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As it is known, the existence of the Wiener–Hopf
factorization for a given matrix is a well-studied
problem. Severe difficulties arise, however, when
one needs to compute the factors approximately
and obtain the partial indices. This problem is
very important in various engineering applications
and, therefore, remains to be subject of intensive
investigations. In the present paper, we approximate
a given matrix function and then explicitly factorize
the approximation regardless of whether it has stable
partial indices. For this reason, a technique developed
in the Janashia–Lagvilava matrix spectral factorization
method is applied. Numerical simulations illustrate
our ideas in simple situations that demonstrate the
potential of the method.

1. Introduction
The Wiener–Hopf factorization of matrix functions

G(t) = G+(t)Λ(t)G−(t), t ∈ T, (1.1)

where G+ and G− along with their inverses are analytic,
respectively, inside and outside of the unit circle T in the
complex plane C, and the middle factor is a diagonal
matrix of the form

Λ(t) = diag[t�1 , t�2 , . . . , t�n ], �i ∈ Z, (1.2)

plays an important role in various branches of mathematics
and applied sciences. There is a numerous literature
devoted to the theory of this factorization and its
applications (e.g. [1–3], and references therein).

2020 The Author(s) Published by the Royal Society. All rights reserved.
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In contrast with the scalar situation, however, there is a lack of explicit computational methods
for constructing the factors in (1.1) even for general 2 × 2 matrices, especially in the cases where
the partial indices �i are different from zero, i.e. (1.2) is not the identity matrix Id. Among several
approaches to develop such a computational method we will single out the papers [4,5].

The Janashia–Lagvilava method is a relatively new algorithm for matrix spectral factorization
[6,7] which proved to be rather effective [8]. The matrix function (1.1) is positive definite a.e.
on T in this case, which implies that its partial indices are equal to zero. Furthermore, it can be
arranged that G− = (G+)∗ and, therefore, the spectral factorization has the form G = G+(G+)∗. The
essential components of the Janashia–Lagvilava method are the triangular factorization followed
by the appropriate approximation and the construction of unitary matrix-functions of a special
form. In the present paper, we attempt to apply these tools to the factorization of a certain type of
matrix-functions which are not positive definite. (We do not specify the classes to which functions
and their factors belong. It will be clear from the described procedures to what extent the process
works.)

Let

S(t) =
(

s11(t) s12(t)
s21(t) s22(t)

)
, (1.3)

t ∈ T := {z ∈ C : |z| = 1}, be a matrix function with a factorizable diagonal entry (without loss of
generality s11) and factorizable determinant

s11(t) = s+
11(t)tκ1 s−

11(t) and det S(t) =�+(t)tκ�−(t). (1.4)

One can readily observe that such S admits a triangular factorization

S(t) =

⎛⎜⎝ s+
11(t) 0

t−κ1 s21(t)
s−

11(t)
�+(t)
s+

11(t)

⎞⎟⎠(tκ1 0
0 tκ−κ1

)⎛⎜⎜⎜⎝
s−

11(t)
t−κ1 s12(t)

s+
11(t)

0
�−(t)
s−

11(t)

⎞⎟⎟⎟⎠ . (1.5)

Theorem 1.1. Let S be as in (1.3)–(1.5). Suppose that SN , N ≥ 1, is the following approximation of S:

SN(t) =

⎛⎜⎝s+
11(t) 0

ϕN(t)
�+(t)
s+

11(t)

⎞⎟⎠(tκ1 0
0 tκ−κ1

)⎛⎜⎝s−
11(t) ψN(t)

0
�−(t)
s−

11(t)

⎞⎟⎠ , (1.6)

where
ϕN(t) =

∑∞
k=−N

ck{ϕ}tk and ψN(t) =
∑N

k=−∞ ck{ψ}tk, (1.7)

ϕ(t) := t−κ1 s21(t)/s−
11(t), ψ(t) := t−κ1 s12(t)/s+

11(t) and ck{f } stands for the kth Fourier coefficient of a
function f . Then one can explicitly construct the Wiener–Hopf factorization of SN

SN(t) = S+
N(t)ΛN(t)S−

N(t). (1.8)

In the future, we hope to extend this theorem to n × n matrices, since the Janashia–Lagvilava
method works for matrices of arbitrary size. The main question for future work, however, arises
naturally: what are the relations between the partial indices of SN and S? So far, we can only
conjecture that

ΛN =Λ for N sufficiently large. (1.9)

To be more precise, we will formulate the following statement as:

Conjecture 1.2. Under the hypothesis of theorem 1.1, there exist such choices of the factors S+
N and S−

N
in (1.8) (as it is well-known unlike the spectral factorization, there is no uniqueness for these factors and
there is a certain freedom in their selection) that they converge as N → ∞.

