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A WEIGHTED ERGODIC MAXIMAL EQUALITY

FOR NONSINGULAR SEMIFLOWS

BY

LASHA EPHREMIDZE (Tbilisi) and RYOTARO SATO (Okayama)

Abstract. A weighted ergodic maximal equality is proved for a conservative and
ergodic semiflow of nonsingular automorphisms.

1. Introduction. Let (X, S, µ) be a σ-finite measure space and {Tt}t≥0

a measurable semiflow of nonsingular automorphisms of (X, S, µ). For f ∈
L1(µ) and a weight g (we call a measurable function g a weight if it is
positive almost everywhere and the function of variable t ≥ 0,

t 7→ g(Ttx)
dµ ◦ Tt

dµ
(x),

is locally integrable for a.a. x ∈ X) the weighted maximal ergodic function

f∗
g is defined by

f∗
g (x) = sup

b>0

b\
0

f(Ttx)
dµ ◦ Tt

dµ
(x) dt

b\
0

g(Ttx)
dµ ◦ Tt

dµ
(x) dt

.

In this paper we assume that the semiflow {Tt} is conservative and ergodic,
and prove the weighted ergodic maximal equality:

Theorem. We have

(1) α
\

{f∗

g >α}

g dµ =
\

{f∗

g >α}

f dµ

for all

(2) α >

T
X

f dµT
X

g dµ

(it is assumed that the right-hand side of (2) is 0 whenever
T
X

g dµ = ∞).
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For the case of measure-preserving transformations on a probability
space and when g ≡ 1, the corresponding equality

(3) αµ{f∗ > α} =
\

{f∗>α}

f dµ

was first proved in [5] (see also [6]). By using a different technique, a gener-
alization of this result to infinite measure spaces was given in [7] where the
equality (1) for the weighted ergodic maximal function was first established
as well. A different proof of (3) was proposed in [1], applying the continuous
version of the “filling scheme” method (see [6]).

Later the equality (3) was generalized to nonsingular flows in [8], i.e. the
theorem was proved under the hypothesis g ≡ 1.

Recently a new simpler proof of (3) appeared in [2] and [3] (respectively,
for probability and σ-finite measure spaces). In the present paper we show
that the same method of proof can be applied to obtain a result in the
most general setting. The above theorem covers all the previously known
situations. At the same time it represents a new result as far as σ-finite
measure spaces and arbitrary weights (even not integrable) are considered.

To characterize roughly the proof of the Theorem, the situation on the
real line is transmitted to the general case by applying the continuous
version of the Chacon–Ornstein theorem: If Ut is a one-parameter mea-

surable conservative and ergodic semigroup of contractions on L1(µ) and

f, g ∈ L1(µ), g > 0, then

lim
b→∞

Tb
0 Utf dtTb
0 Utg dt

=

T
X

f dµT
X

g dµ

(see [4]).
Further applications of equality (1) can be found in [7], [8].

2. Auxiliary lemmas. In this section we obtain two lemmas for the
group of translations on the real line R. These lemmas are known but we
give their proofs for the sake of completeness.

Let f, g ∈ Lloc(R), g > 0, and define the weighted maximal function

Mgf(t) = sup
r>t

Tr
t
f(s) dsTr

t
g(s) ds

.

Obviously {Mgf > α} = {t ∈ R : Mgf(t) > α} is an open set.

Lemma 1. If (a, b) is a bounded connected component of {Mgf > α},
then

(4)

b\
a

f(t) dt = α

b\
a

g(t) dt.
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Proof. Since a 6∈ {Mgf > α}, we have

b\
a

f(t) dt ≤ α

b\
a

g(t) dt.

We shall show the reverse inequality

(5)

b\
a

f(t) dt ≥ α

b\
a

g(t) dt,

which completes the proof of (4).

In order to prove (5), let us show that for each r ∈ (a, b) we have

(6)

b\
r

f(t) dt ≥ α

b\
r

g(t) dt

(in fact, strict inequality holds in (6) but we do not need it here); then one
can let r tend to a.

For each s ∈ (a, b), there exists s′ ∈ (s, b] such that

(7)

s′\
s

f(t) dt > α

s′\
s

g(t) dt.

Indeed, the existence of s′ > s satisfying (7) is equivalent to the fact that
Mgf(s) > α. If s′ > b, then

(8)

s′\
b

f(t) dt ≤ α

s′\
b

g(t) dt

(since b 6∈ {Mgf > α}) and it follows from (7) and (8) that

b\
s

f(t) dt =

s′\
s

f(t) dt −

s′\
b

f(t) dt > α
(

s′\
s

g(t) dt −

s′\
b

g(t) dt
)

= α

b\
s

g(t) dt.

So we can take s′ = b in (7).

Take r ∈ (a, b) and let

(9) s = sup
{

r′ ∈ (r, b] :

r′\
r

f(t) dt ≥ α

r′\
r

g(t) dt
}

.

Obviously,
s\
r

f(t) dt ≥ α

s\
r

g(t) dt

and we need to observe that s = b (see (6)). Indeed, if we assume that s < b,
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then there exists s′ ∈ (s, b] satisfying (7) and we have

s′\
r

f(t) dt =

s\
r

f(t) dt +

s′\
s

f(t) dt > α
(

s\
r

g(t) dt +

s′\
s

g(t) dt
)

= α

s′\
r

g(t) dt,

which contradicts the maximality of s (see (9)).

