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ON THE UNIQUENESS OF SOLUTIONS OF SOME
QUASI-VARIATIONAL INEQUALITIES FROM CONTROL

THEORY

A. GACHECHILADZE

Abstract. The existence and uniqueness problems for some quasi-variational
inequalities are studied on the basis of the L∞-estimates for solutions of the
variational inequalities and their differences. An implicit obstacle problem is
stated by analogy with one quasi-variational inequality studied by Benous-
san and Lions (1982) and Vescan (1982) and its unique solvability is proved.
Some conclusions are given concerning the uniqueness of solutions for an im-
pulse control problem with bilateral restrictions and for a quasi-variational
inequality appearing in dynamic programming.
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1. A Maximum Principle in Variational Inequalities

Let Ω be a bounded domain in Rn, Γ be the boundary of Ω : Γ = ∂Ω,
Γ ∈ C2, ν be the outward unit normal vector to Ω. Let H1(Ω) be the real

Sobolev space and H̃1(Ω) := {v ∈ H1(Ω) : v|
Γ

= 0}. The norm in H1(Ω) is
denoted by ‖ · ‖1.

Suppose that

V = H̃1(Ω) or V = H1(Ω).

Let us define the bilinear form on the space H1(Ω)×H1(Ω) as follows:

a(u, v) =
n∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj

dx +
n∑

i=1

∫

Ω

ai
∂u

∂xi

v dx +

∫

Ω

a0u v dx,

aij, ai, a0 ∈ L∞(Ω),
n∑

i,j=1

aijξiξj ≥ α0|ξ|2,

a0(x) ≥ a0, a0 = const > 0.

(1.1)

Suppose that the form a(u, v) is coercive:

a(u, u) ≥ α‖u‖2
1, α = const > 0, ∀u ∈ H1(Ω).
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Set the variational problem with the unilateral restrictions. Find a function
u ∈ K such that

a(u, v − u) ≥
∫

Ω

f (v − u)dx, ∀v ∈ K, (1.2)

where

K = Kψ{v ∈ V : v ≥ ψ, in Ω} or (1.3)

K = Kϕ{v ∈ V : v ≤ ϕ, in Ω}, (1.4)

where f ∈ L2(Ω), h ∈ H1(Ω) are given functions and a(u, v) is the form defined
by (1.1). Let us now consider the same problem with double obstacles, i.e.,

a(u, v − u) ≥
∫

Ω

f (v − u)dx, u ∈ Kϕ
ψ , ∀v ∈ Kϕ

ψ , (1.5)

where
Kϕ

ψ = {v ∈ V : ψ ≤ v ≤ ϕ} (1.6)

and f ∈ L2(Ω), ϕ, ψ ∈ H1(Ω), ψ ≤ ϕ are given functions.
Here and in what follows the inequalities between functions from H1 or L2

are understood almost everywhere, while “sup” stands for “ess sup”.
The unique solvability of these problems follows from the coercivity and

boundedness of the form a(u, v) and from the closure and convexity of the
sets Kϕ

ψ , Kψ and Kϕ (see [2], [6]).
Below we will give the maximum principles for the above inequalities and

estimate the differences of their solutions. Similar results can be found in [1],
[2] and [6], but we will prove them in the form we need for further applications.
First of all we give several definitions and lemmas.

Definition. For a0(x) from (1.1) and any f ∈ L2(Ω) define the constants

M+
f := sup

Ω

f

a0

, M−
f := inf

Ω

f

a0

when V = H1(Ω),

M+
f := max

(
sup

Ω

f

a0

, 0

)
, M−

f := min

(
inf
Ω

f

a0

, 0

)
when V = H̃1(Ω).

Lemma 1.1 (cf. [5], [6]). Let u ∈ V . Then

(i)
∂u

∂xi

∣∣∣∣
D

= 0, 1 ≤ i ≤ n, where D = {x ∈ Ω, u(x) = 0}.
(ii) If

max(u, 0) =

{
u, {x ∈ Ω, u(x) > 0},
0, {x ∈ Ω, u(x) ≤ 0},

then max(u, 0) ∈ V and

[max(u, 0)]xi
=

{
uxi

, {x ∈ Ω, u(x) > 0},
0, {x ∈ Ω, u(x) ≤ 0}.
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Note that sometimes we will use the notation u+ = max(u, 0) and u− =
min(u, 0).

