
STUDIA MATHEMATICA 155 (1) (2003)

On the generalization of the Stein–Weiss theorem for
the ergodic Hilbert transform

by

Lasha Ephremidze (Tbilisi)

Abstract. The Stein–Weiss theorem that the distribution function of the Hilbert
transform of the characteristic function of E depends only on the measure of E is gener-
alized to the ergodic Hilbert transform.

1. Introduction. Let (X,S, µ) be a σ-finite measure space and let
(Tt)t∈R be an ergodic group of measure-preserving transformations on X.
As usual the map (x, t) 7→ Ttx is assumed to be jointly measurable. If
f ∈ L(X), then the ergodic Hilbert transform of f is defined by the formula

H(f)(x) = lim
δ→0+

1
π

�
{δ≤|t|≤1/δ}

f(T−tx)
t

dt.(1)

It is well known that the limit in (1) exists and consequently H(f)(x) is
defined for a.a. x ∈ X (see [4], [5]). If Tt, t ∈ R, are the translations on the
real line, x 7→ x+ t, and f ∈ L(R), then we get the usual Hilbert transform

H(f)(x) = lim
δ→0+

1
π

�
{δ≤|t|≤1/δ}

f(x− t)
t

dt.(2)

We also consider the conjugate of 2π-periodic integrable (on T = (0, 2π))
functions:

f̃(x) = lim
δ→0+

1
2π

�
{δ≤|t|≤π}

f(x− t) cot
t

2
dt.

As usual, in this case we may assume the function f and its conjugate f̃ to
be defined on the boundary of the unit circle.

The two theorems below which identify the distribution functions of the
Hilbert transform and of the conjugate of � E , the characteristic function of
a measurable set E, are well known and belong to Stein and Weiss [6].
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Theorem A. Let E ⊂ R be a measurable set with finite Lebesgue mea-
sure, m(E) <∞. Then

m{x ∈ R : H( � E)(x) > λ} = m{x ∈ R : H( � E)(x) < −λ}
= Ψ(m(E), λ), λ ≥ 0.

Theorem B. Let E ⊂ T be a measurable set. Then

m{x ∈ T : �̃ E(x) > λ} = m{x ∈ T : �̃ E(x) < −λ} = Φ(m(E), λ), λ ≥ 0.

The original proof of the authors uses real methods, while there exist
shorter proofs applying complex methods ([1], [3]). The exact form of the
functions Ψ and Φ is also well known (see [6], [7]):

Ψ(ξ, λ) =
ξ

sinh(πλ)
and Φ(ξ, λ) = 2 arctan

sin(ξ/2)
sinh(πλ)

.

In the present paper we try to generalize the Stein–Weiss theorem to
the ergodic Hilbert transform. The similarity between the ergodic and the
usual Hilbert transforms makes one believe that the generalization is possible
(though we have not found it done elsewhere and the personal communi-
cations confirm that the result obtained is new). On the other hand there
is no evident reason why an ergodic analog of such an exact quantitative
theorem should remain true for every measure space.

The generalization we achieve is only for finite measure spaces, and the
ergodic Hilbert transform behaves like the conjugate rather than the usual
Hilbert transform in this case. It makes the constants simpler to assume
below that the measure of the total space is 2π instead of 1.

Theorem 1. Let (Tt)t∈R be an ergodic flow of measure-preserving trans-
formations on a finite measure space (X,S, µ) with µ(X) = 2π and let E ∈ S.
Then

µ{x ∈ X : H( � E)(x) > λ} = Φ(µ(E), λ)(3)

= µ{x ∈ X : H( � E)(x) < −λ}, λ ≥ 0.

Although we believe that the direct generalization of Theorem A should
be true for the ergodic Hilbert transform on infinite measure spaces, the
method of proof we propose for Theorem 1 fails to achieve this goal.

In the specific case where the (Tt)t∈R is the group of rotations on the
unit circle the ergodic Hilbert transform coincides with the conjugate, i.e.
Statement 1 below holds. This means that the usual Hilbert transform of
an integrable (on T) 2π-periodic function (although the function is not inte-
grable on R in this case, unless it is identically 0, it can be proved by direct
calculations that the limit in (2) exists for a.a. x ∈ X anyway) is equal to
its conjugate. This equation is usually proved by transforming the kernel 1

t

into 1
2 cot t

2 by means of a special way of summation (see [2]). The methods
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developed in the paper enable us to give a proof of this fact by direct calcu-
lations of integrals. This approach apparently has an independent interest
and is presented in Section 4.

Statement 1. Let (X,S, µ) = (T,B,m) be the unit circle and (Tt)t∈R
be the group of rotations on it , Tt(x) = x+ t (mod 2π), x ∈ T. If f ∈ L(T),
then

H(f)(x) = f̃(x)(4)

for a.a. x ∈ T.

