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Abstract. The Riesz “rising sun” lemma is proved for arbitrary locally

finite Borel measures on the real line. The result is applied to study an

attainability problem of the exact constant in a weak (1, 1) type inequality for

the corresponding Hardy-Littlewood maximal operator.

1. Introduction

Let M+ be the one-sided Hardy-Littlewood maximal operator on the real
line

M+f(x) = sup
b>x

1
b − x

∫ b

x

|f | dm, f ∈ L1
loc(R),

where m stands for the Lebesgue measure. The following equality

(1) m{M+f > λ} =
1
λ

∫
{M+f>λ}

|f | dm, λ > 0,

is well known and sometimes called the Riesz “rising sun lemma” (see [4])
since it can be readily obtained from the following lemma which usually
carries this name (see [7], [8]):
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Lemma. Suppose G is a continuous function on R . Let E be the set of
points x such that G(x + h) > G(x) for some h = hx > 0 . If (a, b) is a
finite connected component of E , then G(a) = G(b) .

The equation (1) is an important tool in studying various problems related
with maximal functions ant there exist its several proofs (see [3], [8]) which
do not depend on a geometric structure of the Lebesgue measure and can
be generalized for absolutely continuous measures (see Lemma 1 in [1]). In
this note we formulate and prove the lemma in the most general setting for
which it remains true.

Throughout the paper let ν be a locally finite signed Borel measure and
μ be a positive Borel measure on R . We assume without lose of generality
that μ(a, b) > 0 for each open interval. Define the one sided maximal
function Mμ

+ν as

Mμ
+ν(x) = sup

b>x

ν[x, b)
μ[x, b)

.

For a signed measure ν , let ν+ and ν− be respectively the positive and
the negative part of ν . We assume that ν−(R) < ∞ .

Theorem 1. If measures ν− and μ are free of atoms, i.e. ν{x} ≥ 0
and μ{x} = 0 for each x ∈ R , and

(2) λ > lim inf
x→−∞ Mμ

+ν(x),

then

(3) λμ{Mμ
+ν > λ} = ν{Mμ

+ν > λ}.

We construct the counterexamples where the equality (3) fails to hold
when measures have inadmissable atoms or (2) is not satisfied. Nevertheless
the one sided inequality λμ{Mμ

+ν > λ} ≤ ν{Mμ
+ν > λ} is always true,

i.e. the weak (1,1) type inequality holds for the operator Mμ
+ with exact

constant 1, and we show this fact separately.

Theorem 2. Let ν and μ be as in the introduction. For each λ > 0 , we
have

(4) μ{Mμ
+ν > λ} ≤ 1

λ
ν{Mμ

+ν > λ}.

We use the above results to answer the question considered below on the
attainability of the exact constant in the weak type (1, 1) inequality for the
two-sided Hardy-Littlewood maximal operator. Namely, let

Mf(x) = sup
a<x<b

1
b − a

∫ b

a

|f | dm, f ∈ L1
loc(R).
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It is well known that the constant 2 is exact in the following weak type
(1, 1) inequality

(5) m{Mf > λ} ≤ C

λ
‖f‖1, f ∈ L(R), λ > 0,

for the operator M , i.e., the inequality (5) holds when C = 2 and fails to
hold for some f ∈ L(R) and λ > 0 whenever C < 2. The question arises
whether the exact constant 2 can be achieved for some nontrivial integrable
function, i.e. if there exist f ∈ L(R) (except f ≡ 0) and λ > 0 such that

m{Mf > λ} =
2
λ
‖f‖1 .

A similar problem of the attainability of the exact constants is considered
in [6]. We give a negative answer to the above posed question in the general
setting below.

It is well known that C = 2 is also the exact constant in the weak
(1,1) type inequality for the Hardy-Littlewood maximal function Mμν

corresponding to the measures ν and μ :

Mμν(x) = sup
x∈(a,b)

ν(a, b)
μ(a, b)

,

i.e.

(6) μ{Mμν > λ} ≤ 2
λ

ν(R), λ > 0,

and if ν is allowed to have atoms, say ν = δ{0} , then for each λ > 0

(7) μ{Mμν > λ} =
2
λ

ν(R) =
2
λ

ν{Mμν > λ.}

For the sake of completeness, we give the proof of a slightly improved
version of (6) and show that the equality (7) cannot be achieved (except for
the trivial case) if ν+ is free of atoms.

