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Abstract 

In this paper, we describe an algorithm for solving a certain system of algebraic linear equations using the underlying displacement structure 
of the coefficients matrix of the system. Fast solution of this system is a key component for acceleration of recently developed novel matrix 
spectral factorization algorithm. The results of numerical simulations, which compare optimized software implementation of structured system’s 
solution to the standard one built in MATLAB, are presented as well. 
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Introduction

Spectral factorization is the process by which a positive 
matrix-valued function S, on the unit circle in the complex 
plane, is expressed in the form *( ) ( )( ( )) ,| | 1S t S t S t t+ += = . Here, 

( ), 1S z z+ < , is a certain analytic matrix-valued function and 
( )( )*S t+

 is its Hermitian conjugate. Such factorization plays a 
prominent role in a wide range of fields in Communications 
(Fischer, 2002), System Theory (Cutain & Zwart, 1995), Con-
trol Engineering (Anderson & Moore 1979), and so on. No 
formula exists for an explicit computation of the spectral fac-
tor, and, consequently, several different methods have been 
developed for an approximate calculation of S^+. Recently, 
a new method of matrix spectral factorization has been pro-
posed in (Janashia, Lagvilava, & Ephremidze, 2011). To 
describe this method in a few words, it carries out step-by-
step approximate spectral factorization of leading principal 
minors of S. In this process the decisive role is played by 
unitary matrix functions of certain form, the so called wave-
let matrices (Ephremidze, Lagvilava, 2013), which eliminate 
many technical difficulties related to the computation of S+. 
The explicit construction of such matrices requires solu-
tion of a certain N×N linear system of algebraic equations,

,X B∆ =                                      (1)

which, as it is widely known, requires ( )3O N  operations, 
even though in the considered case Δ is always positive 
definite. While the matrix function S to be factorized has di-
mensions r×r, and consequently its leading principal minors 
have order m r≤ , the positive integer N is responsible for 
the accuracy of their approximately computed spectral fac-
tors. In fact, it has been proved (Ephremidze, Janashia, & 
Lagvilava, 2011), that the obtained algorithm produces an 
approximation which converges to the exact solution as 
 N →∞ . Consequently, in actual calculation process by the 
above mentioned spectral factorization algorithm, N is likely 
to be significantly larger than m, and ( )3O N  operations for 
solving (1) would be a heavy computational burden  for the 
whole process. However, the special form of the matrix Δ, 
whose entries are determined by m×N elements instead of 

2N  (see next section), promise the existence of fast ways of 
solving (1), which had been intensively researched for a long 
time. In the end, it has been shown that Δ possesses the so 
called “displacement structure” (Kailath, Sayed, &Hassibi, 
2000, Appendix E) by means of which the computational 
burden of solving the system (1) reduces from ( )3O N   to 

( )2O mN  .
There are several forms of displacement structures and 

we selected a suitable one. Consider an N×N Hermitian ma-
trix Δ  and N×N upper-triangular shift matrix Z with ones on 
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the first superdiagonal and zeroes elsewhere (i.e. Jordan 
block with eigenvalue 0). The displacement of Δ with respect 
to Z is denoted by  ZR ∆ and is defined as the difference

*
ZR Z Z∆ = ∆ − ∆   

The matrix Δ is said to have displacement structure (or 

low displacement rank) with respect to Z, if the rank of   ZR ∆  
is considerably lower than (and independent of) N. It was 
shown in (Janashia, Lagvilava, Ephremidze, 2011, Appen-
dix), that the coefficient matrix Δ of the system (1) has low 
dimensional rank m, where m≤n is the order of the lead-
ing principal minor which has to be factorized at the given 
moment. Consequently, there exists a method of solution of 
(1) with reduced number of operations, as it is described in 
(Kailath, Sayed, & Hassibi, 2000, Appendix E).

