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The John-Nirenberg’s classical theorem [4] asserts that for any locally integrable func-
tion F ∈ LlocR

d, every cube Q ⊂ R
d and λ > 0, the following inequality holds

m{x ∈ Q : |F (x) − FQ| > λ} ≤ C1m(Q) exp

(

−λC2

‖F‖BMO

)

,

where m is the Lebesgue measure on R
d, FQ = (1/m(Q))

∫

Q

F dm, and ‖F‖BMO =

sup
Q

1
m(Q)

∫

Q

|F − FQ| dm. The constants C1 and C2 are independent of F and Q.

Garsia [3] formulated and proved the John-Nirenberg inequality for martingales and
L. D. Pitt [6] generalized this inequality for submartingales.

We generalize the theorem to the ergodic systems.
Let (X, S, µ) be a finite measure space, µ(X) < ∞, and T : X → X

be a measure-preserving ergodic invertible transformation (see, e.g., [5] for definitions).
For an integrable function f : X → R, f ∈ L(X), the ergodic sharp maximal function is
defined as

f♯(x) = sup
m,n≥0

1

m + n + 1

n
∑

k=−m

∣

∣f(T kx) − Em,n(f, x)
∣

∣,

where Em,n(f, x) = 1
m+n+1

n
∑

k=−m

f(T kx), and the ergodic BMO norm of f is defined as

(see [1])

‖f‖BMO = ess sup f♯.

Theorem. There exist universal constants C1 and C2 such that for any finite

measure space (X, S, µ), measure-preserving ergodic invertible transformation T and

f ∈ L(X), we have

µ{x ∈ X : |f(x) − E(f)| > λ} ≤ C1µ(X) exp

(

−λC2

‖f‖BMO

)

,

where E(f) = (1/µ(X))
∫

X
f dµ and λ ≥ 0.

The proof depends on the discrete version of the John-Nirenberg theorem and on a
new method of transferring results on the real line to the general ergodic setting developed
in [2].
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