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ON THE BOUNDEDNESS OF THE ERGODIC HILBERT TRANSFORM
IN LORENTZ SPACES

(Reported on 16.11.2005)

Let (X, S, 1) be a o-finite measure space and (- ),cr be an ergodic group of measure-
preserving transformations on (X, S, ). If pu(X) < oo, we will assume that p(X) = 27
which makes corresponding constants simpler below.

For an integrable function f, f € L'(X), its ergodic Hilbert transform is defined by

. 1 f(T-7x)
H =1 — —= drt. 1
flz) = Jim — o 1)
{s<|7I<1/6}
The limit in (1) exists and consequently Hf(x) is well defined for a.a. z € X (see, e.g.,
(4], [5])-
It was proved in [2], [3] that for any measurable set E C X

p{r e X :HAg)(z) > A} =p{z e X H(1g)(z) < —A} = (2)
_ {siﬁ}E(E'/r)A) if p(X) = oo,

2 arctan % if u(X)=2mw

This is a generalization of the well known Stein-Weiss theorem for classical Hilbert trans-
form and the conjugate operator (see [6]).
Let S be the Calderén operator

t [ee]

1 ds
Sypt) == [ ¥(s)ds+ [ w(s)—, € L'(0,00), (3)
t 0/ / s

and, for any measurable f on X, let f* be its decreasing rearrangement
£ =inf {X:p(|f] > N) <t}

As in the classical case, equality (2) allows us to estimate the decreasing rearrangement
of Hf by the Calderén operator.

Theorem 1. (cf. [1], Theorem 3.4.7.) Let (Tr)rcr be an ergodic group of measure-
preserving transformations on (X,S,u) and let f € L(X). Then

H)*(E) <eS(HE),  0<t <u(X), (4)

where ¢ is a constant independent of f and t.

The Calderén operator is the sum of the Hardy operator and its dual,

S = Py + Qv, (5)
where
ds
s

t ')
Py = 5 / W(s)ds,  Qu(t) = / (s)
0

t
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(see (3)). With this notation, the Hardy inequalities (see [1], Lemma 3.3.9) are expressed
as(forfoo<)\<1,1§q<ooand1/1>0)

s N g dt 1 7 N g dt %
[ vy 2] < 2] [ o], ©)
3 0
sup tAPw(t) < —— sup t ¢( )s
0<t<oo 1— X o<t<oo
o 1 7 dt]a
[ uoF]" < 5| [ @ e g (@)
5 0
sup 17Qu(t) < —— sup 1 Ny(),
0<t<oo 1— X o<t<oo

The classical Lorentz spaces L?9(X), 0 < p,q < oo, are defined as a set of measurable
functions on X for which the quantity
1

t1/P et q‘“}q, 0<q< o),

flpa = | |5 @777 0) (O=a<eo) ®)
Sup0<z<oot /pf*(t)v (q: 00)7

is finite. LP'P coincides with usual Lebesgue space L, by definition (8). || - ||p,q is not

the norm always, but it is equivalent to some norm when 1 < p < oo and 0 < ¢ < oo (see
[1], Lemma 4.4.5).
If we now take A = % in (6) and A =1 — % in (7), then it follows from (5), (6) and
(7) that
1S Np.g < Cpllfllp.g, 1 <p<oo, 1<g<oo. 9)
Thus, inequalities (4) and (9), imply the boundedness of the ergodic Hilbert transform
in the Lorentz spaces.

Theorem 2. Let (T7),cr be an ergodic group of measure-preserving transformations
on (X,S,p) and let f € L(X). If 1 <p < 00, and 1 < g < oo, then

1S(F)p.a < Cpllfllp.a-

We emphasize that obtained proof is without any application of interpolation theory.
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