Corollary. If real numbers a and b do not belong to {Mgf > α}, then\
(a,b)∩{Mgf>α}

f(t) dt = α
\

(a,b)∩{Mgf>α}

g(t) dt,

i.e.,

(10)

b\
a

1{Mgf>α}f(t) dt = α

b\
a

1{Mgf>α}g(t) dt.

Proof. (a, b)∩{Mgf > α} is exactly a union of at most countably many
bounded connected components of {Mgf > α}.

Lemma 2. Let f, g ∈ Lloc(R), g > 0, and

(11)

∞\
0

g(t) dt = ∞.

If (a,∞) ⊂ {Mgf > α} for some a and α, then

(12) lim sup
b→∞

Tb
0 f(t) dtTb
0 g(t) dt

≥ α.

Proof. For each s ∈ (a,∞) there exists s′ ∈ (s,∞) such that (7) holds
and, as in the proof of Lemma 1,

sup
{

s > a :

s\
a

f(t) dt > α

s\
a

g(t) dt
}

= ∞.

Consequently,

lim sup
b→∞

Tb
a
f(t) dtTb

a
g(t) dt

≥ α

and, by (11), inequality (12) holds as well.

3. Proof of Theorem. All sets and functions introduced below are
assumed to be measurable; all relations are assumed to hold modulo sets of
measure zero.

Since each Tt is nonsingular, the Radon–Nikodym theorem defines the
positive (almost everywhere for each t ≥ 0) function ωt(x) = dµ◦Tt

dµ
(x) on X.
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It can be assumed that the map (x, t) 7→ ωt(x) is measurable on X × R+.
The “chain rule” gives

ωt+s(x) = ωs(x)ωt(Tsx).

If we set Utf(x) = f(Ttx)ωt(x), then it can be easily seen that {Ut}t≥0

becomes a one-parameter semigroup of positive linear isometries on L1(µ).
Hence, for any φ ∈ L1(µ), the function of variable t ≥ 0, t 7→ φ(Ttx)ωt(x), is
locally integrable for almost all x ∈ X. It follows that every strictly positive
function g ∈ L1(µ) becomes a weight.

Since {Tt} is conservative, for any positive h ∈ L1(µ) we have

(13)

∞\
0

h(Ttx)ωt(x) dt = ∞

for a.a. x ∈ X.
Let φx(t) = φ(Ttx) and ωx(t) = ωt(x), t ≥ 0. Note that for a.a. x ∈ X

the equation

(14) f∗
g (Tsx) = Mgxωx

(fxωx)(s)

holds for a.a. s ∈ R+ since

f∗
g (Tsx) = sup

b>0

Tb
0 f(Tt(Tsx))ωt(Tsx) dtTb
0 g(Tt(Tsx))ωt(Tsx) dt

= sup
b>0

b\
0

fx(t + s)
ωt+s(x)

ωs(x)
dt

b\
0

gx(t + s)
ωt+s(x)

ωs(x)
dt

= sup
b>0

Tb
0 fx(t + s)ωx(t + s) dtTb
0 gx(t + s)ωx(t + s) dt

= sup
b>0

Ts+b

s
fx(t)ωx(t) dtTs+b

s
gx(t)ωx(t) dt

= Mgxωx
(fxωx)(s).

Set E = {f∗
g > α} and take an arbitrary nonnegative function h satisfying\

X

h dµ = 1.

Fix any x ∈ X for which (13) holds, (14) is valid for a.a. s ∈ R+ and the
following relations hold:

lim
b→∞

Tb
0 fx(t)ωt(x) dtTb
0 gx(t)ωt(x) dt

=

T
X

f dµT
X

g dµ
,(15)

lim
b→∞

Tb
0 1Eg(Ttx)ωt(x) dtTb

0 h(Ttx)ωt(x) dt
=
\
X

1Eg dµ =
\
E

g dµ,(16)

lim
b→∞

Tb
0 1Ef(Ttx)ωt(x) dtTb

0 h(Ttx)ωt(x) dt
=
\
X

1Ef dµ =
\
E

f dµ(17)
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(these relations hold for a.a. x ∈ X according to Chacon–Ornstein’s above
mentioned theorem).

Formally we can assume that gxωx(t) = fxωx(t) = 1 for t < 0 and set
e = {t ∈ R : Mgxωx

(fxωx)(t) > α}. By (14), Ttx ∈ E is equivalent to t ∈ e

for a.a. t ∈ R+, i.e. 1E(Ttx) = 1e(t) on R+, and we can substitute this
equality in (16) and (17) to obtain

lim
b→∞

Tb
0 1egx(t)ωx(t) dtTb
0 h(Ttx)ωt(x) dt

=
\
E

g dµ,(18)

lim
b→∞

Tb
0 1efx(t)ωx(t) dtTb
0 h(Ttx)ωt(x) dt

=
\
E

f dµ.(19)

Since (15) and (2) hold we can apply Lemma 2 and conclude that there
exists an increasing sequence of positive numbers bn → ∞ such that bn 6∈
{Mgxωx

(fxωx) > α} and, by (13), we can rewrite (18) and (19) as

lim
n→∞

Tbn

b1
1egx(t)ωx(t) dtTbn

0 h(Ttx)ωt(x) dt
=
\
E

g dµ,

lim
n→∞

Tbn

b1
1efx(t)ωx(t) dtTbn

0 h(Ttx)ωt(x) dt
=
\
E

f dµ.

Now, applying the Corollary of Lemma 1 to the functions fx(t)ωx(t) and
gx(t)ωx(t), it remains to observe that

α

bn\
b1

1egx(t)ωx(t) dt =

bn\
b1

1efx(t)ωx(t) dt

(see (10)) and the proof of equality (1) is complete.
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