Lemma 1.2 ([5]). Let u be the solution of problem (1.2), (1.3) and uf be the
solution of the problem

uf ∈ V, a(uf , v) =

∫

Ω

f vdx, ∀v ∈ V, (1.7)

which is the Neumann or the Dirichlet problem with the homogeneous boundary

condition, depending on whether V = H1(Ω) or V = H̃1(Ω). Then

uf ≤ u ≤ z, (1.8)

where z satisfies the conditions

z ∈ V, z ≥ ψ, a(z, v) ≥
∫

Ω

f v dx, ∀v ∈ V, v ≥ 0. (1.9)

Proof. We will prove the right-hand side of (1.8). Let z satisfy conditions (1.9).
Take

w := min(z − u, 0) = (z − u)−.

We will show that w = 0. Due to (ii) of Lemma 1.1 we have the following
properties of the function w:

w ∈ V,
∂w

∂xi

∂(z − u)

∂xj

=
∂w

∂xi

∂w

∂xj

,
∂(z − u)

∂xi

w =
∂w

∂xi

w,

(z − u)w = w2.

(1.10)

Substituting the function w into the form (1.1) and taking into account (1.10),
we obtain

a(z − u,w) = a(w, w). (1.11)

It is easy to see that ψ ≤ min(z, u) = w + u; so we can put v = min(z, u) in
inequality (1.2) to obtain

a(u,w) ≥
∫

Ω

fw dx. (1.12)

At the same time we have

a(z, w) ≤
∫

Ω

fw dx. (1.13)

After subtracting (1.12) from (1.13), by virtue of (1.11) we obtain a(w, w) ≤ 0,
which implies w = 0 due to property (1.2).

Let us prove the left-hand side of (1.8). Take v = u− (u− uf )
−. Obviously,

v ∈ Kψ and if we substitute it into problem (1.2), (1.3), we then obtain

a(u, (u− uf )
−) ≤

∫

Ω

f(u− uf )
− dx.
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Further, taking into account the fact that due to (1.7), a(uf , (u − uf )
−) =∫

Ω

f(u− uf )
− dx, by a reasoning analogous to that we have used for (1.10) and

(1.11) we derive

0 ≥ a(u− uf , (u− uf )
−) = a((u− uf )

−, (u− uf )
−),

from which it follows that (u− uf )
− = 0 and u ≥ uf . ¤

Let us prove the principles of maximum and minimum for the above-formu-
lated variational inequalities and problem (1.7).

Theorem 1.3. Let f ∈ L2(Ω), ϕ, ψ ∈ H1(Ω), ψ ≤ ϕ.

(i) For a solution uf of problem (1.7) there holds

M−
f ≤ uf ≤ M+

f . (1.14)

(ii) If u is a solution of the unilateral problem (1.2), (1.3) ((1.2), (1.4)),
then

u ≤ max(M+
f , sup ψ) (u ≥ max(M−

f , inf ϕ)). (1.15)

(iii) If u is a solution of problem (1.5), (1.6), then

min(M−
f , inf ϕ) ≤ u ≤ max(M+

f , sup ψ). (1.16)

Proof. (i) Take ψ ≤ M+
f in problem (1.2), (1.3). Then it is clear that z = M+

f

satisfies (1.9). So we take z = M+
f in (1.8).

To prove the left-hand side inequality in (1.14), note that

−uf = u−f ≤ M+
−f = −M−

f .

(ii) Let u be a solution of problem (1.2), (1.3). Then to obtain (1.15) we
can put z = max(M+

f , sup ψ) in (1.8). If u is a solution of problem (1.2), (1.4),
then −u is a solution of problem (1.2), (1.3) with −f and ψ = −ϕ. Thus from
M+
−f = −M−

f follows the second inequality of (1.15).
(iii) Let us prove the right-hand side inequality in (1.16). Let uψ ∈ V, uψ ≥ ψ

be a solution of the variational inequality

a(uψ, v − uψ) ≥
∫

Ω

f (v − uψ)dx, ∀v ∈ V, v ≥ ψ. (1.17)