The proof of this conjecture would guarantee that (1.9) holds as well. Preliminary numerical
simulations support this conjecture.
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2. Notation and preliminary observations
The Lebesgue space of p-integrable complex valued functions defined on T is denoted by Lp(T)
and

Hp = Hp(D) :=
{

f ∈A(D) : sup
r<1

∫ 2π

0
|f (r eiθ )|p dθ <∞

}
is the Hardy space of analytic functions in the unit disc D, 0< p<∞ (H∞ is the space of
bounded analytic functions). We assume that functions from Hp are naturally identified with
their boundary values and the latter class of functions is denoted by L+

p . A function f ∈ Hp is
called outer, denoted f ∈ HO

p , if

f (z) = c · exp

(
1

2π

∫ 2π

0

eiθ + z
eiθ − z

log
∣∣f (eiθ )

∣∣dθ

)
, |c| = 1.

Let P+ be the set of polynomials. The set of trigonometric polynomials is denoted by P , i.e.
f ∈P if f has only a finite number of non-zero Fourier coefficients. In particular, for integers
m ≤ n, let P[m:n] := {f ∈P : ck{f } = 0 whenever k<m or k> n} and, for a non-negative integer N,
let P+

N :=P[0:N], P−
N :=P[−N:0]. Obviously, f ∈P+

N ⇔ f ∈P−
N , where f is the complex conjugate of f .

In general, if S is any set of functions, then S = {f : f ∈ S}.
Let P+ and P−

0 be the projection operators defined on L2(T): for f (t) =∑∞
k=−∞ cktk,

P+[f ] =
∞∑

k=0

cktk, and P−
0 [f ] =

∞∑
k=1

c−kt−k, so that P+[f ] + P−
0 [f ] = f .

For a trigonometric polynomial p(z) =∑n
k=m ckzk, let

p̃(z) =
n∑

k=m

ckz−k. (2.1)

Note that p̃(t) = p(t) whenever t ∈ T.
For a rational function f with Laurent series expansion f (z) =∑∞

k=−n ckzk, n> 0, in some
neighbourhood of the point z = 0, let

V[f ](z) =
−1∑

k=−n

ckzk, V0[f ](z) =
0∑

k=−n

ckzk

and V+
0 [f ](z) =

∞∑
k=1

ckzk = f (z) − V0[f ](z).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.2)

If M is a matrix, then M denotes the matrix with complex conjugate entries and M∗ := M
T

.
Furthermore, Cd×d, Lp(T)d×d, etc. denote the set of d × d matrices with the entries from C, Lp(T),

etc. For a polynomial matrix P = (
∑n

k=m p{ij}
k tk)d

i,j=1 ∈ (P[m:n])d×d, let ‖P‖ = sup |p{ij}
k | and ‖P‖∞ =

supi,j ‖
∑n

k=m p{ij}
k tk‖∞.

A matrix function F ∈ Hp(D)d×d is called outer, denoted F ∈ HO
p (D)d×d, if its determinant belongs

to HO
p/d. A matrix function U ∈ L∞(T)d×d is called unitary if

U(t)U∗(t) = Id a.e., (2.3)

where Id stands for the d × d identity matrix.
For a matrix function G, which can be factorized in the form (1.1), (1.2), we write for partial

indices
PI(G) = (�1, �2, . . . , �n).

We will use the following theorem proved in [6] (see also Theorem 1 in [7] for n × n matrices).
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Theorem 2.1. For a matrix function

F(t) =
(

1 0
ϕ(t) f +(t)

)
∈ L2(T)2×2, (2.4)

where f + ∈ HO
2 and ϕ ∈P−

N , there exists a unique (up to a constant right factor) unitary matrix function
of the form

U(t) =
(
α+(t) β+(t)

−β+(t) α+(t)

)
, (2.5)

where α+, β+ ∈P+
N and det U(t) = 1, such that

F(t)U(t) ∈ L+
2 (T)2×2.

