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The Stein–Weiss theorem for the
ergodic Hilbert transform

by

Lasha Ephremidze (Tbilisi)

Abstract. The Stein–Weiss theorem that the distribution function of the Hilbert
transform of the characteristic function of E depends only on the measure of E is gener-
alized for the ergodic Hilbert transform in the case of a one-parameter flow of measure-
preserving transformations on a σ-finite measure space.

1. Introduction. Let (Tt)t∈R be an ergodic group of measure-preserv-
ing transformations on a σ-finite measure space (X,S, µ). The ergodic Hilbert
transform of an integrable function f ∈ L(X) is defined by

(1) H(f)(x) = lim
δ→0+

1
π

�

{δ≤|t|≤1/δ}

f(T−tx)
t

dt.

The limit in (1) exists and consequently H(f)(x) is well defined for a.a.
x ∈ X (see [6], [7]).

If Tt, t ∈ R, are the translations on the real line, x 7→ x+t, and f ∈ L(R),
then we get the usual Hilbert transform, H(f) = H(f), while if Tt, t ∈ R,
are the rotations of the unit circle T, eiθ 7→ ei(θ+t), and f ∈ L(T), then we
get the conjugate, H(f) = f̃ (see [2], [3]).

The two theorems below which identify the distribution functions of the
Hilbert transform and of the conjugate of � E , the characteristic function of
a measurable set E, are well known and belong to Stein and Weiss [8].

Theorem A. Let E ⊂ R be a measurable set with finite Lebesgue mea-
sure m(E). Then

m{x ∈ R : H( � E)(x) > λ} = m{x ∈ R : H( � E)(x) < −λ}
= Ψ(m(E), λ), λ ≥ 0.
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Theorem B. Let E ⊂ T be a measurable set. Then

m{x ∈ T : �̃ E(x) > λ} = m{x ∈ T : �̃ E(x) < −λ} = Φ(m(E), λ), λ ≥ 0.

The original proof of the authors uses real methods, while there exist
shorter proofs applying complex methods ([1], [4]). The exact form of the
functions Ψ and Φ is also well known (see [8], [9]):

Ψ(ξ, λ) =
ξ

sinh(πλ)
, Φ(ξ, λ) = 2 arctan

sin(ξ/2)
sinh(πλ)

.

In [3] an analogue of Theorem B is proved for the ergodic Hilbert trans-
form.

Theorem B′. Let (Tt)t∈R be an ergodic group of measure-preserving
transformations on a finite measure space (X,S, µ) with µ(X) = 2π and
let E ∈ S. Then

µ{x ∈ X : H( � E)(x) > λ} = µ{x ∈ X : H( � E)(x) < −λ}
= Φ(µ(E), λ), λ ≥ 0.

The methods developed in [3], as emphasized there, do not allow us to
generalize Theorem A. In this paper we resort to a more refined technique to
achieve this goal. As a result, the generalization of the Stein–Weiss theorem
is obtained for infinite measure spaces.

Theorem. Let (Tt)t∈R be an ergodic group of measure-preserving trans-
formations on a σ-finite measure space (X,S, µ) with µ(X) = ∞ and let
E ∈ S with µ(E) <∞. Then

µ{x ∈ X : H( � E)(x) > λ} = Ψ(µ(E), λ)(2)

= µ{x ∈ X : H( � E)(x) < −λ}, λ ≥ 0.

In what follows we always assume that µ(X) =∞.

1. Some known facts. The classical maximal Hilbert transform

H∗(h)(t) = sup
δ>0

1
π

�

{δ≤|τ |}

h(t− τ)
τ

dτ, h ∈ L(R),

is of weak type (1, 1), i.e.

(3) m{t ∈ R : H∗(h)(t) > λ} ≤ C

λ
‖h‖L(R), λ > 0

(see [7, Theorem 3.5.3]). Consequently,

(4) m{t ∈ R : H∆(h)(t) > λ} ≤ 2C
λ
‖h‖L(R), λ > 0,
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where

H∆(h) = sup
0<δ<δ′

1
π

�

{δ≤|τ |≤δ′}

h(t− τ)
τ

dτ.

