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ABSTRACT. We give an efficient complete parametrization of wavelet matrices of rank m, genus g+1, and
degree g, which are naturally identified with corresponding polynomial paraunitary matrix-functions. The
parametrization depends on Wiener-Hopf factorization of unitary matrix-functions with constant determinant
given in the unit circle. This method allows us to construct in real time the coefficients of wavelet matrices from
the above class. © 2008 Bull. Georg. Natl. Acad. Sci.
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A wavelet matrix ( )r
ja=Α  of rank m consists of m  rows of possibly infinite vectors  
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Car
j ∈ , satisfying the following two conditions. 

(i) Quadratic condition: 
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(ii) Linear condition: 
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where δ  stands for the Kronecker symbol. 
In this paper we assume that (1) is compact, i.e. only the finite number of its entries is different from 0. 

Therefore, the series in (2) and (3) are only formally infinite, and no problem of convergence appears. 
The quadratic condition (2) asserts that the rows of a wavelet matrix ar ( )

∞∞−=
=

,
:

j
r
ja   have length equal to m

and that they are pairwise orthogonal when shifted by an arbitrary multiple of m. The first row a0  is called the 
scaling vector or low-pass filter, while the remaining rows ar, 0 < r < m,  are called the wavelet vectors or high-pass
filters. In signal processing applications, the linear constraint (3) implies that a constant signal emerges from the first 
subband of the multirate filter bank (1). 
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Associate to each wavelet matrix Α  the matrix function A(z) as follows: let  Ak,  Zk ∈ , be submatrices of Α  of 
size mm×  defined by ( )r

skmk aA += ,  s≤0 , 1−≤ mr ,  in other words, (1) is expressed in terms of block matrices in 
the form 

Α = LL ,,,,, 2101 AAAA− , 
and assume 

 A ( ) ∑
∞

−∞=

=
k

k
k zAz . (4)

Obviously, there is one-to-one correspondence between matrices (1) and formal series expansions (4), and,  for a 
compact  matrix, the corresponding matrix-function is a Laurent polynomial. 

It can be verified that the quadratic and the linear constraints on A are equivalent, respectively, to the following
two conditions on A(z): 

 A(z)=A∗ ( ) mIz =−1 , (5)

where A∗ ( ) k
k k zAz −∞

−∞=
∗− ∑=:1  is the adjoint of A(z), and 

 ∑
=

m

j 1
Aij(1)= 1,imδ , mi ≤≤1 , (6)

where A(z)=(Aij(z)) m
ji 1, = .  The condition (5) means that A is a paraunitary matrix-function. 

If  U  is a  unitary matrix of size  mm× , ∈U U(m), and A(z) satisfies (5), then UA(z) satisfies (5) as well. 
Furthermore, for each paraunitary matrix-function A(z), there exists and one can explicitly construct a unitary matrix 
U, such that UA(z) satisfies the linear condition (6) as well. If U and U ′  is  two such matrices, then 

U
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where ∈V U(m-1). Thus the construction of paraunitary matrix-functions is decisive for construction of wavelet
matrices. 

It is said  that a wavelet matrix (1) has the rank m and the genus g, Α ( )CgmWM ;,∈ , if the corresponding 
matrix-function A(z) has a form 

 A ( ) ∑
−

=
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It can be easily shown (see [1, p. 58] that the determinant of a paraunitary matrix-function A(z) is a monomial in 
z, that is, there is a nonnegative integer d, called the degree of A(z), such that 

det A(z)= dcz . 
Generically, (7) has degree g-1, although in specific degenerated cases, it can be larger or smaller than g-1. 
The relation between compact wavelet matrices  and  compactly supported wavelet systems as orthonormal 

functions in ( )RL2  is well-known (see [1], Ch. 5). 
Theorem ([2], [3], for rank 2; [1, pp. 87, 91], for rank m>2). Let 

A ( )CgmWM ;,∈  
be a wavelet matrix and consider the functional difference equation 
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called the scaling equation  associated with A. Then, there exists a unique ( )RL2∈φ , called the scaling function, 
which solves (8) and satisfies 
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Furthermore, if we define wavelet functions (associated with A) by the formula    
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and consider the collection of functions 
( ) ( )kxmmx jj

jk −= φφ 2/  Zkj ∈, , 

( ) ( )kxmmx jjr
jk −= ψψ 2/  mr <≤1 ; Zkj ∈, , 

called the wavelet system W[A] (associated with wavelet matrix A), then there exists an L2-convergent expansion for 
each 2Lf ∈ : 
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where the coefficients are given by 

( ) ( ) .  0∫=
R kk dxxxfc φ , 

( ) ( )∫=
R

r
jk

r
jk dxxxfc   ψ . 

Remark. For most wavelet matrices A, the wavelet system W[A] is a complete orthonormal system and hence 
an orthonormal basis for ( )RL2 , which would imply the above theorem. However, for some wavelet matrices, the 
system W[A] is not orthonormal, and yet (9) is always true, which means that W[A] is a tight frame. 

Independently of the above-mentioned connection between the wavelet matrices and associated wavelet systems, 
the former can be directly used in various discrete signal processing applications. Namely, the following theorem is 
one of the key links between the mathematical theory of wavelets and its practical applications. 