Remark 2.2. Note that the determinant of Φ+ := FU is an outer function, therefore

Φ+ ∈ HO
2 (D)2×2. (2.6)

Remark 2.3. An effective algorithm is provided in [6] (see also [7]) for construction of (2.5)
when (2.4) is given in terms of c−N{ϕ}, . . . , c−1{ϕ}, and c0{f +}, . . . , cN{f +}. Furthermore, one can
observe that if these coefficients are from any subfield F ⊂ C which is closed with respect to the
complex conjugation, then the coefficients of α+ and β+ in (2.5) belong to F as well.

Remark 2.4. For simplicity, the uniqueness condition

U(1) = I2 (2.7)

is applied when U is being constructed.

Remark 2.5. Application of theorem 2.1 to the matrix function

F(t) = F∗∗(t) =
(

1 ϕ(t)
0 f +(t)

)∗
,

yields the construction of a unitary matrix function

V(t) =
(
α−(t) −β−(t)
β−(t) α−(t)

)

such that α−, β− ∈P−
N , det V(t) = 1, and V(t)F∗(t) ∈ HO

2 (D)2×2.

3. Some auxiliary statements
We will use the following theorem which is implicitly proved in [9–11].

Theorem 3.1. Let

U(t) =
(
α+(t) −β+(t)
β+(t) α+(t)

)
, α+,β+ ∈P+

N , (3.1)

be a unitary matrix function with determinant 1 such that

|α+(0)| + |β+(0)|> 0. (3.2)

Then the partial indices of U are equal to 0 and there exists a (unique) Wiener–Hopf factorization of U
which has the following explicit form:

U(t) =
(
α+(t) φ−(t)α+(t) − β+(t)
β+(t) φ−(t)β+(t) + α+(t)

)(
1 −φ−(t)
0 1

)
, (3.3)

where φ− ∈P[−N:−1]. Furthermore (see (2.1) and (2.2)),

φ−(z) = −V[α̃+(z)/β+(z)] or φ−(z) = V[β̃+(z)/α+(z)] (3.4)
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if, respectively, β+(0) �= 0 or α+(0) �= 0.

Remark 3.2. Because of (3.2), at least one of the equations in (3.4) is applicable for computing
φ−. In particular, if β+(0) �= 0 and α̃+(z)/β+(z) =∑∞

k=−N ckzk in a (punctured) neighbourhood of
0, then

φ−(z) = − α̃
+(z)
β+(z)

−
∞∑

k=0

ckzk =: − α̃
+(z)
β+(z)

− A+(z). (3.5)

Formulae (3.4), however, might not be reliable in practical computations if both α+(0) and β+(0)
are very close to 0.

Remark 3.3. Although ‖U‖∞ ≤ 1, it may happen that L∞ norms of the factors in (3.3) are large.
Note, however, that for any φ+ ∈ L+∞(T), we can factorize U as

U(t) =
(
α+(t) φ(t)α+(t) − β+(t)
β+(t) φ(t)β+(t) + α+(t)

)(
1 −φ(t)
0 1

)
, (3.6)

where φ = φ− + φ+. When we incorporate theorem 3.1 in our algorithm, we need only the first
factor in (3.3) to belong to HO∞(D)d×d and we can relax the condition φ− ∈P[−N:−1] to P−

0 [φ] ∈
P[−N:−1]. This might be useful in reducing the norm of factors of U in (3.6).

Proof. Equation (3.3) can be checked by direct multiplication. All determinants of matrix
functions in (3.3) are equal to 1 and the right factor is anti-analytic. Hence the proof will be
completed as soon as we show that

φ−(z)α+(z) − β̃+(z) ∈P+
N and φ−(z)β+(z) + α̃+(z) ∈P+

N . (3.7)

To this end, observe first of all that both functions in (3.7) automatically belong to P[−N:N]. Because
of (3.5) (assuming that β+(0) �= 0; the proof is similar if α+(0) �= 0) we have that

φ−(z)α+(z) − β̃+(z) = − α̃
+(z)
β+(z)

α+(z) − β̃+(z) − A+(z)α+(z)

= − α̃
+(z)α+(z) + β+(z)β̃+(z)

β+(z)
− A+(z)α+(z)

= − 1
β+(z)