In the present paper, we describe the fast algorithm 
for solving the system (1) incorporating the underlying dis-
placement structure of the coefficient matrix Δ. We estimate 
the number of operations required at each step of the algo-
rithm. Furthermore, the algorithm was encoded in MATLAB 
and, by means of numerical simulations, compared to the 
standard algorithm for solving linear system of equations 
built in MATLAB. This comparison demonstrates the signifi-
cant advantage in computational time of the fast algorithm 
especially when  N m . Consequently, its application as 
a component of the above mentioned matrix spectral fac-
torization algorithm will accelerate the whole computational 
procedure.

Formulation of the Problem

According to the algorithm published in (Janashia, Lagvilava 
& Epremidze,2011), a positive matrix-valued function

( )
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is first factorized as

( ) ( ) ( )*S t M t M t=                         (2)

where ( )M t  is a lower triangular matrix with minimum 

phase entries on the diagonal, and ( )*M t  is the Hermitian 
conjugate. Afterwards, the spectral factorization of leading 

principle minors of ( )S t  is performed step by step by mul-

tiplication of  ( )M t  on the right by unitary matrix functions
( ) , 2,3, ,mU t m r=  , of special form. Eventually we have

( ) ( ) ( ) ( )2 rS t M t U t U t+ = 
 

To make a new row of ( )M t  causal in each following 
step, we first use a non-causal factorization

( ) ( ) ( )*
m m mS t M t M t=  

where ( )mS t   is the m m×  leading principle minor of ( )S t   
and  has a block matrix for

( )
( )

( ) ( ) ( ) ( )
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( )2 , 1, 2, , 1,k L T k mξ ∈ = − ( ) ( ) ( )1det detm m mf t S t S t+
−= ( S  denotes the scalar spectral factor of  S, and  stands for the 

Lebesgue space of square integrable functions on the unit 

circle  . Since ( )1mS t+
−  has the same polynomial order n as  

( )1mS t−  , we can use the factorization (2) to find the functions 

kξ  explicitly using Cramer’s rule. Namely

( ) ( ) ( )( )*1 1det detk
k m mt S t S tξ +

− −= 1,2, , 1,k m= −

where ( )1
k
mS t−  is the matrix ( )1mS t+

−  with its kth column re-

placed by the first m-1 entries of the mth column of ( )S t  . 
These functions have Fourier expansions

( ) j
k kj

j
t tξ γ

∞
−

=− ∞

= ∑
                        (3)

Theoretical background of the algorithm suggests that 
the larger we take N, the better the approximation we achieve 

as the final result. Conveniently enough, since kξ ( )S t   is repre-
sented as a ratio of two polynomials, where the denominator 
is free from zeros inside the unit circle, one can calculate as 
many coefficients of this function, as one wishes. Next we 

construct a unitary matrix polynomial ( ) [ ] ( )N
m mU t U t=  , which 

makes the product ( ) ( )m mM t U t  causal. The construction of  

U ( )m t  requires solution of the system of linear equations (1), 
where 

1
*

1
1

m

k k N
k
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−

+
=

∆ = Θ Θ +∑                      (4)

is a positive definite matrix with all eigenvalues greater than  

or equal to 1. 1NI +   is the ( N + 1) × ( N + 1) unit matrix and   

kΘ  is a Toeplitz matrix
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1

0

det ( )1
( ) det ( )
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[ ] 0is the projector, i.e. N j j
j jj N j N

c t c t
−−

=− =−

  ⋅ =   
∑ ∑

It is proved in Appendix of (Janashia, Lagvilava, & 
Ephremidze, 2011) that

*R A AZ∆ = ⋅                               (5)

where
 [ ]1 2 1A , , , ,m ε−= Λ Λ Λ

 is the (N+1)×m matrix with 

each column Λk denoting the first column of kΘ  , k=1,2,…

,m-1, and ( )0,0, ,0,1 Tε =  . As it was explained in Introduc-
tion, the equation (5) implies that ∆  has displacement rank 
m. Consequently, as (Kailath, Said, & Hassibi, 2001) sug-
gest UDL (upper-diagonal-lower) factorization of  can be 

performed in ( )2O mN   operations, which allows us to solve 
the system (1) in a more efficient way. In the next section we 
describe theoretical background for such factorization.