Proposition 1. For any λ > 0 , we have

(8) μ{Mμν > λ} ≤ 2
λ

ν+{Mμν > λ}.

Proposition 2. Let ν+ be a finite measure free of atoms and λ > 0 . If
the equality

(9) μ{Mμν > λ} =
2
λ

ν+{Mμν > λ}
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holds, then both sides of (9) are zero.

2. The proof of the main result

Note that in general {Mμ
+ν > λ} may not be open, but it is always open

from the left, i.e. for each x ∈ {Mμ
+ν > λ} there exists ε > 0 such that

(x − ε, x] ⊂ {Mμ
+ν > λ} . Hence its representation as a disjoint union of

connected components has the form

(10) {Mμ
+ν > λ} = ∪∞

n=1(an, bn〉,

where the angle “〉” indicates that bn either belongs or does not belong to
(an, bn〉 (i.e. (an, bn〉 = (an, bn] or (an, bn)).

Proof of Theorem 2. If {Mμ
+ν > λ} = ∅ , then the case is trivial.

Assume (a, b〉 is a connected component of {Mμ
+ν > λ} (not excluding

the cases a = −∞ or b = ∞) and prove that

(11) λμ(a, b〉 ≤ ν(a, b〉.

Then obviously (4) follows, because of (10). We will prove that

(12) λμ[x, b〉 ≤ ν[x, b〉

for each x ∈ (a, b〉 and one can get (11) by passing to the limit in (12) as x

tends to a from the right. For each x ∈ (a, b〉 , define

(13) yx := sup{y > x : λμ[x, y) < ν[x, y)}

(the latter set is not empty). The limiting argument shows that

(14) λμ[x, yx) ≤ ν[x, yx).

Note that

(15) yx ≥ b.

Indeed, if yx < b , then yx ∈ {Mμ
+ν > λ} and there exists y > yx such that

(16) λμ[yx, y) < ν[yx, y).

It follows from (14) and (16) that λμ[x, y) < ν[x, y), which contradicts the
definition (13) of yx being a supremum. Thus inequality (15) holds.
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Now consider several cases. If (a, b〉 = (a, b), then b /∈ {Mμ
+ν > λ} and

(17) λμ[b, y) ≥ ν[b, y) for each y > b.

In addition, if yx = b , then (12) is the same as (14) and if yx > b , then
λμ[x, b) > ν[x, b) together with (17) would imply that λμ[x, yx) > ν[x, yx)
which contradicts (14). Thus (12) holds in this case.

If (a, b〉 = (a, b] , then

(18) λμ(b, y) ≥ ν(b, y) for each y > b

and

(19) λμ{b} < ν{b}.

Indeed, there exists a sequence {bn}∞n=1 from R\{Mμ
+ν > λ} which

converges to b from the right and consequently λμ[bn, y) ≥ ν[bn, y), n =
1, 2, . . ., holds, where one can pass to the limit to get (18). The inequality
(19) follows from the fact that if λμ{b} ≥ ν{b} , then λμ[b, y) ≥ ν[b, y) for
each y > b , by (18), so that b would not belong to {Mμ

+ν > λ} .
Now if yx = b , then (12) follows from (14) and (19) and if yx > b , then

λμ[x, b] > ν[x, b] together with (18) would imply that λμ[x, yx) > ν[x, yx)
which contradicts (14). Thus (12) holds in this case as well. �

Proof of Theorem 1. Without lose of generality we can assume that
λ > 0. Indeed, if μ(R) = ∞ , then lim inf

x→−∞ Mμ
+ν(x) ≥ lim inf

x→−∞
ν[x,∞)
μ[x,∞) ≥ 0

and the positiveness of λ is justified by (2). If μ(R) < ∞ and λ < 0, then
take λ′ > |λ| and consider the maximal function of measure ν + λ′μ with
respect to μ , i.e. Mμ

+(ν + λ′μ). It can be readily checked that (ν + λ′μ)−

does not have atoms and Mμ
+(ν + λ′μ) = Mμ

+ν + λ′ , which implies that
{Mμ

+(ν + λ′μ) > λ + λ′} = {Mμ
+ν > λ} . If we now apply the theorem for

positive λ + λ′ , then we get (λ + λ′)μ{Mμ
+ν > λ} = (ν + λ′μ){Mμ

+ν > λ} ,
which readily implies (3).