− A+(z)α+(z)

is analytic in the neighbourhood of 0. Consequently, the first inclusion in (3.7) holds.
For the second one, we have that

φ−(z)β+(z) + α̃+(z) = − α̃
+(z)
β+(z)

β+(z) + α̃+(z) − A+(z)β+(z) = −A+(z)β+(z)

is also analytic in the neighbourhood of 0 and hence (3.7) holds.
As for the uniqueness, let

U =Φ+
1

(
1 φ−

1
0 1

)
=Φ+

2

(
1 φ−

2
0 1

)
be two factorizations of U, where Φ+

1 ,Φ+
2 ∈ (P+)2×2 and φ−

1 ,φ−
2 ∈P[−N:−1]. Then(

1 φ−
1 − φ−

2
0 1

)
=
(

1 φ−
1

0 1

)(
1 φ−

2
0 1

)−1

= (Φ+
1 )−1Φ+

2 .

Consequently, φ−
1 − φ−

2 ∈P[−N:−1] ∩ P+ (since detΦ+
1 = 1) and hence φ−

1 − φ−
2 = 0. �

Remark 3.4. The simple form of explicit formulae for factorization of unitary matrix function
(3.1) provided above enables us to arrive at the following important conclusion: if F ⊂ C is any
subfield of complex numbers which is closed with respect to the complex conjugation, say F = Q,
and the coefficients of the entries of U belong to F, then the coefficients of the factors belong to
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the same field F. (Obviously, this phenomenon does not occur for general polynomial functions
even in the scalar case.) This property is used in the last section where some examples of the
numerical factorization are provided. On the other hand, if the matrices of type (3.1) arise during
the approximation processes as it is described in the paper, their coefficients can always be chosen
to be rational numbers.

The following lemma is proved in [12] (see also [13] and [2, p. 12]). We formulate it along with
its proof for the convenience of reference and because it is rather short and straightforward.

Lemma 3.5. Let n, m ∈ Z and h(t) =∑∞
k=−∞ cktk, where

∑∞
k=−∞ |ck|<∞, and let

T(t) =
(

tn h(t)
0 tm

)
. (3.8)

Then we have PI(T) = (n, m) if m ≤ n + 1 and

PI(T) =PI
(

tn hn,m(t)
0 tm

)
if m> n + 1,

where hn,m(t) =∑m−1
k=n+1 cktk.

Proof. We have(
1 h+(t)
0 1

)(
tn H(t)
0 tm

)(
1 h−(t)
0 1

)
=
(

tn h−(t)tn + H(t) + h+(t)tm

0 tm

)
.

Therefore, if

h+(t) :=
∞∑

k=0

ck+mtk, h−(t) :=
min(0, m−n−1)∑

k=−∞
ck+ntk, and H(t) =

{
0, if m ≤ n + 1

hn,m(t), if m> n + 1
,

then we have

H(t) + h−(t)tn + h+(t)tm = H(t) +
min(0, m−n−1)∑

k=−∞
ck+ntk+n +

∞∑
k=0

ck+mtk+m

= H(t) +
min(n, m−1)∑

k=−∞
cktk +

∞∑
k=m

cktk

=
∞∑

k=−∞
cktk = h(t).

Thus the lemma holds. �

The following simple algorithm presented in [12,13] can be used for explicit factorization of
triangular matrices (3.8) in a non-trivial case m> n + 1.

Theorem 3.6 ([13, §1]). Let

G(t) =
(

1 φ(t)
0 tm

)
, (3.9)

where m ∈ N and φ ∈P+
m−1. Then the Wiener–Hopf factorization (1.1) of (3.9) can be written in the form

G+ = (−1)�−1

(
t−ν� (B�−1 − φA�−1) tν�−m(−B� + φA�)

−tm−ν� A�−1 tν� A�

)
,

G− =
(

A� B�

A�−1 B�−1

)
, Λ(t) = diag[tν� , tm−ν� ],
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where Ak and Bk are defined by the following recursive formulae:

A−1 = 1, A0 =ψ0, Ai =ψiAi−1 + Ai−2

B−1 = 0, B0 = 1, Bi =ψiBi−1 + Bi−2, i = 1, 2, . . .

