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Abstract

An elementary proof of Robinson’s Energy Delay Theorem on minimum-phase functions is provided. The situation in which
the energy conservation property holds for an infinite number of lags is fully described.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let D be the unit disk in the complex plane and T = {z ∈ C: |z| = 1} be its boundary. The set of all analytic in
D functions is denoted by A(D). The Hardy space H2

= H2(D) consists of all the functions f ∈ A(D) the Taylor
series

f (z) =

∞
n=0

anzn

of which satisfy the condition

∞
n=0

|an|
2 < ∞.

In engineering, these functions are known as z-transforms (resp. transfer functions) of discrete-time causal signals
(resp. filter impulse responses) with a finite energy. It is well known that the boundary values of f ∈ H2 exist a.e.,

f+(eiθ ) = lim
r→1−

f (reiθ ) for a.a. θ ∈ [0, 2π), (1)
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and f+ ∈ L2(T), the Lebesgue space of square integrable functions on T. Furthermore, f+ ∈ L2
+(T) := { f ∈

L2(T) : cn( f ) =
1

2π

 2π

0 f (eiθ )e−inθ dθ = 0 for n < 0}. Actually, there is a one-to-one correspondence between H2

and L2
+(T), and therefore we may naturally identify these two classes.

For any function f ∈ H2, the inequality

| f (0)| ≤ exp


1

2π

 2π

0
log | f+(eiθ )| dθ


(2)

holds (see, e.g., [1, Th. 17.17]). The extreme functions for which (2) turns into an equality are called outer. In
engineering they are also known as minimum-phase, or optimal, functions. According to the original definition of
outer functions by Beurling [2], they admit the representation

f (z) = c · exp


1

2π

 2π

0

eiθ
+ z

eiθ − z
log | f+(eiθ )| dθ


, (3)

where c is a unimodular constant. This representation easily implies that the equality holds in (2) for outer functions
and it can be proved that the converse is also true. In particular, boundary values of the modulus of an outer function
uniquely determine the function itself up to a constant multiple with absolute value 1.

The following property of minimum-phase functions, first observed by Robinson [3], plays an important role in
several signal processing applications.

Theorem 1. Let f (z) =


∞

n=0 anzn and g(z) =


∞

n=0 bnzn be H2-functions satisfying

| f+(eiθ )| = |g+(eiθ )| for a.e. θ. (4)

If f is of minimum-phase, then for each N,

N
n=0

|an|
2

≥

N
n=0

|bn|
2. (5)

Robinson gave a physical interpretation to inequality (5) “that among all filters with the same gain, the outer
filter makes the energy built-up as large as possible, and it does so for every positive time” [4] and found geological
applications of minimum-phase waveforms. Consequently, the term minimum-delay [5, p. 211] functions is being
used to describe optimal functions, and Theorem 1 is known as the Energy Delay Theorem within the geological
community [6, p. 52].

Theorem 1 was further extended to the matrix polynomial case and used in MIMO communications in [7]. In [8],
the theorem is formulated and proved for general operator valued functions in abstract Hilbert spaces.

In this paper, we provide a very short and simple proof of Theorem 1 based on classical facts from the theory of
Hardy spaces. This is done in Section 3, while the modification of this proof fitting the matrix case is discussed in
Section 4. In final Section 5, we treat the situation in which (5) turns into an equality for infinitely many values of N .
The preliminary Section 2 contains some notation and known results, included for convenience of reference.

2. Notation

Let L p
= L p(T), 0 < p ≤ ∞, be the Lebesgue space of p-integrable complex functions f with the norm

∥ f ∥L p =
 1

2π

 2π

0 | f (eiθ )|p dθ
 1

p for p ≥ 1 (with the standard modification for p = ∞), and let H p
= H p(D),

0 < p ≤ ∞, be the Hardy space
f ∈ A(D) : sup

r<1

 2π

0
| f (reiθ )|p dθ < ∞


with the norm ∥ f ∥H p = supr<1 ∥ f (rei ·)∥L p for p ≥ 1 (H∞ is the space of bounded analytic functions with the
supremum norm). It is well known that boundary value function f+ (see (1)) exists for every f ∈ H p, p > 0, and
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belongs to L p. Furthermore,

∥ f ∥H p = ∥ f+∥L p (6)

for every p ≥ 1, and it follows from the standard Fourier series theory that ∞
n=0

anzn


H2

=


∞

n=0

|an|
2

1/2

. (7)

Condition 2π

0
log | f+(eiθ )| dθ > −∞ (8)

holds for every f ∈ H p, and the function f is called outer if the representation (3) is valid. We have the equality (the
optimality condition) in (2) if and only if f is outer (see [1, Th. 17.17]). One can check, using the Hölder inequality,
that if f and g are outer functions from H p and Hq , respectively, then the product f g is the outer function from
H pq/(p+q).