The proof of Theorem 3.6.1 in [7] (which states that the maximal ergodic
Hilbert transform

H∗(f)(x) = sup
δ>0

1
π

�

{δ≤|t|≤1/δ}

f(T−tx)
t

dt, f ∈ L(X),

is of weak type (1, 1)) goes over without any change for σ-finite measure
spaces, and if we apply the inequality (4) instead of (3) in this proof, then
we infer that the operator

H∆(f)(x) = sup
0<δ<δ′

1
π

�

{δ≤|t|≤δ′}

f(T−tx)
t

dt

is of weak type (1, 1). Consequently,

(5) µ{x ∈ X : H∆(f)(x) > λ} <∞
for each f ∈ L(X) and λ > 0.

The existence of the limit in (1) actually states that

Ha(f)(x) = lim
δ→0+

1
π

�

{a≤|t|≤1/δ}

f(T−tx)
t

dt, a > 0,

exists for a.a. x ∈ X since the existence of

(6) Ha(f)(x) = lim
δ→0+

1
π

�

{δ≤|t|≤a}

f(T−tx)
t

dt

for a.a. x ∈ X can be obtained by standard arguments when we know that
the usual Hilbert transform of an integrable function exists on the real line.
Hence

�

{δ≤|t|≤δ′}

f(T−tx)
t

dt→ 0 as δ, δ′ →∞,

and consequently,

H∆a (f)(x) = sup
δ>a
|Hδ(f)(x)−H(f)(x)|

monotonically converges to 0 for a.a. x ∈ X as a → ∞. Moreover, taking
into account (5), we have the convergence in measure

(7) H∆a (f)⇒ 0 as a→∞.
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A group (Tt)t∈R of measure preserving transformations is called conser-
vative ergodic if 0 ≤ f ∈ L(X), f 6≡ 0 implies

(8) lim
a→∞

a�

0

f(Ttx) dt =∞ for a.a. x ∈ X.

If an ergodic group on a σ-finite measure space is not isomorphic to the group
of translations on the real line, then it is conservative ergodic. Thus, without
loss of generality, we can assume in our proof that (Tt)t∈R is conservative
ergodic.

Fix any non-negative function g on X satisfying

(9)
�

X

g dµ = 1.

The continuous version of the Chacon–Ornstein Theorem (see [5]) states
that, for every f ∈ L(X),

lim
a→∞

� a
0 f(Ttx) dt

� a
0 g(Ttx) dt

=
�

X

f dµ for a.a. x ∈ X.

Thus, if γx : a 7→ γx(a), x ∈ X, is the system of functions of variable a
defined by

(10) γx(a) =
a�

0

g(Ttx) dt

(the standard application of Fubini’s theorem implies that, for a.a. x ∈ X,
the function γx is well defined for each a ≥ 0), then, for each measurable
A ∈ S, the equality

lim
a→∞

1
γx(a)

a�

0

� A(Ttx) dt =
�

X

� A dµ,

i.e.

(11) lim
a→∞

m{t ∈ (0, a) : Ttx ∈ A}
γx(a)

= µ(A)

holds for a.a. x ∈ X. In addition, if µ(A) < ∞, then the ergodic theorem
for infinite measure spaces (see [7, Remark 2.2.4]) states that

(12) lim
a→∞

1
a

a�

0

� A(Ttx) dt = 0.

Note also that γx is a non-increasing continuous function for a.a. x ∈ X and
since (Tt)t∈R is conservative ergodic (see (8)), we have

(13) lim
a→∞

γx(a) =∞.
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3. Auxiliary lemmas. The following lemma is well known for probabil-
ity spaces in the case where the sequence {Gn}∞n=1 consists of one function.
Its proof is given for the sake of completeness to show that the infinite
measure is no obstacle.

Lemma 1. Let {Fn}∞n=1, {Gn}∞n=1 be sequences of measurable functions
on a σ-finite measure space such that the distribution functions of Gn are
convergent to some function ψ, limn→∞ µ{Gn > λ} = ψ(λ) for each λ ∈ R,
and Fn −Gn ⇒ 0. Then

(14) lim
n→∞

µ{Fn > λ} = ψ(λ)

for every point λ of continuity of ψ.

Proof. We have

{Gn > λ+ ε} \ {Fn −Gn ≤ −ε} ⊂ {Fn > λ}
⊂ {Gn > λ− ε} ∪ {Fn −Gn ≥ ε}.

