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ABSTRACT. We give an efficient complete parametrization of wavelet matrices of rank m, genus g+1, and
degree g, which are naturally identified with corresponding polynomial paraunitary matrix-functions. The
parametrization depends on Wiener-Hopf factorization of unitary matrix-functions with constant determinant
given in the unit circle. This method allows us to construct in real time the coefficients of wavelet matrices from
the above class. © 2008 Bull. Georg. Natl. Acad. Sci.
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A wavelet matrix A = (a;) of rank m consists of m rows of possibly infinite vectors

P S S
1 1 1 1
a a a a
-1 0 1 2
A= . . > (1)
aml 1 a(r)n—l alm—l a;n 1
a; € C, satisfying the following two conditions.
(1) Quadratic condition:
ro S rs .
2@t @jemn = mS" 5y ©)
J
(1) Linear condition:
0
r r,0
S =ma. o)
j:—oo

where o stands for the Kronecker symbol.
In this paper we assume that (1) is compact, i.e. only the finite number of its entries is different from O.
Therefore, the series in (2) and (3) are only formally infinite, and no problem of convergence appears.

The quadratic condition (2) asserts that the rows of a wavelet matrix a”:= (a’j — have length equal to Jm

J S j=—
and that they are pairwise orthogonal when shifted by an arbitrary multiple of m. The first row a” is called the
scaling vector or low-pass filter, while the remaining rows a’, 0 <r <m, are called the wavelet vectors or high-pass
filters. In signal processing applications, the linear constraint (3) implies that a constant signal emerges from the first
subband of the multirate filter bank (1).
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Associate to each wavelet matrix A the matrix function A(z) as follows: let A4;, k € Z, be submatrices of A of
size mxm defined by 4, = (azmﬂ ), 0<s, r<m-1, inother words, (1) is expressed in terms of block matrices in
the form

A= A | Ay, Ay, Ay,
and assume

Alz)=Y 42" “
k=—o0

Obviously, there is one-to-one correspondence between matrices (1) and formal series expansions (4), and, for a
compact matrix, the corresponding matrix-function is a Laurent polynomial.

It can be verified that the quadratic and the linear constraints on A are equivalent, respectively, to the following
two conditions on A(z):

A@2)=A" (z—‘ ): ml , (%)

where A’ (zfl ):: z::_w A;z™ is the adjoint of A(z), and
D> Ay(D)=ms,,, 1<i<m, (6)
=

where A(z)=(4;(2));;; - The condition (5) means that A is a paraunitary matrix-finction.

If U is a unitary matrix of size mxm, U € Uim), and A(z) satisfies (5), then UA(z) satisfies (5) as well.
Furthermore, for each paraunitary matrix-function A(z), there exists and one can explicitly construct a unitary matrix
U, such that UA(z) satisfies the linear condition (6) as well. If Uand U’ is two such matrices, then

10
U'= U,

where V € U(m-1). Thus the construction of paraunitary matrix-functions is decisive for construction of wavelet
matrices.
It is said that a wavelet matrix (1) has the rank m and the genus g, A e WM (m, g;C), if the corresponding

matrix-function A(z) has a form
g-1
Alz)=Y 4,z (7)
k=0

It can be easily shown (see [1, p. 58] that the determinant of a paraunitary matrix-function A(z) is a monomial in
z, that is, there is a nonnegative integer d, called the degree of A(z), such that

det A(z)=cz".
Generically, (7) has degree g-1, although in specific degenerated cases, it can be larger or smaller than g-1.
The relation between compact wavelet matrices and compactly supported wavelet systems as orthonormal

functions in * (R) is well-known (see [1], Ch. 5).
Theorem ([2], [3], for rank 2; [1, pp. 87, 911, for rank m>2). Let
Ae WM (m, g;,C )
be a wavelet matrix and consider the functional difference equation

mg—-1

#x)= D" a{p(mx—k) (®)

k=0

called the scaling equation associated with A. Then, there exists a unique ¢ LZ(R), called the scaling function,

which solves (8) and satisfies

[#lx)ix=1 and suppg {o, (g- 1)(m”1 J + 1} .

R
Furthermore, if we define wavelet functions (associated with A) by the formula
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mg—1

l//"(x)z Z a,tgé(mx—k), I<r<m,
k=0
and consider the collection of functions

bulch=n e t) ke,
l,z/;k(x)zmj/zl//(mjx—k) 1<r<m; jkeZ,
called the wavelet system W[A] (associated with wavelet matrix A), then there exists an L,-convergent expansion for

each fel,:

m—1

ch%k + ZZC ‘//Jk )

k=—0 r=1 j=0k=-o

where the coefficients are given by

Ck :_[R f(x)¢0k x)dx.,

= jR f(x)W(x)dx i

Remark. For most wavelet matrices A, the wavelet system W[A] is a complete orthonormal system and hence
an orthonormal basis for L,(R), which would imply the above theorem. However, for some wavelet matrices, the
system W[A] is not orthonormal, and yet (9) is always true, which means that W[A] is a tight frame.