Let us now show that if (a, b〉 is a connected component of {Mμ
+ν > λ} ,

where −∞ < a , then

(20) λμ(a, b〉 ≥ ν(a, b〉.

Indeed, since a /∈ {Mμ
+ν > λ} , we have λμ[a, y) ≥ ν[a, y) for each y > a

and, letting y to tend to b from the right, if necessary, we get

(21) λμ[a, b〉 ≥ ν[a, b〉.

Since ν{a} ≥ 0 and μ{a} = 0, (20) follows from (21).
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Since it follows from the condition (2) that −∞ < an for each n in the
representation (10), we have λμ(an, bn〉 ≥ ν(an, bn〉 by virtue of (20). Thus

λμ{Mμ
+ν > λ} = λμ (∪∞

n=1(an, bn〉) ≥ ν (∪∞
n=1(an, bn〉) = ν{Mμ

+ν > λ}

which together with (4) implies (3). �

3. Counterexamples

The following example shows that in general ν− cannot have an atom in
Theorem 1.

Example 1. Let μ = m be the Lebesgue measure and ν be the
measure concentrated at two points −1 and 0, where ν{−1} = −1
and ν{0} = 1. Then Mμ

+ν(x) = 1/|x| on (−1; 0] and is equal to 0
outside (−1; 0]. Thus {Mμ

+ν > λ} = (−1; 0] for each λ ∈ (0; 1) and
λμ{Mμ

+ν > λ} = λ · 1 �= 1 = ν{0} = ν{Mμ
+ν > λ} .

The following example shows that μ cannot have an atom.

Example 2. Let μ0 and ν be the measures concentrated at −1 and 0,
respectively, where μ0{−1} = 1 and ν{0} = 1 and μ be m + μ0 . Then
Mμ

+ν(x) = 1/|x| on (−1; 0], Mμ
+ν(x) = 1/(|x| + 1) on (−∞;−1] and is

equal to 0 on (0,∞). Thus {Mμ
+ν > λ} = (−1; 0] for each λ ∈ (1

2 ; 1) and
λμ{Mμ

+ν > λ} = λ · 1 �= 1 = ν{0} = ν{Mμ
+ν > λ} .

The following example shows the necessity of condition (3).

Example 3. Let ν be the same as in the preceding example and μ be
a positive measure such that μ = m on [0,∞) and μ(−∞, 0) = 1. Then
Mμ

+ν(x) = 0 on (0,∞), Mμ
+ν(x) ≥ 1 on (−∞, 0] and lim

x→−∞Mμ
+ν(x) = 1.

Thus, for each λ < 1, {Mμ
+ν > λ} = (−∞, 0] and λμ{Mμ

+ν > λ} = λ · 1 �=
1 = ν{0} = ν{Mμ

+ν > λ} .

4. The attainability problem

Proof of Proposition 1 (cf. [2], Lemma I.4.4.). Inequality (8) will be proved
if we show that

μ(K) ≤ 2
λ

ν+{Mμν > λ}
for each compact set K ⊂ {Mμν > λ} . Let I1, I2, . . . , In be a finite cover
of K by intervals such that

(22) λμ(Ij) < ν(Ij), j = 1, 2, . . . , n.
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Observe that (22) implies that

(23) Ij ⊂ {Mμν > λ}, j = 1, 2, . . . , n.

We say that a finite system of covering intervals {Ij}n
j=1 is minimal if

∪n
j=1Ij ⊃ K and K �⊂ ∪n

l �=j=1Ij for each l = 1, 2, . . . , n . Since from every
system of covering intervals one can select a minimal subsystem, we can
assume that {Ij}n

j=1 is minimal.
Let Ij = (aj , bj), j = 1, 2, . . . , n . It can be observed that ai �= aj

and bi �= bj whenever i �= j , since the system is minimal. We can
assume that a1 < a2 < . . . < an . The minimality of the system also
implies that (aj , bj) ∩ (aj+2, bj+2) = ∅ for each j ≤ n − 2, since otherwise
either (aj+1, bj+1) can be excluded from the system (kept K covered) if
bj+1 < bj+2 or (aj+2, bj+2) can be excluded from the system if bj+1 > bj+2 .
Thus we have the two open sets consisting of disjoint intervals