Therefore

µ{Gn > λ+ ε} − µ{Fn −Gn ≤ −ε} ≤ µ{Fn > λ}
≤ µ{Gn > λ− ε}+ µ{Fn −Gn ≥ ε}

for each ε > 0 and positive integer n. Since limn→∞ µ{|Fn −Gn| > ε} = 0,
we get

ψ(λ+ ε) = lim
n→∞

µ{Gn > λ+ ε} ≤ lim inf
n→∞

µ{Fn > λ}

≤ lim sup
n→∞

µ{Fn > λ} ≤ lim
n→∞

µ{Gn > λ− ε} = ψ(λ− ε)

and (14) follows from the fact that λ is a continuity point of ψ.

If h is a locally integrable function on R and a > 0, then let

H(0,a)(h)(t) := lim
δ→0+

1
π

�

{δ≤|τ |≤min(t,a−t)}

h(t− τ)
τ

dτ, 0 < t < a.

We assume that H(0,a)(h) is equal to 0 outside the interval (0, a), and thus
the value of the operator H(0,a) at h depends only on the values of h in
(0, a), H(0,a)(h) = H(0,a)( � (0,a)h).

Observe that if Dκ, κ > 0, denotes the dilation operator,

(15) Dκh(t) = h(κt),

then a simple change of variables under the integration gives H(0,a)(h)(t) =
H(0,a/κ)(Dκh)(t/κ), which implies

(16)
1
κ
m{H(0,a)(h) > λ} = m{H(0,a/κ)(Dκh) > λ}, λ > 0.
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For f ∈ L(X), let fx(t) = f(Ttx). For a.a. x ∈ X, the function fx is
locally integrable and in that case we have (see (6))

(17) H(0,a)(fx)(t) = Hmin(t,a−t)f(Ttx), 0 < t < a.

Lemma 2. Let (Tt)t∈R be a conservative ergodic flow of measure-preserv-
ing transformations on a σ-finite measure space (X,S, µ) and let functions
(γx)x∈X be defined by (10). If f ∈ L(X) and λ > 0 is a continuity point of
the distribution function of H(f), then

lim
a→∞

m{H(0,a)(fx) > λ}
γx(a)

= lim
a→∞

m{0 < t < a : H(0,a)(fx)(t) > λ}
γx(a)

(18)

= µ{H(f) > λ}
for a.a. x ∈ X.

Proof. Suppose (18) does not hold and there exists ε > 0 such that

µ

{
x ∈ X : lim sup

a→∞

(
m{0 < t < a : H(0,a)(fx)(t) > λ}

γx(a)

−µ{H(f) > λ}
)
> ε

}
> 0.

It follows that for some δ > 0,

µ

{
x ∈ X : lim sup

a→∞

(
m{0 < t < a : H(0,a)(fx)(t) > λ}

γx(a)

−µ{H(f) > λ− δ}
)
> ε

}
> 0.

Hence, taking into account (11) for the measurable set {x ∈ X : H(f)(x) >
λ− δ}, we infer that

(19) lim sup
a→∞

m{0 < t < a : H(0,a)(fx)(t) > λ}
−m{0 < t < a : H(f)(Ttx) > λ− δ}

γx(a)
> ε

for every x from a set of positive measure.
Because of (7), we can take a0 so large that

(20) µ(A) < ε,

where A = {x ∈ X : H∆a0
(f)(x) > δ}.

Fix any x for which (11), (13) and (19) hold. If a is large enough and t
is such that min(t, a− t) > a0 and Ttx 6∈ A, then

|Hmin(t,a−t)(f)(Ttx)−H(f)(Ttx)| ≤ H∆min(t,a−t)(f)(Ttx) ≤ H∆a0
(f)(Ttx) ≤ δ,

and consequently (see (17)),

(21) H(0,a)(fx)(t) > λ ⇒ H(f)(Ttx) > λ− δ.
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Hence the left hand side of (19) is not greater than

lim sup
a→∞

m(0, a0) +m(a− a0, a) +m{t ∈ (0, a) : Ttx ∈ A}
γx(a)

,

which is equal to µ(A) (see (13), (11)). This contradicts (19) because of (20).
If there exists ε > 0 such that

µ

{
x ∈ X : lim sup

a→∞

(
m{0 < t < a : H(0,a)(fx)(t) > λ}

γx(a)

−µ{H(f) > λ}
)
< −ε

}
> 0,

then µ{H(f) > λ} can be replaced by µ{H(f) > λ + δ} for some δ > 0
and the implication H(f)(Ttx) > λ+ δ ⇒ H(0,a)(fx)(t) > λ should be used
instead of (21). The rest of the proof is the same.