Take v = min(u, uψ). Obviously, v ∈ Kϕ
ψ and we can put it in (1.5) to obtain

a(u, (uψ − u)−) ≥
∫

Ω

f (uψ − u)−dx. (1.18)

At the same time, due to (1.17) we can write

a(uψ, (uψ − u)−) ≤
∫

Ω

f (uψ − u)−dx. (1.19)
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After subtracting (1.18) from (1.19), by the same reasoning as in Lemma 1.2,
we derive

0 ≥ a(uψ − u, (uψ − u)−) = a((uψ − u)−, (uψ − u)−),

which implies (uψ−u)− = 0 and uψ ≥ u. Now, by estimate (1.15) for a solution
of a unilateral variational inequality we have u ≤ uψ ≤ max(M+

f , sup ψ).

Note that −u is a solution of problem (1.5), (1.6) with −f, and K−ψ
−ϕ = {v ∈

V : −ϕ ≤ v ≤ −ψ}. Thus the above-proved result implies the first inequality
of (1.16). ¤

Next, we will estimate the differences of solutions corresponding to different
data of inequalities with unilateral and bilateral restrictions.

Theorem 1.4. Let u1 and u2 be solutions of inequalities

u1 ∈ K1, a(u1, v − u1) ≥
∫

Ω

f1 (v − u1)dx, ∀v ∈ K1, (1.20)

u2 ∈ K2, a(u2, v − u2) ≥
∫

Ω

f2 (v − u2)dx, ∀v ∈ K2, (1.21)

with
Ki = {v ∈ V : v ≤ ϕi}, ϕi ∈ V, i = 1, 2.

Then

min(M−
f1−f2

, inf(ϕ1 − ϕ2)) ≤ u1 − u2 ≤ max(M+
f1−f2

, sup(ϕ1 − ϕ2)). (1.22)

Proof. Let k = max(M+
f , sup(ϕ1 − ϕ2)). It can be verified that

(u1 − u2 − k)+ ≤ ϕ2 − u2.

So, if we put v1 = u1 − (u1 − u2 − k)+ and v2 = u2 + (u1 − u2 − k)+ in (1.20)
and (1.21), respectively, and sum them, we arrive at

a(u1 − u2, (u1 − u2 − k)+) ≤
∫

Ω

(f1 − f2) (u1 − u2 − k)+ dx.

Hence, by the same reasoning as we have used for equality (1.11), we derive

a((u1 − u2 − k)+, (u1 − u2 − k)+) +

∫

Ω

ka0 (u1 − u2 − k)+ dx

≤
∫

Ω

(f1 − f2) (u1 − u2 − k)+ dx,

which implies (u1−u2−k)+ = 0 and thus the right-hand side of estimate (1.22)
is proved.

To prove the left-hand side of (1.22) we take k = min(M−
f , inf(ϕ1 − ϕ2)).

Further, we check that (u1 − u2 − k)− ≥ u1 − ϕ1 and substitute v1 = u1 −
(u1 − u2 − k)− and v2 = u2 + (u1 − u2 − k)− into inequalities (1.20) and (1.21)
respectively. Then, in the same way as above we derive (u1− u2− k)− = 0. ¤
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2. Quasi-Variational Inequalities

Let us consider a quasi-variational inequality, i.e., an inequality with an ob-
stacle depending on the solution:

a(u, v − u) ≥
∫

Ω

f (v − u)dx, ∀v ∈ K(u),

K(u) = {v ∈ H1(Ω) : v ≥ h− a(u, φ)}
(2.1)

with

f ∈ L2(Ω), h, φ ∈ H1(Ω), φ ≥ 0. (2.2)

The problem with an obstacle of this kind appearing on the boundary is
considered as an implicit Signorini problem in the monograph [1] and in some
other references. The uniqueness of a solution of this problem is proved in
[4]. Using one result of Section 1, we will show that problem (2.1) is solvable
uniquely.