2. Notation and preliminary propositions. We say that x ∈ X
measures A ∈ S properly if

lim
s→∞

1
s

s�
0

� A(Ttx) dt = lim
s→∞

1
s

s�
0

� A(T−tx) dt =
µ(A)
µ(X)

.(5)

For any countable system {An}∞n=1 of sets, it follows from the Ergodic The-
orem that almost every x ∈ X measures properly each An.

The principle value integral Y = limδ→0+ � {δ<|t|<a} f(t) dt will be written

as Y = (P) � a−a f(t) dt and this will always mean that the right side of the
equality exists and is equal to Y . If f ∈ L(X), then

Hd(f)(x) = (P)
d�
−d

f(T−tx)
t

dt

and H(f)(x) = limd→∞Hd(f)(x) for a.a. x ∈ X.
The dilation and translation operators on M(R) (the measurable func-

tions on R) will be denoted by D and S respectively,

Drf(ξ) = f(rξ), Srf(ξ) = f(ξ − r), ξ, r ∈ R.
These operators satisfy certain commutation relations, DrS% = S%/rDr, and
the translations commute with the Hilbert transform, SrH = HSr, and
with the conjugate operator, Srf̃ = S̃rf . Moreover, it easily follows from
the change of variables in the integral that DrH(f) = H(Drf), r > 0,
and the boundary value property of the conjugate implies that if n ∈ N,
then Dnf̃ = D̃nf . Consequently, if f ∈ L(T) and x ∈ T are such that
D̃nf(x/n) = Dnf̃(x/n) = f̃(x) for each n = 1, 2, . . . (a.a. x ∈ R will be
such), then

f̃(x) =
1

2π
(P)

π�
−π
Dnf

(
x

n
− t
)

cot
t

2
dt(6)

=
1

2π
(P)

π�
−π
DnS−xf(−t) cot

t

2
dt.
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We say that a sequence {hn}∞n=1 of functions is regularly distributed on
an interval (a, b) (with constant c) if hn is uniformly bounded, supn ‖hn‖∞
<∞, and

lim
n→∞

β�
α

hn dm = c(β − α)

for each (α, β) ⊂ (a, b). Obviously, if hn(t) is regularly distributed on (a, b),
then hn(ξ − t) will be regularly distributed on (ξ − b, ξ − a) (with the same
constant) and if h(t) is a bounded periodic function, then hn(t) = h(nt), n =
1, 2, . . . , will be regularly distributed on R (with constant p−1 � p0 h dm, where
p is the period of h).

It easily follows from (5) that if A ∈ S and x measures A properly,
then the sequence of functions hn(t) = � A(Tntx), n = 1, 2, . . . , is regularly
distributed on R with constant µ(A)/µ(X): indeed,

β�
α

hn(t) dt =
1
n

(nβ�
0

� A(Ttx) dt−
nα�
0

� A(Ttx) dt
)
→ µ(A)

µ(X)
(β − α).

If [a, b] is a finite interval, let F [a, b] be the set of step functions,

F [a, b] =
{
g : g =

j−1∑

i=0

li � [ai,ai+1), a = a0 < a1 < . . . < aj = b
}

and let F [a, b] be its closure in the L∞ norm.
The lemma below follows immediately from the given definitions.

Lemma 1. If g ∈ F [a, b] and a sequence of functions hn is regularly
distributed on (a, b) with constant c, then

lim
n→∞

b�
a

ghn dm = c

b�
a

g dm.

The following lemma can be proved in the same way as in the case where
the sequence {F 0

n}∞n=1 consists of one function. Therefore we omit its proof.

Lemma 2. Let {F in}∞n=1, i = 0, 1, be sequences of measurable functions
on a space X with finite measure, µ(X) < ∞, such that the distribution
functions of F 0

n are convergent to some function ϕ, limn→∞ µ{F 0
n > λ} =

ϕ(λ) for each λ ∈ R, and limn→∞(F 1
n(x)−F 0

n(x)) = 0 for a.a. x ∈ X. Then

lim
n→∞

µ{F 1
n > λ0} = ϕ(λ0)

for every point λ0 of continuity of ϕ.

3. Auxiliary lemmas. Let

K1(t) ≡ 1
πt

and K2(t) ≡ 1
2π

cot
t

2
, 0 < |t| ≤ π,
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so that � {δ<|t|<π}Ki(t) dt = 0, i = 1, 2, and

lim
δ→0+

sup
|t|<δ
|K1(t)−K2(t)| = 0.(7)

Lemma 3. Let functions hn, n = 1, 2, . . . , be regularly distributed on
(−π, 3π) and let ξ ∈ T. If

F in(ξ) = (P)
π�
−π
hn(ξ − t)Ki(t) dt, i = 1, 2,

then
lim
n→∞

|F 1
n(ξ)− F 2

n(ξ)| = 0.(8)

Proof. For each δ > 0, we have

F in(ξ) = (P)
δ�
−δ

hn(ξ − t)Ki(t) dt(9)

+
�

{δ<|t|<π}
hn(ξ − t)Ki(t) dt, i = 1, 2.