φ0 = φ, φk+1 = V+
0 [1/φk], ψk = V0[1/φk],

and � and ν� are defined by the following relations: let qk denote the order of the pole of ψk at the point t = 0
(qk = ∞ if φk ≡ 0). Then � is the smallest integer for which 2(q0 + q1 + · · · + q�) + q�+1 ≥ m and

ν� = q0 + q1 + · · · + q� .

Remark 3.7. Although theoretically sound and simple, the algorithm based on theorem 3.6
is sensitive to round-off errors. This flaw is in the nature of the problem as partial indices are
equal to the ranks of certain Toeplitz matrices in this situation [14]. The algorithm works perfectly,
however, if the Fourier coefficients of φ are rational and computations are performed in symbolic
arithmetic. The simplicity of formulae in theorem 3.6 allows us to factorize matrices with a large
degree of m by symbolic tools. This approach, however, has its own limitations when the growth
of nominators and denominators in fractions become uncontrolled.

4. Computational procedures
The Wiener–Hopf factorization of SN will be performed in several steps. We assume that f +(t) :=
�+(t)/s+

11(t) ∈ HO
2 , f −(t) :=�−(t)/s−

11(t) ∈ HO
2 , and ϕ,ψ ∈ L2(T), so that the convergence in (1.7)

holds in L2-norm.
Step 1: Let ϕ±

N := P±[ϕN] and ψ±
N := P±[ψN]. Note the ϕ+

N and ψ−
N are independent of N because

of definition (1.7). Therefore, we assume ϕ+ = ϕ+
N and ψ− =ψ−

N . Then

SN =
(

s+
11 0
ϕ+ 1

)(
1 0
ϕ−

N f +

)(
tκ1 0
0 tκ−κ1

)(
1 ψ+

N
0 f −

)(
s−

11 ψ−
0 1

)
, (4.1)

Step 2: After applying theorem 2.1 (and remark 2.5), we get from (4.1)

SN(t) =
(

s+
11 0
ϕ+ 1

)
Φ+

N (t)U∗
N(t)

(
tκ1 0
0 tκ−κ1

)
V∗

N(t)Ψ−
N (t)

(
s−

11 ψ−
0 1

)
, (4.2)

where

UN(t) =
(
α+

N(t) β+
N (t)

−β+
N (t) α+

N(t)

)
and VN(t) =

(
α−

N(t) −β−
N (t)

β−
N (t) α−

N(t)

)
(4.3)

are unitary matrix functions with determinant 1 and α±
N ,β±

N ∈P±
N , while (see (2.6))

Φ+
N ∈ HO

2 (D)2×2 and Ψ−
N ∈ HO

2 (D)2×2.

Hence the factorization problem for SN is reduced to the Wiener–Hopf factorization of

WN(t) := U∗
N(t)Λ0(t)V∗

N(t), (4.4)

where UN and VN are defined by (4.3) and Λ0(t) = diag(tκ1 , tκ−κ1 ).
Step 3: According to (4.4),

WN(t) =
(
α+

N(t) −β+
N (t)

β+
N (t) α+

N(t)

)(
tκ1 0
0 tκ−κ1

)(
α−

N(t) β−
N (t)

−β−
N (t) α−

N(t)

)
. (4.5)
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First, we group non-diagonal unitary matrices together

WN(t) =
(
α+

N(t) −β+
N (t)

β+
N (t) α+

N(t)

)(
α−

N(t) β−
N (t)t2κ1−κ

−β−
N (t)tκ−2κ1 α−

N(t)

)(
tκ1 0
0 tκ−κ1

)

=:

(
aN(t) −bN(t)
bN(t) aN(t)

)(
tκ1 0
0 tκ−κ1

)
,

where
aN(t) = α+

N(t)α−
N(t) + β+

N (t)β−
N (t)tκ−2κ1 ∈P[−N+ν−:N+ν+]

and
bN(t) = β+

N (t)α−
N(t) − α+

N(t)β−
N (t)tκ−2κ1 ∈P[−N+ν−:N+ν+].

Here, ν− := min(0, κ − 2κ1), ν+ := max(0, κ − 2κ1).
Let N be the least positive integer for which both functions tN aN(t) and tN bN(t) are

polynomials (most probably N = N + max{0, 2κ1 − κ}). Then we have

WN(t) =
(

tN aN(t) −t−N bN(t)
tN bN(t) t−N aN(t)

)(
tκ1−N 0

0 tκ−κ1+N

)
. (4.6)

We emphasize that tN aN(t), tN bN(t) are polynomials and at least one of these functions differs
from zero at the origin.