E1 = (a1, b1) ∪ (a3, b3) ∪ . . . and E2 = (a2, b2) ∪ (a4, b4) ∪ . . .

such that K ⊂ E1 ∪ E2 and λμ(Ei) < ν(Ei), i = 1, 2, by (22).
Since ν(Ei) ≤ ν+(Ei) ≤ ν+{Mμν > λ} , i = 1, 2, by (23), we have

λμ(K) ≤ λ(μ(E1) + μ(E2)) ≤ ν(E1) + ν(E2) ≤ 2ν+{Mμν > λ}. �

By developing further the idea of the proof of Proposition 1, one can prove
the following covering lemmas, which leads to the Lebesgue differentiation
theorem for arbitrary measures. Although it is essential in the following
two lemmas that we deal with the one-dimensional case, nevertheless we
emphasize that the measure μ is arbitrary and may not satisfy the doubling
condition.

Lemma 1. Let {[aj , bj]}j∈J be a system of closed intervals that covers a
measurable set A ⊂ R with μ(A) < ∞ . Then, for each ε > 0 , there exists
a disjoint subsystem {[aj , bj]}j∈J0 , J0 ⊂ J , such that

μ (∪j∈J0 [aj, bj ]) >
1
2
μ(A) − ε.

Proof. Clearly, one can associate to each point x ∈ Q := (∪j∈J [aj , bj]) \
(∪j∈J (aj , bj)) an open interval Δx with one endpoint at x such that
Q ∩ Δx = ∅ . If a ≤ b < c ≤ d , then (a, a+c

2 ) ∩ ( b+d
2 , d) = ∅ . So, if

we denote by Δ′
x the interval with length 1

2 |Δx| and with the same left or
right endpoint x , then the system of intervals {Δ′

x}x∈Q will be disjoint.
Thus Q is numerable.
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The system of open intervals {(aj , bj)}j∈J covers A\Q . Take an arbitrary
ε and a compact set K ⊂ (A\Q) such that

(24) μ(K) > μ(A\Q) − ε.

We can cover K by a finite subsystem of intervals {(aj, bj)}j∈J1 , i.e. J1 is
a finite subset of J and

(25) K ⊂ (∪j∈J1 (aj , bj)) ,

and we can take another finite subsystem of closed intervals {[aj, bj ]}j∈J2

which covers A ∩ Q up to a set of μ-measure less than ε ,

(26) μ ((A ∩ Q)\ ∪j∈J2 [aj , bj]) < ε.

It follows from (24),(25) and (26) that

(27) μ (A\ ∪j∈J1∪J2 [aj , bj]) < 2ε.

Thus, we have found a finite system of closed intervals {[aj, bj ]}j∈J3 which
covers A up to a set of μ-measure 2ε .

The rest of the proof repeats the proof of Proposition 1. Assume
∪j∈J3 [aj , bj] = AJ and let {[aj , bj]}n

j=1 be a minimal cover of AJ (with
exactly the same definition as in the proof of Proposition 1). We can assume
without loss of generality that a1 < a2 < . . . < an . Then

E1 = [a1, b1] ∪ [a3, b3] ∪ . . . and E2 = [a2, b2] ∪ [a4, b4] ∪ . . .

consist of disjoint closed intervals and AJ ⊂ E1 ∪ E2. Thus it follows from
(27) that

μ(Ei) ≥ 1
2
μ(AJ ) ≥ 1

2
(μ(A) − 2ε)

either for i = 1 or 2 and the lemma follows. �

Using Lemma 2, one can prove the following lemma exactly in the same
way as Theorem 2.8 is proved in [5].

Lemma 2. Let A ⊂ R be a measurable set and {[aj , bj]}j∈J be a system
of closed intervals such that for each x ∈ A and ε > 0 there exist j ∈ J

such that bj − aj < ε and x ∈ [aj , bj] . Then there is a disjoint subsystem
{[aj, bj ]}j∈J0 such that

μ (A\ ∪j∈J0 [aj , bj ]) = 0.
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If ν = νc + ν+
s − ν−

s is the Lebesgue decomposition of ν with respect to
μ , i.e. νc � μ , μ(E±) = 0 and ν±

s (E ∩ E±) = ν±(E), then define

(28)
Dν

Dμ
:=

⎧⎪⎪⎨
⎪⎪⎩

+∞ on E+

−∞ on E−
dνc

dμ
otherwise

where dνc

dμ is the Radon-Nikodym derivative. Using Lemma 2, one can get
the Lebesgue differentiation theorem for the pair of measures ν and μ in a
standard way (see, e.g., the proof of Theorem 2.12 in [5]).