Let uλ be a solution of the following variational inequality:

a(uλ, v − uλ) ≥
∫

Ω

f (v − uλ)dx, ∀v ∈ H1(Ω), v ≥ h− λ,

uλ ∈ H1(Ω), uλ ≥ h− λ,

(2.3)

where f and h are the same as in problem (2.1) and λ ∈ R.
Let S =

{
y ∈ R : y ≥ ∫

Ω
f φ dx

}
for f and φ from (2.2). Define the mapping

F : R→ S for problem (2.1) as follows:

F (λ) = a(uλ, φ), λ ∈ R, (2.4)

with φ from (2.1), (2.2). Clearly, if F (λ) = λ, then the corresponding u
λ

is a
solution of problem (2.1). Conversely, if u is a solution of problem (2.1), then for
λ = a(u, φ) we have uλ = u; therefore F (λ) = λ, i.e., the problem of solvability
and the number of solutions of the problem (2.1) are reduced to defining the
number of fixed points of mapping (2.4). The continuity and lack of increase
of the function F (λ) are sufficient to have a unique fixed point. First we will
show that mapping (2.4) is continuous.

Let λ1, λ2 ∈ R. Put v = uλ1 + λ1 − λ2 and v = uλ2 + λ2 − λ1 in inequality
(2.3) for λ = λ2 and λ = λ1, respectively, to obtain

a(uλ2 , uλ1 − uλ2) ≥
∫

Ω

f (uλ1 − uλ2 + λ1 − λ2)dx + (λ2 − λ1)

∫

Ω

a0uλ2 dx,

a(uλ1 , uλ2 − uλ1) ≥
∫

Ω

f (uλ2 − uλ1 + λ2 − λ1)dx + (λ1 − λ2)

∫

Ω

a0uλ1 dx.
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Sum these inequalities and recall that the form a(u, v) is coercive:

α‖uλ1 − uλ2‖2
1
≤ a(uλ1 − uλ2 , uλ1 − uλ2) ≤ (λ2 − λ1)

∫

Ω

(uλ1 − uλ2) dx

≤ |λ1 − λ2| ‖uλ1 − uλ2‖L2 .

Thus

‖uλ1 − uλ2‖1 ≤ |λ1 − λ2|.
Now we need to use the boundedness of form (1.1). Assume that c =

max
1≤i,j≤n

(‖aij‖L∞ , ‖ai‖L∞ , ‖a0‖L∞ ) and write

F (λ1)− F (λ2) = a(u
λ1
− u

λ2
, φ) ≤ c‖uλ1 − uλ2‖1 ‖φ‖1 ≤ |λ1 − λ2| ‖φ‖1 ,

which implies that the function F (λ) is continuous.
Now we show that F (λ) is nonincreasing, i.e.,

a(u
λ1
− u

λ2
, φ) ≥ 0, λ1 ≥ λ2.

To prove this under conditions (2.2) it is equivalent to prove

a(u0 − uλ, φ) ≥ 0, ∀φ ≥ 0, ∀λ ≥ 0. (2.5)

where u0 is a solution of problem (2.3) for λ = 0.
Set

h0 = h− u
λ
.

Clearly, h0 ≤ λ. Consider the variational problem

a(w, v − w) ≥ 0, ∀v ∈ H1(Ω), v ≥ h0,

w ∈ H1(Ω), w ≥ h0.
(2.6)

It has a unique solution w. Since h0 ≤ λ, λ ≥ 0, due to Theorem1.3 (see
(1.15)) we obtain

w ≤ λ in Ω. (2.7)

Further, let

z = u
λ

+ w.

Let us show that z is a solution of problem (2.3) for λ = 0, i.e., z = u0. Indeed,
we have z ≥ h. Further, by (2.6) and (2.7), we conclude that v−uλ ≥ h−uλ and
v − w ≥ h− λ hold for any v ∈ H1(Ω), v ≥ h. Applying the latter inequalities
we obtain

a(z, v − z) = a(uλ + w, v − uλ − w) ≥ a(uλ, v − w − uλ)

≥
∫

Ω

f (v − w − uλ)dx =

∫

Ω

f (v − z)dx, v ∈ H1(Ω), v ≥ h.

Thus z is a solution of (2.3) for λ = 0 and therefore z = u0. So u0−uλ = w and
(2.6) implies (2.5), from which it follows that the function F is nonincreasing.
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Thus F : S → S is a continuous and nonincreasing function, having a unique
fixed point. Hence, we have proved

Theorem 2.1. The quasi-variational inequality (2.1) has a unique solution
under conditions (2.2).