Since � {δ<|t|<π}Ki(t) ∈ F [−π, π] and � {δ<|t|<π}Ki(t) dt = 0, the second
summand in (9) converges to 0 as n → ∞ by Lemma 1. Thus, for each
ε > 0, if δ > 0 is small such that sup|t|<δ |K1(t)−K2(t)| < ε (see (7)), then

lim sup
n→∞

|F 1
n(ξ)− F 2

n(ξ)| = lim sup
n→∞

∣∣∣(P)
δ�
−δ

hn(ξ − t)(K1(t)−K2(t)) dt
∣∣∣

≤ 2 sup
n
‖hn‖∞δε

and (8) is proved since hn is uniformly bounded and ε is arbitrary.

Lemma 4. Let {h0
n}∞n=1 be regularly distributed on (−π, 3π) and suppose

h1
n, n = 1, 2, . . . , are defined by

h1
n(t) =





h0
n(t+ 2π) when −π < t < 0,

h0
n(t) when 0 ≤ t < 2π,

h0
n(t− 2π) when 2π ≤ t < 3π.

If ξ ∈ T and

F in(ξ) = (P)
π�
−π

hin(ξ − t)K1(t) dt, i = 0, 1,

then
lim
n→∞

|F 1
n(ξ)− F 0

n(ξ)| = 0.(10)
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Proof. Take δξ > 0 small such that (ξ − δξ, ξ + δξ) ⊂ T. We have

F in(ξ) = (P)
δξ�
−δξ

hin(ξ − t)K1(t) dt(11)

+
�

{δξ<|t|<π}
hin(ξ − t)K1(t) dt, i = 0, 1.

Clearly, {h1
n}∞n=1 will also be regularly distributed on (−π, 3π). Therefore,

the second summand in (11) converges to 0 as n→∞ by Lemma 1, and the
first summands coincide when i = 0 and 1. Consequently, (10) is valid.

Remark. Note that in Lemmas 3 and 4 the limits limn→∞ F in(ξ), i =
0, 1, 2, may not exist at all.

Corollary 1. If hin, F
i
n, n = 1, 2, . . . , i = 0, 1, are as in Lemma 4 and

F 2
n(ξ) = h̃1

n(ξ), ξ ∈ T (h1
n is assumed to be 2π-periodic on R), then

lim
n→∞

|F 2
n(ξ)− F 0

n(ξ)| = 0.(12)

Proof. By Lemmas 4 and 3, we have limn→∞ |F 1
n(ξ) − F 0

n(ξ)| = 0 and
limn→∞ |F 2

n(ξ)− F 1
n(ξ)| = 0 respectively. Hence, (12) holds.

Lemma 5. Let (X,S, µ) be a finite measure space, f, fn ∈ M(X), n =
1, 2, . . . , and

lim
n→∞

fn = f a.e.

If λ0 is a continuity point of the distribution function of f , λ 7→ µ{f > λ},
then

lim
n→∞

1
γn

γn�
0

� {fn>λ0}(Ttx) dt =
µ{f > λ0}
µ(X)

for a.a. x ∈ X, where γ is any positive constant.

Proof. Let us show that

lim inf
n→∞

1
γn

γn�
0

� {fn>λ0}(Ttx) dt ≥ µ{f > λ0 + ε}
µ(X)

(13)

and

lim sup
n→∞

1
γn

γn�
0

� {fn>λ0}(Ttx) dt ≤ µ{f > λ0 − ε}
µ(X)

(14)

for a.a. x ∈ X, where ε is any positive number. Since λ0 is a continuity point
of the distribution function of f , this will finish the proof of the lemma.

Put Ak = {x ∈ X : f(x) > λ0 + ε, |fn(x) − f(x)| < ε when n > k}.
Evidently,

µ(Ak)↗ µ{f > λ0 + ε}.(15)
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At the same time Ak ⊂ {fn > λ0} when n > k. Therefore, if x is such that
it measures properly all the sets Ak, k = 1, 2, . . . , then

lim inf
n→∞

1
γn

γn�
0

� {fn>λ0}(Ttx) dt ≥ lim
n→∞

1
γn

γn�
0

� Ak(Ttx) dt =
µ(Ak)
µ(X)

for each k ≥ 1. Consequently, it follows from (15) that (13) is valid.
Inequality (14) is equivalent to

lim inf
n→∞

1
γn

γn�
0

� {fn≤λ0}(Ttx) dt ≥ µ{f ≤ λ0 − ε}
µ(X)

(16)

and if Ak = {x ∈ X : f(x) ≤ λ0 − ε, |fn(x)− f(x)| < ε when n > k}, then
µ(Ak) ↗ µ{f ≤ λ0 − ε} and Ak ⊂ {fn ≤ λ0} when n > k. This enables us
to prove (16) exactly in the same way as (13).

