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On Generalization of One Quasivariational Inequality
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ABSTRACT. The unilateral quasivariational inequality (the so-called Tmplicit
Signorini Problem) for a second order elliptic coercive form is stated in more
general terms. also with bilateral boundary restrictions. The similar problem is
also considered with demain unilateral and bilateral restrictions with Neumann
condition on houndary. The unique solvability of these problems is proved. For the
unilateral problems the same is proved in the noncoercive case.

Key words: implicit Signorini problem, quasivariational inequality, unilateral and
bilateral restrictions. supersolution, coercivity property.

Lt QcR” be a bounded domain with the boundary I', v be the outward normal to (2,
veC: H'(Q) and H'(1) be the real Soboley spaces. The norm in /'(Q) we denote as [lefl,.
Let us define the bilinear form on the space H]{_Q_)xHI(Q) as follows:
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agza’, a°=const>0.
Suppose that the form (1) is coercive, i. &

w(iean) = a ul a=const >0, ¥ ue H(Q). (2)
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Define the following operators:

(o)

" 5 ) " - i ,
A(x,EJ‘):—-Z EI—_LG,}%L-ZfI,-__\i-FaU; sl Z a, Vj-i-. (3)
j

P 2 e avy e e

1
2 a5 .
As it is known. if uEH](Q) and AHFLz{Q) then ;u cH 3({‘) and the following
"M,

Green formula is true [1]:
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Here (-, : >]. is the relation of duality between the spaces Hz(l") and H 2(T),
Let us state an implicit Signorini problem as a quasivariational inequality, considered
by Lions, Bensoussan and Mosco [1].
Find w such that
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we K aluy—u) > Jf(v—z:)dx.
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Jel (), v vekiu). (5)
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Let us state the implicit Signorm
< Zor the variational inequality (31 on
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Here ¢ is a supersolution too.
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K('u)={ ve H'(Q), VIrZh—< ,,au ,¢> } hpe H* ('), ¢ 0. (6)
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Remark 1. Here and in what {ollows, the inequalities between L,(Q) or L,(I') func-
“wee are understood almost everywhere.
~or problem (5), (6) the solvability was known [1], the uniqueness is proved in [2].
“urther we generalize this problem and afterwards we set it with domain restrictions.
ot we give one definition:
| Definition. Let f&/l,(Q);
11 we say that veH](Q) is fsupersolution. if

a(v,g) = [fod, v ¢ e H'(Q), ¢ 20.

|
20 we say that w = H () is f~supersolution, if

AW = [ Wli=w,

J a(W.9)2 [fode, Ve H'(Q).pi20.
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10 0, we simply write "supersolution”.
Lot us state the implicit Signorini problem (5), (6) in more general terms, i.e. con-
~Cor e varlatonal mequality (3) on the set
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©ooote C s a supersolution.

It can be proved, that &=1 is a supersolution. ie., the problem (5), (7) represents the
zoneralization of the problem (5), (6).

Sct the problem (5). (6) with domain restrictions.

we K(u), aluy—u) = j Fv—wde,  fel(Q),7veK(u) (8)
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“or the problem (5), (6) the equality 4u—{ in the distributional sense is proved. Thus,
= wiew of Green formula (4), the boundary restriction in the set (6) is similar to the
~rain restriction involved in the definition of the set (9).

Problem (8), (9) can be generalized as the problem (5), (6), 1. e., variational inequal-
= ' 8) can be considered on the sel

K- {ve ' (@), veg-a(ug)d inQ} glded (@) ¢g20 (10)

Here ¢ is a supersolution too.

Problems (5),(6); (53,(7); (8).(9) and (8),(10) have physu:al meanings in Thermostatics
and Hyvdrostatics. They express control of temperature (fluid pressure) regulated in do-
mam or on boundary. '

In the proof of the existence and uniqueness theorems for problems (5), (7) and (8),
10 the following general lemma is very esscntial.
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Lemma. Let [ & Ly(Q). h e H'(CQ),

foltowing variational inequalities:
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alu.v—u) = J-f(v—u,-)abc, Yvek,

vip=h ).

It hy-hy is an [ -f ~supersolution, then u,-u, is an f-f-supersolution as well.

Remark 2. Since the form (1) is c,ouuvs. then the variational inequalities in Lemma

have a unique solution (see e. g. [3]) .

This lemma gives us opportunity to prove the following

Theorem 1. Problems (5), (6); (3), (7); (8), (9) and (8), (10) have unique solutions

which are stable with respect to the data and to the coefficients of the form (1).

We can consider the problems (5), (7) and (8), (10) in the noncoercive case, i. e., for
the form (1) without condition (2). If the essential supremums of the data /4, ¢ are finite,

then the unique solvability of the problems (5), (7) and (8), (10) are proved.
Set the problems (5). (7) and (8), (10) with the bilateral restrictions:
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State the same problem with domain restrictions:
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b %, = the soluuon of the following variational inequality

l"qr!he SV —iy) > {:‘(\ —uy)dx, YveH\(Q), g+ ffdnix Zyzh- jf@dx_,
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: uy € H'(€), g+ _[fcp.dxgzuﬂzh~_-[f¢)dr§'.-
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B “nere s zlso proved a lemma similar to the above one, whmh ¢ives Us an opportunity
 growe the following

) Theorem 2. The problems (11)=(13) and (14)-116) have wnique solutions which are

[ W Wik respect to the data and to the coefficients of the form (1),
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