Let us study the question of uniqueness for an impulse control problem with
double implicit obstacles.

Take

f ∈ L∞(Ω), k1, k2 > 0, k1 ≥ ‖f−‖L∞

a0
, k2 ≥ ‖f+‖L∞

a0
,

c1, c2 : (Rn)+ → R+, c1(0) = c2(0) = 0,

M1ϕ(x) = inf
ξ≥0,

x+ξ∈Ω

[ϕ(x + ξ) + c1(x + ξ)],

M2ϕ(x) = sup
ξ≥0,

x+ξ∈Ω

[ϕ(x + ξ)− c2(x + ξ)].

(2.8)

Note that the inequalities between vectors from Rn are understood compo-
nentwise.

Consider the quasi-variational inequality

a(u, v − u) ≥
∫

Ω

f (v − u)dx,

u ∈ V, −k2 + M2u ≤ u ≤ k1 + M1u,

∀v ∈ V, −k2 + M2u ≤ v ≤ k1 + M1u.

(2.9)

This inequality was considered in [1] for (1.1) for c1 = c2 = 0 . It was proved
there that the problem is solvablle, but the question of uniqueness remained
open. Problem (2.9) was also considered with unilateral restrictions in [1]:

a(w, v − w) ≥
∫

Ω

f (v − w)dx, f ∈ L∞(Ω),

w ∈ V, u ≤ k + M1w, k > 0,

∀v ∈ V, v ≤ k + M1w,

(2.10)

In the coercive case the unique solvability was proved when f ≥ 0, aij are
sufficiently smooth and c1 satisfies some other conditions. Since the restrictions
on aij and c1 are needed for the regularization purpose and not for the existence
and uniqueness, we can ignore them. Also, the condition f ≥ 0 is not necessary
for the unique solvability of (2.10) either. Indeed, let f be not nonnegative;
then consider (2.10) with f = f − inf f , which has a unique solution w. Now
we need only to make sure that there is a one-to-one correspondence between
the solutions of the problems with f and with f : w = w − inf f .
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It can be shown that the following unilateral problem is also uniquely solvable:

a(z, v − z) ≥
∫

Ω

f (v − z)dx, f ∈ L∞(Ω),

z ∈ V, u ≥ −k + M2z, k > 0,

∀v ∈ V, v ≥ −k + M2z.

(2.10)′

Let us estimate the solutions of problems (2.9), (2.10) and (2.10)′. Definitions
(2.8) immediately imply

sup M2ϕ ≤ sup ϕ, inf M1ϕ ≥ inf ϕ. (2.11)

Due to Theorem 1.3 (estimates (1.15), (1.16)) and to (2.11), we obtain

M−
f ≤ u ≤ M+

f , (2.12)

w ≥ M−
f , (2.13)

z ≤ M+
f . (2.13)′

Note that (2.8) implies k2 ≥ M+
f and k1 ≥ −M−

f ,

Theorem 2.2. If k2 ≥ M+
f − M−

f (k1 ≥ M+
f − M−

f ), then problem (2.9)
has a unique solution u, which is a solution of the quasi-variational inequality
(2.10) ((2.10)′) with the same f and with k = k1, (k = k2).

Proof. Let u0 be one of solutions of the quasi-variational inequality (2.9) and
u1 be a solution of the variational inequality

a(u1, v − u1) ≥
∫

Ω

f (v − u1)dx,

u1 ∈ V, u1 ≤ k1 + M1u0,

∀v ∈ V, v ≥ k1 + M1u0,

Since for u0 we have (2.12), by (2.11) we obtain M2u0 ≤ M+
f . Applying the

latter estimate and (2.13), we derive

u1 ≥ M−
f ≥ M+

f − k2 ≥ M2u0 − k2

Thus u1 is a solution of the variational inequality

a(u1, v − u1) ≥
∫

Ω

f (v − u1)dx,

u1 ∈ V, −k2 + M2u0 ≤ u1 ≤ k1 + M1u0,

∀v ∈ V, −k2 + M2u0 ≤ v ≤ k1 + M1u0.

It implies that u1 = u0. Hence u0 is a solution of the quasi-variational inequality
(2.10) with k = k1. As we have noted, this problem is solvable uniquely.

