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Abstract 

The John-Nirenberg inequality is generalized to the ergodic case. 

1. Introduction 

Let ( )µ,, SX  be a finite measure space, ( ) ,∞<µ X  and XXT →:  

be a measure-preserving ergodic transformation (see, e.g., [6] for 

definitions). For an integrable function ( ),,: XLfXf ∈→ R  the ergodic 

sharp maximal function is defined as 

 ( ) ( ) ( )∑
−

=≥
−=

1

01
,,

1
sup

n

k
n

k

n
xfExTf

n
xf �  (1) 

where ( ) ( )∑ −
=

= 1
0

,
1

,
n
k

k
n xTf

n
xfE  and the ergodic BMO norm of f is 
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defined as (see [1]) 

 .supessBMO
�ff =  (2) 

In the present paper we generalize the classical John-Nirenberg 
theorem [5] to the ergodic case. 

Theorem. There exist universal constants 1C  and 2C  such that           

for any finite measure space ( ),,, µSX  measure-preserving ergodic 

transformation T and ( ),XLf ∈  we have 
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where ( ) ( )( )∫ µµ=
X

fdXfE 1  and .0≥λ  

It is sufficient to take constants eC =1  and .412 eC =  

Garsia [4] formulated and proved the John-Nirenberg inequality for 
martingales and Pitt [7] generalized this inequality for submartingales. 

We give a simple and transparent proof of inequality (3) depending on a 
new method of transferring results on the real line to the general ergodic 

setting developed in [2], [3]. For the sake of completeness, we give the 
proof of the discrete version of John-Nirenberg theorem as well. 

2. The Discrete Case 

In order to deal with the discrete case, we consider non-negative 

functions +→ RN0:h  defined on the set of non-negative integers. Let 

I  be the collection of all “intervals” in ,0N  

{ { } }.,,,1...,,1,:: 0, N∈<−+=== nmnmnmmIII nmI  

For ,I∈I  let ( )II card=  denote the number of elements in I, and  
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Suppose 2I  is the set of all “intervals” I∈I  for which pI 2=  for 

some .0N∈p  
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The following lemma is the discrete version of the Calderón-Zygmund 

decomposition and can be proved in a similar way as its continuous 
analog. 

Lemma 1. Let ,: +→ RIg  where ,2I∈I  and ( ( ),gEI∈λ  

( )].max kgIk∈  Then there exist disjoint “intervals” ,...,,2,1, niIIi =⊂  

∅=ji II ∩  for ,ji ≠  such that ( ){ } ,:, 12 i
n
ii IkgIkI =⊂λ≥∈∈ ∪I  and 

( )∑
∈

=λ<≤λ

iIki
nikg

I
....,,2,1,21  

The following lemma is a discrete analog of the John-Nirenberg 

theorem (see [8]). 

Lemma 2. For each ,,: 20 I∈→ + Ih RN  and ,0≥λ  we have 
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Proof. It suffices to prove (4) for h with 

 ,1BMO =h  (5) 

so we will assume this. 

Using Lemma 1 for function ( ) ( ) ( ) ,, IkhEkhkg I ∈−=  and ,e=λ  

the set ( ) ( ){ }ehEkhIk I ≥−∈ :  (whenever it is not empty) can be 

covered with disjoint “subintervals” ,...,,2,1,2 niIi =∈ I  such that 
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(see (5)) and 
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We suppose that 0
1: II =  is the “interval” of level 0 and “intervals” 

,: 1
ii II =  ,...,,2,1 1ni =  are of level 1, and we continue to construct 

“intervals” of the next levels ....,3,2=N  Namely, having disjoint 

“intervals” ,...,,2,1,2 N
N
i niI =∈ I  which satisfy that each N

iI  is a 

subset of some ,1−N
jI  and 
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we use Lemma 1 for each N
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So, like (6) and (7) 
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If we now reindex all the intervals ,N
ijI  ,...,,2,1 Nni =  ...,,2,1=j  

,
iNn  in arbitrary order and call them ,...,,2,1, 1

1
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and (13) and (10) imply that 

( ) ( ) ( )121 +≤−+ NehEhE II N
i

   for each ....,,2,1 1+= Nni  

Thus, (9) and (10) hold whenever we change N by 1+N  in these 
inequalities. Now we wish to show that the same happens with relation 

(8) as well. Indeed, ( ) ( ) ( )12 +≥− NehEkh I  implies that N
iIk ∈  for 

some { }Nni ...,,2,1∈  (by virtue of (8)) and taking into account (10) we 

can conclude that ( ) ( ) .2ehEkh N
iI

≥−  Hence, by virtue of (11), 1+∈ N
iIk  

for some { }....,,2,1 1+∈ Nni  Thus (8) holds if we change N by .1+N  

We have shown that conditions (8)-(10) will be satisfied by the 
intervals of all level N in our construction process. Since I consists           
of finite number of points, this process will be finite, i.e., there will            
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be such M that { ( ) ( ) }ehEkhIk M
iI

M
i >−∈ :  will be empty for each 

{ }....,,2,1 Mni ∈  (Since each discrete “interval” consists at least one 

point, we can estimate from (9) that .)log IM ≤  

Now we are ready to prove (4), which obviously holds whenever 

( ).2,0 e∈λ  

If e2≥λ  is such that ( ) ( ){ } ,: ∅≠λ≥−∈ hEkhIk I  then there 

exists N such that ( )122 +<λ≤ NeeN  and (8) and (9) hold. Hence 
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Thus (4) is proved. � 

3. The Proof of Theorem 

By the ergodic theorem, 
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for a.a. .Xx ∈  

For ,Xx ∈  let 
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Obviously, for each ,0N∈k  we have (see (1)) 



THE JOHN-NIRENBERG INEQUALITY … 55
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It is sufficient to prove that 
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for each ( ),,0 λ∈ε  where eC =1  and .412 eC =  

Fix any Xx ∈  for which (14), (15) and (17) hold (we can select such x 

since, as it was discussed, almost all points satisfy these conditions). 

Let n be an arbitrary positive integer so large that (see (14), (16)) 
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where ε is the same as in (18). We can assume that pn 2=  as well. 

By virtue of (15), (16), (19), Lemma 2, and (17), we have 
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