A function u ∈ A(D) is called inner if u ∈ H∞ and

|u+(eiθ )| = 1 for a.a. θ ∈ [0, 2π). (9)

If in addition u(z) ≠ 0 for z ∈ D, then it is called a singular inner function. Every h ∈ H p can be factorized as

h(z) = B(z)I(z) f (z), (10)

where B(z) = zm 
n=1

|ωn |

ωn

ωn−z
1−zn z is a Blaschke product, I is a singular inner function and f is an outer function from

H p. (Observe that |h+| = | f+| a.e.) In these terms, a function is outer if and only if the inner factor in factorization
(10) is constant, i.e., without loss of generality, B ≡ I ≡ 1.

These definitions and factorization (10) are classical in mathematical theory of Hardy spaces. However, engineers
frequently discard the middle term in the factorization (10): a singular inner factor, having the form

I(z) = exp


−

1
2π

 2π

0

eiθ
+ z

eiθ − z
dµs(θ)


,

where µs is a singular measure on [0, 2π), is trivial in case of rational f and thus not encountered in practice. So, they
sometimes define a minimum-phase function f ∈ H2(D) by the condition 1/ f ∈ A(D) (i.e. f (z) ≠ 0 for z ∈ D). This
definition can be used for rational functions, however, not for arbitrary analytic functions. As an example of a singular
inner function I shows, the inequality in (2) might be strict in this case (|I(0)| < 1, while

 2π

0 log |I+(eiθ )| dθ = 0).
So, the equality may not hold in (2) even if f −1

∈ A(D), as it was incorrectly claimed in [9, p. 574].
We will make use of the following standard result from the theory of Hardy spaces (see [10, p. 109]).
Smirnov’s Generalized Theorem: if f = g/h, where g ∈ H p, p > 0, h is an outer function from Hq , q > 0,

and f+ ∈ Lr , r > 0, then f ∈ H r .
For a positive integer N , let PN be the projection operator on H2 defined by

PN :
∞

n=0

anzn
−→

N
n=0

anzn .

For h(z) =


∞

n=0 γnzn
∈ A(D), let supp(ĥ) = {n ∈ N0 : γn ≠ 0}.

Now we turn to matrices and matrix functions. For a given set X of scalars or scalar valued functions, let Xm×n
stand for the set of m × n matrices with the entries from X . The elements of L p

d×d (resp. H p
d×d ) are assumed to be

matrix functions with domain T (resp. D) and range Cd×d , and of course F+ ∈ L p
d×d for F ∈ H p

d×d .
For M ∈ Cd×d , we consider the Frobenius norm of M :

∥M∥2 =

 d
i=1

d
j=1

|mi j |
2
1/2

=

Tr(M M∗)

1/2
,
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where M∗
= M

T
, and for F ∈ H p

d×d , we define

∥F∥H2
d×d

=

 d
i=1

d
j=1

| fi j |
2
H2

1/2

.

Similarly, we define ∥F+∥L2
d×d

for F+ ∈ L2
d×d . By virtue of (6), we have

∥F∥H2
d×d

= ∥F+∥L2
d×d

(11)

and, as in (7), ∞
n=0

Anzn


H2

d×d

=


∞

n=0

∥An∥
2
2

1/2

(12)

for any sequence of matrix coefficients A0, A1, . . . from Cd×d .
A matrix function F ∈ H2

d×d is called outer if det F is an outer function from H2/d . This definition is equivalent
to number of other definitions of outer matrix functions (see, e.g., [11]). On the other hand, a matrix function
U ∈ A(D)d×d is called inner if U ∈ H∞

d×d and U+ is unitary a.e.:

U+(eiθ )U∗
+(eiθ ) = Id for a.a. θ ∈ [0, 2π). (13)

3. Proof of Theorem 1

According to (7), the statement of Theorem 1 is equivalent to

∥PN ( f )∥H2 ≥ ∥PN (g)∥H2 , N ∈ N0. (14)

For any bounded analytic function u ∈ H∞, we have

PN (u f ) = PN

u · PN ( f )


(15)

since PN

u · PN ( f )


= PN


u( f − ( f − PN ( f )))


= PN (u f ) − PN


u( f − PN ( f ))


= PN (u f ). Here we utilized

the fact that the kernel of PN is the set of functions in H2 having zero as its root of multiplicity at least N , and thus
invariant under multiplication by u.

