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Let (X, S, µ) be a σ-finite measure space and (Tτ )τ∈R be an ergodic group of measure-
preserving transformations on (X, S, µ). If µ(X) < ∞, we will assume that µ(X) = 2π
which makes corresponding constants simpler below.

For an integrable function f , f ∈ L1(X), its ergodic Hilbert transform is defined by

Hf(x) = lim
δ→0+

1

π

∫

{δ≤|τ |≤1/δ}

f(T−τx)

τ
dτ. (1)

The limit in (1) exists and consequently Hf(x) is well defined for a.a. x ∈ X (see, e.g.,

[4], [5]).
It was proved in [2], [3] that for any measurable set E ⊂ X

µ{x ∈ X : H(1E)(x) > λ} = µ{x ∈ X : H(1E)(x) < −λ} = (2)

=

{

µ(E)
sinh(πλ)

if µ(X) = ∞,

2 arctan
sin(µ(E)/2)

sinh(πλ)
if µ(X) = 2π

.

This is a generalization of the well known Stein-Weiss theorem for classical Hilbert trans-
form and the conjugate operator (see [6]).

Let S be the Calderón operator

Sψ(t) =
1

t

t
∫

0

ψ(s) ds+

∞
∫

t

ψ(s)
ds

s
, ψ ∈ L1(0,∞), (3)

and, for any measurable f on X, let f∗ be its decreasing rearrangement

f∗(t) = inf
{

λ : µ(|f | > λ) ≤ t
}

.

As in the classical case, equality (2) allows us to estimate the decreasing rearrangement
of Hf by the Calderón operator.

Theorem 1. (cf. [1], Theorem 3.4.7.) Let (Tτ )τ∈R be an ergodic group of measure-

preserving transformations on (X, S, µ) and let f ∈ L(X). Then

(Hf)∗(t) ≤ cS(f∗)(t), 0 < t < µ(X), (4)

where c is a constant independent of f and t.

The Calderón operator is the sum of the Hardy operator and its dual,

Sψ = Pψ +Qψ, (5)

where

Pψ(t) =
1

t

t
∫

0

ψ(s) ds, Qψ(t) =

∞
∫

t

ψ(s)
ds

s
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(see (3)). With this notation, the Hardy inequalities (see [1], Lemma 3.3.9) are expressed
as (for −∞ < λ < 1, 1 ≤ q <∞ and ψ ≥ 0)

[

∞
∫

0

(

tλPψ(t)
)q dt

t

] 1

q

≤
1

1 − λ

[

∞
∫

0

(

tλψ(t)
)q dt

t

] 1

q

, (6)

sup
0<t<∞

tλPψ(t) ≤
1

1 − λ
sup

0<t<∞
tλψ(t),

[

∞
∫

0

(

t1−λQψ(t)
)q dt

t

] 1

q

≤
1

1 − λ

[

∞
∫

0

(

t1−λψ(t)
)q dt

t

] 1

q

, (7)

sup
0<t<∞

t1−λQψ(t) ≤
1

1 − λ
sup

0<t<∞
t1−λψ(t),

The classical Lorentz spaces Lp,q(X), 0 < p, q ≤ ∞, are defined as a set of measurable
functions on X for which the quantity

‖f‖p,q =











[

∫ ∞
0

(

t1/pf∗(t)
)q dt

t

] 1

q

, (0 < q <∞),

sup0<t<∞ t1/pf∗(t), (q = ∞),

(8)

is finite. Lp,p coincides with usual Lebesgue space LP , by definition (8). ‖ · ‖p,q is not
the norm always, but it is equivalent to some norm when 1 < p ≤ ∞ and 0 < q ≤ ∞ (see
[1], Lemma 4.4.5).

If we now take λ = 1
p

in (6) and λ = 1 − 1
p

in (7), then it follows from (5), (6) and

(7) that

‖S(f∗)‖p,q ≤ Cp‖f‖p,q , 1 < p <∞, 1 ≤ q ≤ ∞. (9)

Thus, inequalities (4) and (9), imply the boundedness of the ergodic Hilbert transform
in the Lorentz spaces.

Theorem 2. Let (Tτ )τ∈R be an ergodic group of measure-preserving transformations

on (X, S, µ) and let f ∈ L(X). If 1 < p <∞, and 1 ≤ q ≤ ∞, then

‖S(f∗)‖p,q ≤ Cp‖f‖p,q .

We emphasize that obtained proof is without any application of interpolation theory.
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