Step 4: According to theorem 3.1, matrix function (4.6) can be factorized as

WN(t) =
(

tN aN(t) tNφ−
N (t)aN(t) − t−N bN(t)

tN bN(t) tNφ−
N (t)bN(t) + t−N aN(t)

)(
1 −φ−

N (t)
0 1

)(
tκ1−N 0

0 tκ−κ1+N

)

=:Φ+
0 (t)

(
tκ1−N −φ−

N (t)tκ−κ1+N

0 tκ−κ1+N

)
.

Thus, due to (4.2), (4.4) and (4.6), we have

SN(t) =
(

s+
11 0
ϕ+ 1

)
Φ+

N (t)Φ+
0 (t)

(
tκ1−N −φ−

N (t)tκ−κ1+N

0 tκ−κ1+N

)
Ψ−

N (t)

(
s−

11 ψ−
0 1

)
. (4.7)

Step 5: Using lemma 3.5 and theorem 3.6, we can explicitly factorize the middle triangular
matrix in (4.7). Indeed(

tκ1−N −φ−
N (t)tκ−κ1+N

0 tκ−κ1+N

)
= tκ1−N

(
1 −φ−

N (t)tκ−2(κ1−N )

0 tκ−2(κ1−N )

)
= tκ1−N × T+(t) diag[tν� , tκ−2(κ1−N )−ν� ]T−(t)

= T+(t) diag[tν�+κ1−N , tκ−(κ1−N )−ν� ]T−(t).

Therefore, the factorization of (4.7) is completed.
To summarize, the factorization of SN is reduced to factorization of WN and this can be done

in O(N2) operations. However, as it is observed by numerical simulations presented in the next
section, the Fourier coefficients of intermediate functions φ−

N may increase rapidly together with
N. This might influence the accuracy of the final result. Remark 6 describes some suggestions on
how to deal with this problem in the future.

5. Numerical simulations
The proposed algorithm works most efficiently in situations where off-diagonal entries t−κ1 s21/s

−
11

and t−κ1 s12/s
+
11 in factorization (1.5) have a small number of, respectively, negative and positive

indexed non-zero Fourier coefficients, i.e. in the situations where c−k{s21/s
+
11} = 0 and ck{s12/s

−
11} =
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0 whenever k>N for a reasonably small positive integer N. As an illustrative example, we
demonstrate the factorization of Laurent polynomial matrix S(t) =[

−18t−3 + 39t−2 − 57t−1 + 84 − 60t + 42t2 − 24t3 12t−1 − 45t + 75t2 − 117t3 + 99t4 − 36t5

−9t−5 + 63t−4 − 62t−3 + 65t−2 − 56t−1 + 18 − 6t −21t−3 − 11t−2 − 39t−1 + 153 − 117t + 15t2 + 3t3

]
which belongs to the above class since its lower-upper factorization of form (1.5) is S(t) =[

6 − 9t + 9t2 − 12t3 0
3t−2 − 19t−1 + 6 − 3t −9 + 3t + 3t2 + 12t3

]

×
[
−3t−3 + 2t−2 − 2t−1 + 2 2t−1 + 3 − 6t + 3t2

0 3t−3 − t−2 − 2t−1 + 1

]
.

We can factorize the matrix even though it has non-stable partial indices. After performing Steps
1 and 2, we get (see remark 2.3) S(t) =[

108
53 + 81

53 t − 471
106 t2 + 198

53 t3 − 1071
106 t4 + 66

53 t5 − 99
53 + 567

106 t − 387
53 t2 + 909

106 t3 − 324
53 t4 + 72

53 t5

− 876
53 + 695

106 t − 375
53 t2 + 429

106 t3 − 1203
106 + 408

53 t + 873
106 t2 + 234

53 t3

]

×
[
− 11

106 t−2 + 54
265 t−1 + 297

530 t + 18
53 t2 33

106 t−2 − 162
265 t−1 + 99

530 t + 6
53 t2

− 6
53 t−2 − 99

530 t−1 + 162
265 t − 33

106 t2 18
53 t−2 + 297

530 t−1 + 54
265 t − 11

106 t2

]