Since (4) holds, by virtue of Beurling factorization (10), there exists an inner function u such that g = u f .
Therefore, taking into account (6), (9), and (15), we get

∥PN ( f )∥H2 = ∥u PN ( f )∥H2 ≥ ∥PN

u PN ( f )


∥H2 = ∥PN (u f )∥H2 = ∥PN (g)∥H2 . (16)

Thus (14) follows, and Theorem 1 is proved.

4. The matrix case

In this section we prove the following matrix version of Theorem 1.

Theorem 2. Let F(z) =


∞

n=0 Anzn , An ∈ Cd×d , and G(z) =


∞

n=0 Bnzn , Bn ∈ Cd×d , be matrix functions from
H2

d×d satisfying

F+(eiθ )

F+(eiθ )

∗
= G+(eiθ )


G+(eiθ )

∗ for a.a. θ ∈ [0, 2π). (17)

If F is optimal, then for each N ∈ N0,

N
n=0

∥An∥
2
2 ≥

N
n=0

∥Bn∥
2
2. (18)
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Proof. Let PN be the projection operator on H2
d×d defined by

PN :

∞
n=0

Anzn
−→

N
n=0

Anzn .

By virtue of (12), we have to prove that

∥PN (F)∥H2
d×d

≥ ∥PN (G)∥H2
d×d

. (19)

Let

U (z) = F−1(z)G(z). (20)

It follows from (17) that (13) holds. Therefore, U+ ∈ L∞

d×d . Since, in addition, F−1(z) =
1

det F(z)Cof

F(z)


,

where det F(z) is an outer function, by the generalized Smirnov’s theorem (see Section 2), we have U ∈ H∞

d×d .
Consequently, (20) is an inner matrix function.

Exactly in the same manner as (15) was proved, we can show that

PN (FU ) = PN

PN (F)U


. (21)

Since unitary transformations preserve standard Euclidian norm on the space Cd , it follows from (13) that, for any
V ∈ C1×d ,

∥V ∥2 = ∥V · U+(eiθ )∥2 for a.a. θ ∈ [0, 2π). (22)

Therefore, by virtue of (11) and (22),

∥X∥H2
d×d

= ∥X+∥L2
d×d

= ∥X+U+∥L2
d×d

= ∥XU∥H2
d×d

(23)

for any X ∈ H2
d×d . It follows now from (23), (21), and (20) that

∥PN (F)∥H2
d×d

= ∥PN (F) · U∥H2
d×d

≥ ∥PN

PN (F) · U


∥H2

d×d

= ∥PN (FU )∥H2
d×d

= ∥PN (G)∥H2
d×d

.

Thus (19) is true, and Theorem 2 is proved. �

5. An energy conservation property

As was mentioned in the Introduction, in the setting of Theorem 1 it can happen that the equality is attained in (5)
for some values of N even when g is not a constant multiple of f . The next proposition describes exactly when it
is possible. Though not very explicit, it will become instrumental when characterizing the case of (5) turning into an
equality for infinitely many values of N .

Proposition 1. Let f, g ∈ H2 satisfy (4), with f being an outer function. Then

N
n=0

|an|
2

=

N
n=0

|bn|
2 (24)

holds for some N ∈ N if and only if

g = u f, (25)

where u is a finite Blaschke product,

u(z) = czm0

m1
j=1

z − α j

1 − α j z
, |c| = 1, m0, m1 ∈ N0, 0 < |α j | < 1 for j = 1, 2, . . . , m1, (26)

the polynomial PN ( f ) has the degree

deg(PN ( f )) ≤ N − m0 (27)
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and vanishes at w j := 1/α j , j = 1, 2, . . . , m1:

PN ( f )(w j ) = 0, j = 1, 2, . . . , m1. (28)

Proof. It follows from (4) that (25) holds for some inner function u.
The chain of relations in (16) reveals that the equality

∥PN ( f )∥H2 = ∥PN (g)∥H2 (29)

holds if and only if

∥u PN ( f )∥H2 = ∥PN

u PN ( f )


∥H2 .