Lemma 3. Let h be a non-negative integrable function on R which van-
ishes outside the interval (0, a), a > 0. Then

|H(0,a)(h)(t)−H(h)(t)| ≤
{−3H(h)(−t) for 0 < t ≤ a/2,

3H(h)(2a− t) for a/2 ≤ t < a.

Proof. If 0 < t ≤ a/2 and 2t ≤ τ ≤ a, then τ + t ≤ 3(τ − t) and

0 ≤ H(0,a)(h)(t)−H(h)(t) =
1
π

a�

2t

h(τ)
τ − t dτ ≤

3
π

a�

2t

h(τ)
τ + t

dτ

≤ 3
π

a�

0

h(τ)
τ + t

dτ = −3H(h)(−t).

To prove the second inequality, we apply the first for h0(t) = h(a− t).
Lemma 4. Let E ⊂ R+ be such that

(22) lim
a→∞

m(E ∩ [0, a))
a

= 0

and let γ : [0,∞)→ [0,∞) be a non-decreasing continuous function satisfy-
ing

lim
a→∞

γ(a) =∞,(23)

lim
a→∞

m(E ∩ [0, a))
γ(a)

= η, 0 < η <∞.(24)

Then, for each constant C > 0, we have

lim
a→∞

m(E ∩ [0, Cγ(a)))
γ(a)

= 0,(25)

lim inf
a→∞

m(E ∩ [a− Cγ(a), a))
γ(a)

= 0.(26)
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Proof. It follows from (22) and (23) that

lim
a→∞

m(E ∩ [0, Cγ(a)))
Cγ(a)

= 0.

Hence (25) holds.
In order to show (26), assume there exist δ > 0 and a0 > 0 such that

(27) m(E ∩ [a− Cγ(a), a)) > δγ(a) > 0 for a ≥ a0.

Equations (22) and (24) imply that lima→∞(a/γ(a)) = ∞. Therefore
lima→∞(a−Cγ(a)) =∞. Since Γ (a) := a−Cγ(a) is a continuous function
on R+ with Γ (a0) < a0 and lima→∞ Γ (a) = ∞, there exists a1 > a0 such
that Γ (a1) = a1 − Cγ(a1) = a0. Hence, it follows from (27) that

m(E ∩ [a0, a1)) > δγ(a1) =
δ

C
(a1 − a0).

Continuing inductively in a similar way, we show that, for each k ≥ 1, there
exists ak > ak−1 such that ak − Cγ(ak) = ak−1, and consequently,

m(E ∩ [ak−1, ak)) > δγ(ak) =
δ

C
(ak − ak−1), k = 1, 2, . . .

(note that ak → ∞ as k → ∞ since otherwise the left hand side of the
inequality tends to 0 while the right hand side is always more than the
positive number δγ(a0)). If we sum up these inequalities with respect to k,
we get

m(E ∩ [a0, ak)) >
δ

C
(ak − a0).

Hence

lim inf
k→∞

m(E ∩ [a0, ak))
ak − a0

= lim inf
k→∞

m(E ∩ [0, ak))
ak

>
δ

C
> 0,

which contradicts (22).

Lemma 5. Let γ and E be as in Lemma 4 and let , for a > 0, a := a/γ(a)
and � a := Dγ(a) � E∩[0,a) (see (15)). Then there exists a sequence 0 < an →
∞ such that

(28) H(0,an)( � an)−H( � an)⇒ 0 as n→∞.
Proof. It is sufficient to prove that for any ε, δ > 0 there exist a > 0

such that

(29) m{t ∈ R : |H(0,a)( � a)(t)−H( � a)(t)| > 3ε} < 4δ.