Theorem (wavelet matrix expansion [1, p. 80]). Let  
CZf →:  

be an arbitrary function (discrete signal) and let  

A= ( ) ( )CgmWMar
k ;,∈  

be a wavelet matrix of rank m and genus g. Then f has a unique  wavelet matrix expansion 
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The wavelet matrix expansion is locally finite; that is, for given n, only finitely many terms of the series are 
different  from 0. 

From the above said the theoretical and practical importance is evident of  deeper understanding of the internal 
structure of paraunitary matrix-functions, which would allow to construct  efficiently a wide class of such matrices.
To date, the only way of  classification of  paraunitary matrix functions was via the following factorization theorem. 
This theorem resembles the factorization of polynomials of degree d according to their d roots and highest
coefficients. 

For a unit column vector mCv ∈ , 1=∗vv , let 

 ( ) zvvvvIzV ∗∗ +−=: . (10)

Obviously, (10) is a polynomial matrix function of order 1. It can be shown that V(z) is the paraunitary matrix-
function of degree 1 (see [1, p. 59]) and it is called primitive. 

Theorem (Paraunitary Matrix Factorization, [1, p. 60]). A paraunitary matrix-function (7) of  degree d, 
where Ag-1 ≠ 0 can be factorized as 

A(z)= ( ) ( ) ( )UzVzVzV dL21 , 

where ( )zV j , dj ,,2,1 K= , are primitive paraunitary matrix-functions and U is a (constant) unitary matrix. 
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We propose an absolutely new way of parametrization of paraunitary matrix-functions of rank m, genus g+1 and 
order g, which depends on  Wiener-Hopf factorization of unitary matrix-functions (with constant determinant) given 
on the unit circle in the complex plane. Actually this method was developed in [4], [5] and it  allows to construct 
efficiently matrix-functions of the above type (consequently, to prepare the coefficients of the whole class of 
compactly supported wavelets) in real time. 
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det  A ( ) gczz = , 1=c . 
We first convert the matrix-function A(z) into a unitary (on the unit circle) matrix-function U(z) by dividing any 

row of A(z) (say, the last row, to be specific) by gz : 

U(z):= 
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Then we have 
( ) ( ) IzUzU == ∗ , for 1=z , 

det ( ) czU = , 1=c , 
+∈ grj LU , mr <≤1 ;   mj ≤≤1 , 

−∈ gjm LU , , mj ≤≤1 , 
where 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∑
=

+
g

k

k
kg zczffL

0
 : , 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∑
=

−−
g

k

k
kg zczffL

0
 : . 

Thus, the two theorems below give a simple and transparent way of one-to-one parametrization of paraunitary 
matrix-functions of rank m, genus g+1 and degree g. To compare this with the above presented factorization theorem 
from the simplicity point of view, the proposed parametrization resembles the classification of polynomials of degree 
d according to their d+1 coefficients. 

Theorem 1. (see [5], p. 22) For each mm×  matrix-function F(z) of form  
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where   
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 −∈ gj Lϕ ,   11 −≤≤ mj , (12)

there exists a unitary matrix-function U(z) (unique up to a constant unitary right multiplier) of form 
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where 

 +∈ gkj Lu ,  mjk ≤≤ ,1 , (14)

 det ConstzU =)( , (15)
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1

0)0( ,  (16)

 such that 

 ( ) ( ) +∈ gLzUzF . (17)

The condition (16) means that 0=z  is not a common zero of the polynomials )(zumj , mj ,,2,1 K= . This can 
be assumed without loss of generality in the following theorem as well. 

Theorem 2. (see [4]) For each unitary matrix-function U(z) of  form (13)-(16) there exists a unique F(z) of  form 
(11), (12) such that (17) holds. 

Observe that if we denote by F_(z) the matrix function of type (11) where each jϕ  is replaced by - jϕ , 

1,,2,1 −= mj K , then F − (z)= ( )( ) 1−zF , so that the equation 

( ) ( ) ( ) ( )zUzFzFzU ⋅= −  

gives the Wiener-Hopf right factorization of  U(z). 
Finally, we should mention that less than 1 sc computer time is required to compute coefficients of matrix-

function (13) in Theorem 1 whenever coefficients of functions jϕ , 1,,2,1 −= mj K , are selected in (11) for such 
large dimensions as m=30 and g=50. This speed of calculations opens the possibility to choose the optimal wavelet 
matrix for a specific problem, which is the most important step in practical applications, by total selection. 
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maTematika

kompaqturi veivlet-matricebis parametrizaciis
Sesaxeb

l. efremiZe, e. lagvilava

a. razmaZis maTematikis instituti, Tbilisi

(warmodgenilia akademiis wevris v. kokilaSvilis mier)

mocemulia efeqturi sruli parametrizacia veivlet-matricebis rangiT m, rigiT g+1 da
xarisxiT g, romlebic bunebrivi gziT gaigivebulia Sesabamisi rigis polinomialur paraunitarul
matric-funqciebTan. mocemuli parametrizacia eyrdnoba erTeulovan wrewirze gansazRvruli
mudmivi determinantis mqone polinomialuri unitaruli matric-funqciebis viner-hopfis
faqtorizacias. es meTodi saSualebas iZleva realur droSi agebul iqnas veivlet-matricis
koeficientebi zemoaRwerili klasidan.
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