×
[
−2.7t−5 + 1.8t−4 − 2.1t−3 + 2t−2 − 0.2t−1 + 0.2 2.7t−3 + 2.4t−2 − 6.7t−1 + 3.6

−0.9t−5 + 0.6t−4 + 0.3t−3 + 0.6t−1 − 0.6 0.9t−3 + 0.8t−2 + 0.1t−1 − 0.8

]

and we have to factorize the middle matrix which we denote by W as it is done in (4.5). To avoid
the round-off errors, which might influence the accurate computation of partial indices by the
algorithm depending on theorem 3.6, we use the symbolic computations and obtain

W(t) =
[

33
53 + 20

53 t − 4
5 − 891

530 t2 − 54
53 t3

36
53 − 55

159 t 11
15 − 486

265 t2 + 99
106 t3

][
t 0
0 t−1

][
− 1

6 t−3 1
2 t−3 + 3

− 1
3 1

]

(see remarks 3.4 and 3.7). The final result of the factorization is

S(t) =
[

6t − 9t2 + 9t3 − 12t4 −3 + 2.7t − 1.8t2 − 12.9t3 + 27.9t4 − 24.3t5 + 32.4t6

−18 + 7t + t2 4.9 + 0.4t + 60.3t2 − 18.9t3 − 2.7t4

][
t 0
0 t−1

]

×
[

0.5t−6 − 91
30 t−5 + 32

15 t−4 + 17
30 t−3 + 1.8t−1 − 1.8 7

6 t−4 + 1.7t−3 + 2.4t−2 + 0.3t−1 − 2.4

t−3 − 2
3 t−2 + 2

3 t−1 − 2
3

7
3 t−1 − 2

]
.

The application of symbolic computations reveals that one can factorize (and obtain the result in
the symbolic form) any matrix function which has the following form:

S(t) =
(

f +
11 0

Qf +
21 f +

22

)(
f −
11 Pf −

12
0 f −

22

)
, (5.1)

where f +
11, f +

22, f −
11, f −

22 ∈ HO
2 , f +

21, f −
12 ∈ H2, P(t) = p0 + p1t + p2t2 and Q(t) = q0 + q1t−1 + q2t−2

(assuming that the Fourier coefficients of these functions are real and the coefficients pk and
qk are parameters; see the electronic supplementary material). Furthermore, depending on this
factorization, one can formulate the sufficient conditions for (5.1) to have partial indices (2, −2)

c−1{Q f +
21(f +

22)−1} = 0, c1{P f −
12(f −

22)−1} = 0 and c−2{Q f +
21(f +

22)−1} · c2{P f −
12(f −

22)−1} = −1,

and the sufficient conditions to have partial indices (1, −1):

c−1{Q f +
21(f +

22)−1} �= 0, c1{P f −
12(f −

22)−1} = 0 and c−2{Q f +
21(f +

22)−1} · c2{P f −
12(f −

22)−1} = −1,
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or

c−1{Q f +
21(f +

22)−1} = 0, c1{P f −
12(f −

22)−1} �= 0,

c−2{Q f +
21(f +

22)−1} · c2{P f −
12(f −

22)−1} = −1,

and c1{P f −
12(f −

22)−1} �= c−2{Q f +
21(f +

22)−1} − c2{P f −
12(f −

22)−1}
which most likely are necessary as well (see the electronic supplementary material).

In the next example, we test empirically conjecture 1.2 formulated in the Introduction in the
simplest possible situation. For this reason, we take random Laurent polynomial matrices S of
degree 1 with zero partial indices and κ1 = 0 in (1.4). More specifically, we take two random
matrices Ai(t) = Ai + Bit, i = 1, 2, where entries of matrices Ai, Bi ∈ R2×2 are randomly chosen from
the interval [−1; 1]. Then we perform the spectral factorization of the matrices Si(t) = Ai(t)A∗

i (t)
as Si(t) = S+

i (t)S−
i (t), i = 1, 2, where S−

i = (S+
i )∗, according to the algorithm developed in [8] and

construct
S(t) = S+

1 (t)S−
2 (t). (5.2)

Representation (5.2) is a Wiener–Hopf factorization of S and we are guaranteed that partial
indices of S are equal to zero in this way. We further consider only such random matrices S for
which the index κ1 of s11 is equal to zero.