Independently of the above-mentioned connection between the wavelet matrices and associated wavelet systems,
the former can be directly used in various discrete signal processing applications. Namely, the following theorem is
one of the key links between the mathematical theory of wavelets and its practical applications.

Theorem (wavelet matrix expansion [1, p. 80]). Let

f:Z->C
be an arbitrary function (discrete signal) and let
A= (a,:)e WM(m,g;C)

be a wavelet matrix of rank m and genus g. Then f has a unique wavelet matrix expansion

Z ZC Anke+n >

r=0k=-o0
where

:i Zf(n);:nkﬂz .

n=—oo

The wavelet matrix expansion is locally finite; that is, for given n, only finitely many terms of the series are
different from 0.

From the above said the theoretical and practical importance is evident of deeper understanding of the internal
structure of paraunitary matrix-functions, which would allow to construct efficiently a wide class of such matrices.
To date, the only way of classification of paraunitary matrix functions was via the following factorization theorem.
This theorem resembles the factorization of polynomials of degree d according to their d roots and highest
coefficients.

For a unit column vector ve C™, v'v=1, let
V(z):: I-w +w'z. (10)

Obviously, (10) is a polynomial matrix function of order 1. It can be shown that V{(z) is the paraunitary matrix-
function of degree 1 (see [1, p. 59]) and it is called primitive.
Theorem (Paraunitary Matrix Factorization, [1, p. 60]). A paraunitary matrix-function (7) of degree d,

A@)=N (2 (z)- V(2

where V; (z) Jj=L2,...,d, are primitive paraunitary matrix-functions and U is a (constant) unitary matrix.

where A, ;7 0 can be factorized as

Bull. Georg. Natl. Acad. Sci., vol. 2, no. 4, 2008



26 Lasha Ephremidze, Edem Lagvilava

We propose an absolutely new way of parametrization of paraunitary matrix-functions of rank m, genus g+1 and
order g, which depends on Wiener-Hopf factorization of unitary matrix-functions (with constant determinant) given
on the unit circle in the complex plane. Actually this method was developed in [4], [5] and it allows to construct
efficiently matrix-functions of the above type (consequently, to prepare the coefficients of the whole class of
compactly supported wavelets) in real time.

Let

~—

Ay (Z) AI,Z(Z Ay (Z)

A(z)= Az»lz(z) Az,?(z) A2,r:n(z)

>

s5) Apalz) o Apn(2)

g
Arj(z):zg,:j, 1<r,j<m,
k=0

A(z)A*(z*I)z I,
det A(z)=cz%, |d=1.
We first convert the matrix-function A(z) into a unitary (on the unit circle) matrix-function U(z) by dividing any
row of A(z) (say, the last row, to be specific) by z¥ :

Ay Al,2 Al,m
4, Az,z A2,m
U(z2)= : : :
Am—l,l Am—l,Z o Am—l,m
Z_gAm,l Z_g Am,2 Z_gAm,m
Then we have
U(z)zU*(z)zl, for |Z|:l,
det U(z)=c, |d=1,
N
UrjeLg, 1<r<m; 1Lj<m,
U, €L,, I<j<m,
where
. k
L, :{f.f(z):ickz },
k=0

L, :{f :f(z)zgckzk}.

Thus, the two theorems below give a simple and transparent way of one-to-one parametrization of paraunitary
matrix-functions of rank m, genus g+1 and degree g. To compare this with the above presented factorization theorem
from the simplicity point of view, the proposed parametrization resembles the classification of polynomials of degree
d according to their d+1 coefficients.

Theorem 1. (see [S], p. 22) For each mxm matrix-function F(z) of form

1 0 0 - 0 0
0 1 0 - 0 0
o (11
0 0 0 10
O Py P3Py

where
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g ely, 1<j<m-1, (12)

there exists a unitary matrix-function U(z) (unique up to a constant unitary right multiplier) of form

Uy Up Uy
Us Uy Uy
U= : : : : , (13)
Up11 Uy Upm—1m
u;l u;ﬂ M;m
where
ukjeL;, 1<k, j<m, (14)
det U(z) = Const , (15)
Z|umj(0)|>o, (16)
=1
such that
F(Z)U(Z)GLZ,. (17)

The condition (16) means that z =0 is not a common zero of the polynomials u,,;(z), j=12,...,m. This can

be assumed without loss of generality in the following theorem as well.
Theorem 2. (see [4]) For each unitary matrix-function U(z) of form (13)-(16) there exists a unique F(z) of form
(11), (12) such that (17) holds.

Observe that if we denote by F_ (z) the matrix function of type (11) where each ¢; is replaced by -¢;,
j=L12,....m—1,then F_(z)= (F(z))71 , so that the equation
U(Z) =F (2)~F(Z)U(Z)

gives the Wiener-Hopf right factorization of U(z).
Finally, we should mention that less than 1 sc computer time is required to compute coefficients of matrix-
function (13) in Theorem 1 whenever coefficients of functions @i J=12,....m—1, are selected in (11) for such

large dimensions as m=30 and g=50. This speed of calculations opens the possibility to choose the optimal wavelet
matrix for a specific problem, which is the most important step in practical applications, by total selection.
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