Lebesgue Differentiation Theorem. For (|ν| + μ)-almost all x ∈ R

the limits

Dμ
+ν(x) = lim

b→x+

ν[x, b)
μ[x, b)

and Dμ
−ν(x) = lim

a→x−
ν(a, x]
μ(a, x]

are equal to Dν
Dμ(x) defined by (28) .

Proof of Proposition 2. Along with Mμ
+ν consider the left side maximal

function Mμ
−ν(x) = supa<x

ν(a,x]
μ(a,x] . Obviously, Theorems 1 and 2 hold for

Mμ
−ν too.
First consider the case where μ does not have atoms. Then Mμν(x) > λ

implies that either Mμ
+ν(x) > λ or Mμ

−ν(x) > λ . At the same time, using
the limiting argument, it is clear that Mμ

+ν(x) > λ or Mμ
−ν(x) > λ implies

that Mμν(x) > λ . Thus

{Mμν > λ} = {Mμ
+ν > λ} ∪ {Mμ

−ν > λ}.

By virtue of Theorem 2, we have

μ{Mμν > λ} ≤ μ{Mμ
+ν > λ} + μ{Mμ

−ν > λ}
≤ 1

λ
ν{Mμ

+ν > λ} +
1
λ

ν{Mμ
−ν > λ}

≤ 1
λ

(ν+{Mμ
+ν > λ} + ν+{Mμ

−ν > λ})

≤ 2
λ

ν+{Mμν > λ}.

If (9) holds then we should have all equalities instead of “≤” in the above
relations. This means that we should have

(29) μ{Mμν > λ} = μ{Mμ
+ν > λ} + μ{Mμ

−ν > λ}.
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But since ν+ does not have atoms, {Mμ
+ν > λ} and {Mμ

−ν > λ} are
open sets and (29) means that {Mμ

+ν > λ} ∩ {Mμ
−ν > λ} = ∅ since we

have that the measure μ of each open interval is positive. By the Lebesgue
differentiation theorem, (|ν|+μ)-almost all x ∈ {Dν

Dμ > λ} belong to the sets
{Mμ

+ν > λ} and {Mμ
−ν > λ} . Hence (|ν| + μ){Dν

Dμ > λ} = 0. Therefore

ν+
s ≡ 0 and dνc

dμ ≤ λ . Hence ν(a,b)
μ(a,b) ≤ λ for each interval (a, b) so that

{Mμν > λ} = ∅ and the theorem follows.
If μ contains atoms, we reduce the case to the non-atomic one by the

following trick.
Let A be the set of atoms of μ . Since μ is locally finite, A is countable

so that let

A = {xj}∞j=1 and μ{xj} = μj , j = 1, 2, . . . .

Assume W.L.O.G. that 0 �∈ A and define the maps

Ψ−(x) =

{
x +

∑
xj∈(0,x) μj , x > 0,

x − ∑
xj∈[x,0) μj , x ≤ 0,

and

Ψ+(x) =

{
x +

∑
xj∈(0,x] μj , x ≥ 0,

x − ∑
xj∈(x,0) μj , x < 0,

(we assume (a, b] = ∅ = [a, b) when a = b). Obviously, x < y ⇒
Ψ∓(x) < Ψ∓(y) and if x �∈ A , then Ψ−(x) = Ψ+(x) =: Ψ(x). The
relation x < y ⇒ Ψ(x) < Ψ(y) is naturally valid if we take any point from
[Ψ−(xj), Ψ+(xj)] in the role of Ψ(xj) for the atoms xj ∈ A .

For arbitrary Borel measurable E ⊂ R , define naturally the set

Ψ(E) := Ψ(E\A) ∪ (∪xj∈E [Ψ−(xj), Ψ+(xj)]) = ∪x∈E [Ψ−(x), Ψ+(x)]

and let B = Ψ(R\A). The map Ψ is strictly increasing and hence is one-
to-one on R\A . Thus Ψ−1(y) exists whenever y ∈ B and we naturally
assume that Ψ−1(y) = xj whenever y ∈ Ψ{xj} . We have

(30) R = B ∪ (∪∞
j=1[Ψ−(xj), Ψ+(xj)]) = B ∪ Ψ(A) and B ∩ Ψ(A) = ∅.