Theoretical Background of Efficient UDL 
Factorization Algorithm

Following the idea presented in (Kailath, Said and Hassibi, 

2000), we provide an efficient ( )2O mN  procedure for the 
computation of the triangular factors of a Hermitian positive-
definite matrix  satisfying 

* *, N rZ Z AA A C ×∆ − ∆ = ∈              (6)

Let
* 1L D L−∆ =                              (7)

define the triangular decomposition of  ∆  , where 

{ }1 2, ,..., ND diag d d d= , and the lower triangular factor L is 

normalized in such a way that the values { }id  appear on 
its main diagonal.

Note that since multiplication by Zon the left moves the 
rows up by 1 and the multiplication by Z on the right shifts 
the columns to the left, *Z Z∆ − ∆  will have only 0-s in the last 
row and column. Consequently, the last row (column) of  ∆  
coincides with the last row (column) of AA*  by virtue of the 
equation (6), and it can be easily found by 

[ ] [ ]
*,N NA A∆ = ⋅

where [ ]N∆  and [ ]NA  denote the last rows of ∆  and A, re-
spectively. Furthermore, the last row lN of the lower triangu-

lar matrix L in (7) coincides with, and [ ]N∆  is its last entry,

[ ] [ ] [ ] [ ]
* *,      ::N NN N N Nl A A d A A= == ∆

Thus, following the standard UDL factorization algo-

rithm, if we subtract from   the rank-one matrix  , then we 

obtain a new matrix * 1
N N Nl d l−  whose last row and column are 

zero



1* 1
1

0
:

0 0
N

NN N Nl d l −−
−

∆ 
∆ − = = ∆ 

 

where the matrix 1N−∆  is the Schur complement of   with re-

spect to its  (N,N) entry dN. Our claim now is that 1N−∆  is also 
structured and satisfies

* *
1 1 1 1 1 1N N N N N NZ Z A A− − − − − −∆ − ∆ =              (8)

with (N-1)×(N-1) upper triangular shift matrix 1NZ − , where the 
generator matrix A(N-1) can be directly obtained from the pre-
vious generator A (see (6). Namely,

* 1 * 1
1NA Aa ad Aa ad A− −
− = − +               (9)

 
where, a:=AN , d=dN, and M  (or M ) denotes the matrix M 
without the last (or the first) row. Indeed, we have

( )* * 1 * 1 *
1 1

* * 1 * 1 *

* * 1 * 1 *

* * 1 * * 1 * *

–

 
=

N N N N N N

N N N N

N N N N

Z Z l d l Z l d l Z

Z Z l d l Zl d l Z
AA l d l Zl d l Z

AA Aa d aA ZAa d aA Z
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− −

− −

− −
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∆ − ∆ = − − =

= − − +

− + =

− +

∆ ∆ =

=

 

Since we know that the last row and column of 
*

1 1N NZ Z− −∆ − ∆   contains only 0-s, and we get *
1 1 1 1N N N NZ Z− − − −∆ ∆−  

if we eliminate them, we can get rid of the last rows and col-
umns in the above sum to obtain

* * * 1 * * 1 *
1 1  N NZ Z AA Aa d aA Aa d aA− −
− −∆ − ∆ = − + 

On the other hand

( )
* * 1 * 1

1 1

* 1 * * 1 * *

* 1 * * 1 * * 1 *

* 1 * * 1 * * 1 *

* 1 * * 1 * *

* 1 * * 1 * *

( ) xN NA A Aa ad Aa ad A

a ad A a ad A A

Aa ad A Aa ad A Aa ad A
Aa ad A Aa ad A Aa ad A

Aa ad A Aa ad A AA
Aa ad A Aa ad A AA

− −
− −

− −

− − −

− − −

− −

− −

= − +

− + =

= − + −

− + − +

+ − + =

= − +

which proves (8), where A(N-1) is defined by (9). We can fur-
ther apply the formula (9) recurrently for N-1,N-2,...,2.