4. Proof of the main result. We start with the proof of Statement 1.
If ‖fn − f‖L(X) → 0, then H(fn)→ H(f) in measure since the operator

H is of weak type (1, 1) (see [4], [5]), and the same is true for the conjugate
operator. Hence, it is sufficient to prove (4) for characteristic functions. Let
us reformulate Statement 1 for the real line taking into account this remark.

Statement 1′. Let E ⊂ R be a 2π-periodic measurable set. Then, for
a.a. x ∈ R,

�̃ E(x) = H( � E)(x).(17)

Proof. Suppose x is such that

�̃ E(x) = (P)
π�
−π
DnS−x � E(−t)K2(t) dt, n = 1, 2, . . . ,

(see (6)) and

H( � E)(x) =
1
π

lim
a→∞

(P)
a�
−a
S−x � E(−t) 1

t
dt

(a.a. x ∈ R will be such). If we take an = πn, n = 1, 2, . . . , in the latter
integral, then a simple change of variables shows that

H( � E)(x) = lim
n→∞

(P)
π�
−π
DnS−x � E(−t)K1(t) dt.

If we let h(t) ≡ � E(x + t) and hn(t) = h(nt), n = 1, 2, . . . , then hn(t) is
regularly distributed on R (with constant m(E)/2π) and DnS−x � E(−t) =
hn(−t). Hence, it follows from Lemma 3 (ξ = 0 in this situation) that (17)
holds.
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Proof of Theorem 1. Obviously, it is enough to prove (3) for all λ ≥ 0
except a countable number. Therefore, we can assume without loss of gen-
erality that λ is a continuity point of the distribution function of H( � E).

Let

fn(x) =
1
π

(P)
πn�
−πn

� E(T−tx)
1
t
dt, x ∈ X.

Since fn → H( � E) a.e., it follows from Lemma 5 that

µ{H( � E) > λ} = lim
n→∞

1
n

2πn�
0

� {fn>λ}(Ttx) dt(18)

for a.a. x ∈ X. Fix x ∈ X which measures E properly and for which (18)
holds. Put

h(t) = � E(Ttx), hn(t) = Dnh(t) = h(nt),

F 0
n(ξ) = (P)

π�
−π
hn(ξ−t)K1(t) dt, F 2

n(ξ) = h̃1
n(ξ) = (P)

π�
−π
h1
n(ξ−t)K2(t) dt,

for ξ ∈ T, where h1
n is the restriction of hn to T (assumed to be continued

on R periodically), n = 1, 2, . . .
Since {hn}∞n=1 is regularly distributed on R (with constant µ(E)/2π, see

Section 2), it follows from Corollary 1 that for a.a. ξ ∈ T we have

lim
n→∞

|F 2
n(ξ)− F 0

n(ξ)| = 0.

Since h1
n is a characteristic function of some E1

n ⊂ T, by Theorem B, we
have m{ξ ∈ T : F 2

n(ξ) > λ} = Φ(m(E1
n), λ) and therefore

lim
n→∞

m{ξ ∈ T : F 2
n(ξ) > λ} = Φ(µ(E), λ), λ ≥ 0

(indeed, m(E1
n) = � 2π

0 � E(Tntx) dt = n−1 � 2πn
0 � E(Ttx) dt→ µ(E)). Thus, we

can apply Lemma 2 to conclude that

lim
n→∞

m{ξ ∈ T : F 0
n(ξ) > λ} = Φ(µ(E), λ).(19)

We also have

1
n

2πn�
0

� {fn>λ}(Ttx) dt =
1
n
m{0 < ξ < 2πn : fn(Tξx) > λ}

= m{0 < ξ < 2π : fn(Tnξx) > λ}

= m

{
ξ ∈ T :

1
π

(P)
πn�
−πn

h(nξ − t) 1
t
dt > λ

}

= m
{
ξ ∈ T : (P)

π�
−π
hn(ξ − t)K1(t) dt > λ

}

= m{ξ ∈ T : F 0
n(ξ) > λ}.
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Thus, it follows from (18) that

µ{H( � E) > λ} = lim
n→∞

m{ξ ∈ T : F 0
n(ξ) > λ}

and, taking into account (19), the first equality in (3) is proved.
The second equality can be proved in an exactly analogous way.
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