ξ = {ξj = jηj ,
j ∈ N}, where P (ηj = −1) = P (ηj = 1) = 1/4, P (ηj = 0) = 1/2 for each
j ∈ N. Indeed, here Bn = O(n) and (b) is easy to check for m = 2 (see [5]).
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A general l.l.t. for sums of identically distributed integer-valued random
variables weighted with integers is announced in [14].

If Ξ is a k-sequence, i.e., there is only a finite number k of different
distributions among Pξj

, j ∈ N, using the existence of a positive number cj

for each non-singular ξj such that

|f(t, ξj)| ≤ e−(1/4)σ2
j t2 , |t| ≤ cj , j ∈ N,

where σ2
j is the variance of ξj (see, e.g., [10], Ch. I, p. 11), then we obtain,

except for the trivial case with Ξ consisting only of constants, that for
c = minj cj the following inequality holds:

|f(t, B−1
n Sn)| ≤ e−(1/4)t2 , |t| ≤ cBn.

By Petrov’s theorem [9] (see also [10], Ch. VII, p. 189), for l.l.t. to be valid
in the case of k-sequence of integer-valued random variables with finite vari-
ances, the relation g.c.d.(h1, . . . , hℓ) = 1 is necessary and sufficient, where
h1, . . . , hℓ, 1 ≤ ℓ ≤ k, are the maximal spans of the distributions P1, . . . ,Pℓ,
respectively, which occur infinitely often. If now I1 is composed of the num-
bers of the first terms of Ξ with distributions P1, . . . ,Pℓ, respectively, I2

consists of the numbers of the second terms with the same distributions and
so on, then S(1), S(2), . . . are identically distributed with maximal span 1.

If we restrict ourselves to k-sequences for which ne−λc2rn → 0 as n → ∞,
where rn = min

1≤i≤ℓ
si(n) and si(n) is the number of summands with distri-

bution Pi among the first n terms of Ξ, i = 1, . . . , ℓ, then all the conditions
of our theorem will be fulfilled and therefore in this particular case this
theorem will imply the sufficiency part of Petrov’s theorem.

In [12], besides a certain arithmetic condition which is fulfilled in [10] and
[11], Rozanov introduced the condition which implies our condition (c)(and
which is fulfilled in [10] and [11] as well), namely,

E(ξj − Eξj)
2I([|ξj − Eξj | < N ]) → σ2

j (N → ∞) (2)

uniformly in j ∈ N, where I(U) denotes the indicator of an event U . If
(2) takes place, then so do Lindeberg condition and hence the c.l.t., but
the Lindeberg condition is not sufficient for (c) to be fulfilled. Thus we can
conclude that if the conditions (a) and (c) are replaced by the condition (2),
our theorem remains true.

4. We give an example helpful for understanding the role of δ(·) in the
l.l.t. for integer-valued random variables (as is known, δ(Sn) → 0 when
n → ∞ if the l.l.t. holds for Ξ [3]).

Let 0 < α < 1, P (ξj = −1) = P (ξj = 1) = pj = [jα − (j − 1)α]/2,
P (ξj = 0) = 1 − 2pj, j ∈ N, pj → 0 (j → ∞). Since ξj tends to 0 in
probability as j → ∞, we have, as noted above, δ(Pξj

) → 2 as j → ∞
and, by the same reason, even δ(Pℓ∗

ξj
) → 2 for fixed ℓ ∈ N. Here B2

n = nα,

the condition (b) is not fulfilled for individual summands and (for the given
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partition of Sn into groups) Ξ is not covered by the Theorem. However by
Prokhorov’s theorem [11] which states that the l.l.t. holds for a sequence of
uniformly bounded random variables with zero modes and Bn tending to
∞ if and only if

g.c.d.

{

m :

∞
∑

j=1

P (ξj = m) = ∞
}

= 1,

our sequence obeys the l.l.t.
Let us note finally that, like the theorems by Prokhorov, Rozanov and

Petrov, our theorem is a l.l.t. in strengthened form, that is, it remains true
when any finite number of terms of Ξ is replaced by random variables having
other distributions on Z with finite variances. This notion was introduced
in [11].
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