Let

(30) C ≥ 4η
πε
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and take a such that
a�

0

� a(t) dt =
m(E ∩ [0, a))

γ(a)
< 2η (see (24)),(31)

C�

0

� a(t) dt =
m(E ∩ [0, Cγ(a)))

γ(a)
<
πεδ

2
(see (25)),(32)

a�

a−C
� a(t) dt =

m(E ∩ [a− Cγ(a), a))
γ(a)

<
πεδ

2
(see (26)).(33)

Then, taking into account (31), (33) and (30), we have

0 ≤ H( � a)(a+ δ) =
1
π

a�

0

� a(t)
1

a+ δ − t dt

≤ 1
πC

a−C�

0

� a(t) dt+
1
πδ

a�

a−C
� a(t) dt

≤ 1
πC
· 2η +

1
πδ
· πεδ

2
≤ ε

2
+
ε

2
= ε.

In an analogous way, taking into account (31), (32) and (30), we get

0 ≥ H( � a)(−δ) ≥ − 1
πδ

C�

0

� a(t) dt− 1
πC

a�

C

� a(t) dt ≥ −ε.

At the same time the function H( � a) is positive and decreasing on (a,∞)
and negative and decreasing on (−∞, 0). Hence

(34) |H( � a)(t)| ≤ ε for t ∈ (−∞,−δ) ∪ (a+ δ,∞).

It follows from (34) and Lemma 3 that

(35) |H(0,a)( � a)(t)−H( � a)(t)| ≤ 3ε for t ∈ (δ, a− δ).
Relations (34) and (35) imply that

{t ∈ R : |H(0,a)( � a)(t)−H( � a)(t)| > 3ε} ⊂ (−δ, δ) ∪ (a− δ, a+ δ)

and (29) follows.

4. Proof of the Theorem. We consider the non-trivial case where
µ(E) 6= 0.

Obviously, it is enough to prove (2) for all λ ≥ 0 except a countable
number. Therefore, it can be assumed without loss of generality that λ is a
continuity point of the distribution function of H( � E).
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Let the functions (γx)x∈X be defined by (10). Fix any x ∈ X which
satisfies following conditions:

(36) lim
a→∞

1
a

a�

0

� E(Ttx) dt = 0 (see (12));

γ(a) := γx(a) is a non-increasing continuous function satisfying (23);

(37) lim
a→∞

1
γ(a)

a�

0

� E(Ttx) dt = µ(E) (see (11));

the function h(t) := � E(Ttx) is locally integrable on R and

(38) lim
a→∞

m{0 < t < a : H(0,a)(h)(t) > λ}
γ(a)

= µ{H( � E) > λ}

(see Lemma 2). If we set E = {t ≥ 0 : Ttx ∈ E}, then (38) can be rewritten
as

(39) lim
a→∞

m{0 < t < a : H(0,a)( � E∩[0,a))(t) > λ}
γ(a)

= µ{H( � E) > λ}

and m(E ∩ [0, a)) =
� a
0 � E(Ttx) dt. It follows respectively from (36) and (37)

that (22) and (24) hold. Thus, we can apply Lemma 5 to conclude that there
exists a sequence of positive numbers an →∞ such that (28) holds.

Since � an = Dγ(an) � E∩[0,an) is the characteristic function of the mea-
surable set {t ≥ 0 : γ(an)t ∈ E ∩ [0, an)} (see Lemma 5) with measure
(1/γ(an))m(E ∩ [0, an)), by the Stein–Weiss Theorem A we have

m{H( � an) > λ} = Ψ

(
1

γ(an)
m(E ∩ [0, an)), λ

)
, n = 1, 2, . . . .

Hence limn→∞m{H( � an) > λ} = Ψ(µ(E), λ) since Ψ is a continuous func-
tion and lima→∞(1/γ(a))m(E ∩ [0, a)) = µ(E) (see (37)).

We can now use Lemma 1, where Fn = H(0,an)( � an), Gn = H( � an) and
ψ(λ) = Ψ(µ(E), λ), to conclude that

(40) lim
n→∞

m{H(0,an)( � an) > λ} = Ψ(µ(E), λ).

According to (16) we have

m{H(0,an)( � an) > λ} =
1

γ(an)
m{H(0,an)( � E∩[0,an)) > λ}

and, taking into account (39), we get

(41) lim
n→∞

m{H(0,an)( � an) > λ} = µ{H( � E) > λ}.

Equalities (40) and (41) imply the first equality in (2). The second can be
proved in the same manner.
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