Description of the Algorithm

In the present section we describe in details how from N×r 
matrix A in (6) one can construct the upper triangular matrix 
U=L* in (7) and the diagonal entries of D. The nonzero part 

of the consecutive columns of U is denoted by ku   .

Step 1. Let AN=A  and take N+1 as a starting value of an 
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integer k, k=N+1 .
Step 2. Take k = k-1.

Compute *
k k ku A a= ⋅  , where ak denotes the last row of Ak 

(this procedure requires  multiplications), and let   be the last 

entry of  , so that 1
kd −  is the entry of D.

Step 3. Let ku  and 
k

u  be the column   without the first 

and the last entries, correspondingly, and let k kkv u u= −  (it 
will have k-1 entries).

Step 4. Compute 1
k k k kB v a d −=  (it requires again k m⋅   

multiplications).

Step 5. Let 1 kk kA B A− = +  where kA   is the matrix kA
without the last row.

Step 6. If k > 1, then move to Step 2 .

Overall, the algorithm requires 
 

2

1
2 2

N

k
k m mN

=

⋅ =∑
  

multi-
plications.

Estimation of Diagonal Entries.

As it was mentioned in Section 3, the diagonal entries 
 { }1 2, ,..., ND diag d d d=   in factorization (7) are the same for 

matrices L*, D and L. Since 1k ka a− ≥     is positive defi-
nite, we know that all dk are strictly positive. However, some 
preliminary estimation of these entries which guarantees 
that they are remote from 0 would be nice in real computa-
tions. In this section we prove that the following nice order-
ing of these entries happens to hold

d1≥d2≥...≥dN≥1

Since dk=akak*, where ak is the last row of Ak (see (9)), 
and aN = (η1N,η2N,…,η (m-1,N),1), the last inequality in (10) 
is clear. Hence we have to show that d(k-1)≥dk.

It follows from (9) that

* 1 * 1
1k k k k k k k ka a a a d b a a d b− −
− = − +

where bk is the last but one row of Ak (above ak). Conse-
quently

a(k-1)=ak-bk (I - ak
* ak d

-1)

and since 
( )* 1

k k k kb I a a d a−− ⊥  (as ( )* 1 * * * 0k k k k k k k kb I a a d a b a b a−− = − = ), 

we have a(k-1)||≥||ak|| because of Pythagoras theorem.

Numerical Simulations

To demonstrate how much the application of the displace-
ment structure accelerates a solution of linear system of 
equations, the algorithm was coded in MATLAB. A PC with 
2.40GHz Intel Quad Core CPU and 2GB RAM was used for 
numerical simulations. Several linear systems were random-
ly generated and solved using 1) standard MATLAB division 
tool, 2) the algorithm described in this paper. In all of the 
experiments the L∞ norm of the difference between the so-
lutions produced by the two methods were calculated. The 
two solutions are quite close to precisions in which MATLAB 
carries out its calculations (the experiments were run in the 
standard double precision).  

Additionally, elapsed time was measured for each of the 
procedures. The results are listed in the table1 below. As ex-
pected, the algorithm which utilizes the underlying displace-
ment structure of the system works faster than the standard 
one, and the difference between the performance times is 
becoming more and more evident as m and N grow, keeping 
N sufficiently larger than m. 

Conclusion

A certain type of linear system of equations with displace-
ment structure naturally arises in the process of realization 
of novel matrix spectral factorization algorithm introduced in 
(Janashia, Lagvilava, Epremidze, 2011).We have described 
an efficient UDL factorization algorithm of the coefficient ma-
trix, and have presented numerical evidence that this algo-
rithm has a noticeable advantage in computational speed, 
when compared to a standard computational tool.

Acknowledgments

The second author was supported by the Shota Rustaveli 
National Science Foundation grant (Contract No. 31/47) 
during this research.

Table 1. Regression analysis results with respect to normal case
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