Analogously, we prove the unique solvability for k1 ≥ M+
f −M−

f by consid-
ering problem (2.10)′ and applying (2.13)′. ¤
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Let us now study one more quasi-variational inequality considered in [1], [3]
and [7]. Set

M(v) = h +

∫

Ω

g v dx, ∀v ∈ H1(Ω), (2.14)

where

h ∈ H1(Ω), h ≥ k, k = const > 0, g ∈ L2(Ω). (2.15)

Consider the problem

a(u, v − u) ≥
∫

Ω

f (v − u)dx, f ∈ L2(Ω),

u ∈ H1(Ω), u ≤ M(u),

∀v ∈ H1(Ω), v ≤ M(u).

(2.16)

In references [1], [3] problem (2.14)–(2.16) is considered for the form

a(u, v) =
n∑

i,j=1

∫

Ω

∂u

∂xi

∂v

∂xj

dx +

∫

Ω

u v dx.

We consider problem (2.14)–(2.16) for the form (1.1) because the latter form
does not cause any difficulty.

Define F (λ) as

F (λ) =

∫

Ω

g uλ dx, (2.17)

where uλ is a solution of the problem

a(uλ, v − uλ) ≥
∫

Ω

f (v − uλ)dx, uλ ∈ H1(Ω),

∀v ∈ H1(Ω), v ≤ h + λ, uλ ≤ h + λ,

(2.18)

with the same f and h as in (2.15) and (2.16).
As above, the number of solutions of problem (2.14)–(2.16) coincides with

the the number of fixed points of F (λ).
In [1] and [7] it is shown that F (λ) is continuous and

F (λ)

λ
→

∫

Ω

g dx, λ → −∞, F (λ) →
∫

Ω

g ufdx, λ → +∞, (2.19)

where

uf ∈ H1(Ω), a(uf , v) =

∫

Ω

f vdx, ∀v ∈ H1(Ω). (2.20)

Hence, in view of the continuity of F (λ), (2.19) implies that if∫

Ω

g dx < 1, (2.21)
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then problem (2.14)–(2.16) has a solution.
Let us show that if condition (2.21) fails to be fulfilled, then problem (2.14)–

(2.16) may have no solution at all. Indeed, examine the data

f ∈ L2(Ω), f ≥ const > 0,
f

a0

6= const, h = uf , κ = mes Ω,

g = κ−1 + β

(
uf − κ−1

∫

Ω

uf dx

)
, β <

∫
Ω

uf dx

(
∫
Ω

uf dx)2 − κ
∫
Ω

u2
f dx

.

(2.22)

Check that (
∫
Ω

uf dx)2 6= κ
∫
Ω

u2
f dx. First show that uf 6= const. Indeed, if

uf = const, then

a(uf , v) = uf

∫

Ω

a0 vdx =

∫

Ω

f vdx, ∀v ∈ H1(Ω).

Thus uf a0 = f , which contradicts
f

a0

6= const in (2.22). Hence uf 6= const and

Schwarz inequality implies
( ∫

Ω

uf dx

)2

< κ

∫

Ω

u2
f dx. (2.23)

Now, observe that due to (2.22) and Theorem 1.3, h = uf ≥ M−
f > 0.

Thus, data (2.22) are correct and satisfy conditions (2.15).

Lemma 2.3. Problem (2.14)–(2.16) with conditions (2.22) has no solution.

Proof. First of all observe that

uλ = uf , λ ≥ 0.

Theorem 1.4 implies that

0 ≤ uλ1 − uλ2 ≤ λ1 − λ2, λ1 ≥ λ2. (2.24)

Since u0 = uf = h, then from (2.24) we derive

uλ = u0 + λ, λ ≤ 0,

F (λ) =

∫

Ω

g uf dx + λ

∫

Ω

g dx =

∫

Ω

g uf dx + λ, λ ≤ 0.

We have only to prove that
∫
Ω

g uf dx < 0. Indeed, due to (2.22) and (2.23)

∫

Ω

g uf dx = κ−1

∫

Ω

uf dx + β

( ∫

Ω

u2
f dx− κ−1

( ∫

Ω

uf dx

)2)
< 0.