Keeping these relations in mind, we can define the measures μ̃ and ν̃ on R

by letting them to be measure-preserving on R\A , μ̃(E) = μ(Ψ−1(E)) and
ν̃(E) = ν(Ψ−1(E)) as E ⊂ B , and also μ̃ = dm , ν̃ = ν{xj}δ{xj} on each
[Ψ−(xj), Ψ+(xj)] = Ψ{xj} . Note that μ̃ has got free of atoms and, since
ν̃{xj} ≤ 0,

(31) ν̃(E) ≤ 0 for each E ⊂ ∪∞
j=1[Ψ−(xj), Ψ+(xj)] = Ψ(A).
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Observe that

μ(a, b) = μ̃(Ψ+(a), Ψ−(b)), ν(a, b) = ν̃(Ψ+(a), Ψ−(b))(32)

and ν+(a, b) = ν̃+(Ψ+(a), Ψ−(b))

for each a < b . Furthermore, for each Borel measurable E ⊂ R ,

(33) μ(E) = μ̃(Ψ(E)) and ν+(E) = ν̃+(Ψ(E)).

If x ∈ (a, b) and ν(a,b)
μ(a,b) > λ , then Ψ{x} ⊂ (Ψ+(a), Ψ−(b)) and

ν̃(Ψ+(a),Ψ−(b))
μ̃(Ψ+(a),Ψ−(b)) > λ , by (32). Thus x ∈ {Mμν > λ} implies that
Ψ(x) ∈ {M μ̃ν̃ > λ} if x �∈ A and Ψ{x} = [Ψ−(xj), Ψ+(xj)] ⊂ {M μ̃ν̃ > λ}
if x ∈ A . Consequently,

(34) Ψ{Mμν > λ} ⊂ {M μ̃ν̃ > λ}.

Now we show that

(35) y ∈ B = Ψ(R\A) and M μ̃ν̃(y) > λ =⇒ Mμν(Ψ−1(y)) > λ.

Indeed, let (α, β) � y and

(36) ν̃(α, β) > λμ̃(α, β).

Assume α+ = Ψ+(xj) when α ∈ [Ψ−(xj), Ψ+(xj)] = Ψ{xj} for some j

and α+ = α otherwise (α ∈ B in this case). Similarly, β− = Ψ−(xj)
when β ∈ [Ψ−(xj), Ψ+(xj)] = Ψ{xj} for some j and β− = β otherwise.
Clearly, α ≤ α+ < y < β− ≤ β because y �∈ ∪∞

j=1[Ψ−(xj), Ψ+(xj)] ,
and hence Ψ−1(α+) < Ψ−1(y) < Ψ−1(β−). Since ν̃(α, α+] ≤ 0
and ν̃[β−, β) ≤ 0 (see (31)), it follows from (36) that ν̃(α+, β−) >

λμ̃(α+, β−). Thus ν(Ψ−1(α+), Ψ−1(β−)) > λμ(Ψ−1(α+), Ψ−1(β−)) by
(32), and Mμν(Ψ−1(y)) > λ .

It follows from (34), (35) and (30) that {M μ̃ν̃ > λ}\(Ψ{Mμν > λ}) ⊂
Ψ(A). Hence

(37) ν̃+{M μ̃ν̃ > λ} = ν̃+(Ψ{Mμν > λ}),

by (31). At the same time (34) implies that

(38) μ̃(Ψ{Mμν > λ}) ≤ μ̃{M μ̃ν̃ > λ}.
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Since μ̃ does not have atoms, we have that either

(39) μ̃{M μ̃ν̃ > λ} <
2
λ

ν̃+{M μ̃ν̃ > λ}

or the both sides of the inequality (39) are equal to 0. In the latter case it
follows from (37) and (38) that ν̃+(Ψ{Mμν > λ}) = 0 = μ̃(Ψ{Mμν > λ}).
Consequently ν+{Mμν > λ} = 0 = μ{Mμν > λ} , by (33).

If (39) holds, then it follows from (38), (39) and (37) that

μ̃(Ψ{Mμν > λ}) <
2
λ

ν̃+(Ψ{Mμν > λ})

and consequently, by virtue of (33),

μ{Mμν > λ} <
2
λ

ν+{Mμν > λ}. �
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