Therefore (24), which is equivalent to (29), holds if and only if

u PN ( f ) is a polynomial with deg

u PN ( f )


≤ N . (30)

Under the conditions (26), (27), and (28) the relation (30) holds since

m1
j=1

z − α j

1 − α j z
PN ( f ) is a polynomial of the same degree as PN ( f ) (31)

and

deg

u PN ( f )


= m0 + deg


PN ( f )


. (32)

Thus sufficiency is proved.
If now (30) holds, then u = u PN ( f )/PN ( f ) is a rational function and, being inner, it has to be of the form (26).
Furthermore, the polynomial PN ( f ) should be divisible by

m1
j=1(1 −α j z). Therefore (28) holds and (31) follows.

This implies that (32) holds and (27) follows by virtue of (30), thus proving the necessity. �

Note that conditions (27), (28) imply the inequality N ≥ m0+m1 =: m. In particular, N = 0 only if m0 = m1 = 0,
that is, g is a scalar multiple of f . This is of course in agreement with the extremal property of outer functions, and
guarantees (in a trivial way) that (24) holds for all N ∈ N, and thus infinitely many times. The next theorem describes
all the cases in which the latter phenomenon occurs.

Theorem 3. Let f (z) =


∞

n=0 anzn and g(z) =


∞

n=0 bnzn be functions from H2 satisfying (4), with f being outer.
The set N of those positive integers N for which (24) holds is infinite if and only if (25), (26) hold and

f = qh, (33)

where

q(z) =

m1
j=1

(z − w j ) with w j = 1/α j , j = 1, 2, . . . , m1, (34)

and h is an outer “lacunary” analytic function with infinitely many gaps in its Fourier spectrum supp(ĥ) of length at
least m = m0 + m1. Moreover, N ∈ N if and only if

N − m + 1, . . . , N ∉ supp(ĥ). (35)

Proof. Sufficiency. Let g be defined by (25) and (26), and let (33) hold for the polynomial (34) of degree m1 and an
outer analytic function h satisfying (35) for some N . Then we have

PN ( f ) = PN (qh) = PN

q PN (h)


= q

N−m
n=0

γnzn

due to (33), (15), and (35). Therefore,

deg

PN ( f )


≤ m1 + N − m = N − m0.

Hence N ∈ N by virtue of Proposition 1.
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Necessity. By Proposition 1, g is given by (25), where the inner multiple (26), is such that (27), (28) hold for all
N ∈ N .

Labeling elements of N as an increasing sequence Nk , we thus have

PNk ( f ) = qhk, (36)

where polynomials hk satisfy

deg(hk) ≤ Nk − m. (37)

The function q is the same for all k as it is uniquely determined by (26).
Since PNk ( f ) → f in H2 as k → ∞, we have qhk → f . Therefore (hk)+ converges to f+/q+ in L2(T) (since

1/q+ is bounded on T), and consequently hk is convergent in H2. Let h be the limit. Letting k → ∞ in (36), we arrive
at (33). Since f is outer, the function h is such as well.

Let now N = Nk be an arbitrary element of N . Because of (33) and (36), we have

f − PN ( f ) = q(h − hk).

Since f − PN ( f ) is divisible by zN+1 and 0 is not the root of q, we have h − hk = zN+1h̃k for some analytic function
h̃k ∈ H2. Therefore h = hk + zN+1h̃k with deg(hk) ≤ N − m (see (37)) and this implies that the coefficients with
indices from {N − m + 1, N − m + 2, . . . , N } are omitted in the power expansion of h. Thus (35) holds and the
theorem is proved. �

Corollary 1. Let {N1, N2, . . .} ⊂ N be any infinite set. Then there exist functions f, g ∈ H2 where f is an outer
function such that

N
n=0

|an|
2

=

N
n=0

|bn|
2 (38)

if and only if N ∈ {N1, N2, . . .}.

Proof. Let q(z) = z − w with |w| > 1, and let h(z) =


∞

n=0 γnzn be an outer function from H2 such that γn = 0 if
and only if n ∈ {N1, N2, . . .} (the outerness of h can be achieved, for example, by making sure that |γ0| >


∞

n=1 |γn|).
Define f = qh and g(z) = (1 − wz)h(z). Then it follows from the proof of the theorem that (38) holds if and only if
N ∈ {N1, N2, . . .}. �
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