The lemma is proved. ¤
Let us consider the question of uniqueness of the solution of problem (2.14)–

(2.16) with condition (2.21).
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Theorem 2.4. If
∫
Ω

g+ dx < 1, then problem (2.14)–(2.16) has a unique

solution, while, if

f

a0

6= const, f ≥ const > 0, h = M−
f (1− α), g = α g,

g = κ−1 + β

(
w − κ−1

∫

Ω

w dx

)
, β <

∫
Ω

w dx

(
∫
Ω

w dx)2 − κ
∫
Ω

w2 dx
,

w =
uµ −M−

f

µ
, µ ∈ R+, α =

1∫
Ω

g w dx

a(uµ, v − uµ) ≥
∫

Ω

f (v − uµ)dx, ∀v ≤ M−
f + µ, v ∈ H1(Ω),

uµ ∈ H1(Ω), uµ ≤ M−
f + µ,

(2.25)

with κ from (2.22), then f, g, h satisfy (2.15) and (2.21) and problem (2.14)–
(2.16) has at least two solutions.

Proof. Let us prove the first claim. Suppose that problem (2.14) − (2.16) has
two solutions u1 and u2 with

∫
Ω

g u1 dx >
∫
Ω

g u2 dx; then, due to Theorem1.4,

0 ≤ u1 − u2 ≤
∫

Ω

g (u1 − u2) dx ≤
∫

Ω

g+ (u1 − u2) dx < sup(u1 − u2),

which is a contradiction since
∫
Ω

g+ dx < 1.

Now we, will prove the second claim. First let us verify that g and h from
(2.25) satisfy (2.15) and (2.21). It is sufficient to show that α < 1, but for our
future purpose we will show that α < 0. To this end, let us first verify that
w 6= const. Indeed, if w = const, then uµ = const and for every φ ∈ H1(Ω),
φ ≤ 0, there holds

a(uµ, φ) = uµ

∫

Ω

a0 φ dx ≥
∫

Ω

f φ dx. (2.26)

Hence it follows that uµ a0 ≤ f and uµ ≤ M−
f . It can be easily verified that in

this case (2.29) holds for every φ ∈ H1(Ω); therefore uµ = uf = const, where uf

is defined from (2.20). As we have shown in the proof of Lemma2.3, uµ = const

contradicts
f

a0

6= const. Thus w 6= const. Now, as in the above-mentioned

proof, we will show that the fulfilment of
∫
Ω

g w dx < 0 implies α < 0.

First, we will give one general assertion. Consider problem (2.14), (2.16) with
data h ∈ H1(Ω), g ∈ L2(Ω), f ∈ L2(Ω), with uλ and F (λ) defined by (2.17)
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and (2.18) by the mentioned data and take

g = α1g, h = h + α2, (2.27)

where α1 and α2 are arbitrary numbers. If we take an arbitrary θ ∈ R with

F (θ) 6= F (0) (2.28)

and define

α1 =
θ

F (θ)− F (0)
, α2 = −α1 F (0), (2.29)

then α1 F (0) and α1 F (θ) will be the fixed points of F (λ), which is defined from
(2.17) and (2.18) using the data f, g, h.
It is a simple consequence of the equalities

uλ = uλ+α2 , F (λ) = α1 F (λ + α2),

where uλ is defined from (2.18) by f, g, h.
Let us return to conditions (2.25). Take

g = g0, h = M−
f , θ = µ. (2.30)

To complete the proof, we must show that (2.27) and (2.28) hold for g and
h from conditions (2.25) and for g, h, α1 and α2 from conditions (2.29) and
(2.30). To this end, we verify that∫

Ω

g dx = 1, u0 = M−
f ,

where u0 is defined from (2.18) with λ = 0, h = h.
The first equality is clear. To prove the second one, note that due to the cor-

responding estimate (1.15) of Theorem1.3, we have u0 ≥ M−
f . These equalities

imply that α1 = α = µ

F (µ)−F (0)
and α2 = −αM−

f , which proves (2.27) and (2.28)

since we have shown that α < 0.
Thus F (λ), defined in (2.17) for f, g, h from conditions (2.25) has at least two

fixed points α1 F (0)=αM−
f and α1F (µ)=α

∫
Ω

g0 uµ dx. Hence we conclude that
problem (2.14), (2.16) under conditions (2.25) has at least two solutions. ¤
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