After constructing S we consider its triangular factorization and the approximation SN , N ≥ 1,
as it is described in theorem 1.1. When we factorize SN according to the algorithm described in
the paper, we get

SN(t) = S+
N(t)S−

N(t). (5.3)

We are not guaranteed, however, that S±
N → S± as N → ∞. Furthermore, S±

N might not be
convergent at all.

The situation can be resolved by introducing normalizing factors KN and representing
factorization (5.3) in the form

SN(t) = S+
N(t)KN · K−1

N S−
N(t).

For this reason, we do the following: Let

SN(t) = σ+
N (t)WN(t)σ−

N (t)

be the representation of SN in form (4.2) (see also (4.4)) and let (see (1.6))

M = lim
N→∞

(
s+

11(1) 0
ϕN(1) �+(1)

s+
11(1)

)
=
(

s+
11(1) 0
ϕ(1) �+(1)

s+
11(1)

)
.

Then limN→∞ σ+
N (1) = M also since we have UN(1) = I2 (see (2.7)) for the additional factor UN .

Next, we invoke the fact that WN(1) = I2 and define the matrix KN in such a way that

W+
N(1)KN = I2,

where
WN(t) = W+

N(t)W−
N(t)

is the factorization of WN computed according to the steps of the proposed algorithm. After
introducing such normalization, the factorization of SN has the form

SN(t) = σ+
N (t)W+

N(t)KN · K−1
N W−

N(t)σ−
N (t) =: S+

N(t)KN · K−1
N S−

N(t).

Let
S(t) = S+

1 (t)
(
S+

1 (1)
)−1M · M−1S+

1 (1)S−
2 (t) =: S+(t)S−(t)

(see (5.2)) be the normalized factorization of S which has the property that S+(1) = M. We should
expect that

S+
N(t)KN → S+(t).
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Figure 1. Two typical ErN(S), N = 2, 3, . . ., sequences along with ‖φ−
N ‖ and ‖S − SN‖∞ norms. (Online version in colour.)

Table 1. Number n of matrices S for which inf1<N≤100 ErN(S) ∈ [10−l , 10−m).

[10−l , 10−m) 10−8, 10−7 10−7, 10−6 10−6, 10−5 10−5, 10−4 10−4, 10−3 10−3, 10−2

n 6 48 37 5 2 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Number n of matrices S for which N0(S) ∈ [l,m].

[l,m] 5–8 9–12 13–17 18–25 26–35 36–55 56–75 75–99 100≤
n 9 19 20 17 15 8 5 2 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since we know that factors of S are matrix polynomials of the same degree as S (see [15]), we
discard extra powers of computed factors S+

N and S−
N , the coefficients of which are very close to 0

anyway. In other words, it is assumed that S+
N and S−

N are of degree 1 while formally their degrees
are 2N + 1 and N + 1, respectively (according to the computational steps of the algorithm).

We checked empirically the norms

ErN(S) := ‖S+
N(t)KN − S+(t)‖, where N = 2, 3, . . . , 100, (5.4)

for 100 random matrices S. For each S, we have

rmin := 1.0 × 10−8 ≤ inf
1<N≤100

ErN(S) ≤ rmax := 7.3 × 10−3 (5.5)

which is rather close to 0 (more informative data about the distribution of inf1<N≤100 ErN(S) in
the range [rmin, rmax] is given in table 1). Furthermore, ErN(S) decreases monotonically until N
reaches some critical value N0 = N0(S) which differs from matrix to matrix. (The distribution of
N0(S) in the range [2, 100] is given in table 2. On very rare occasions, it has been observed that the
monotonicity of ErN(S), n = 2, 3, . . . , N0, fails because of large outliers. This is due to difficulties
arising during the computations mentioned in remark 3.2.) However, after N surpasses N0, the
sequence ErN(S), N = N0 + 1, . . ., increases and the computed results are repelled from their
correct values. This can be explained by the fact that the coefficients of φ−

N in the factorization of
WN (according to Step 4) become very large and the standard Matlab arithmetic on such numbers
is unreliable. (Indeed, it is empirically observed that the increase in error starts for those values
of N for which these coefficients approach the range [1013, 1015]; see the dashed lines in figure 1.)
Nevertheless, the closeness to zero of (5.4) for reasonable values of N suggests that conjecture 1.2
formulated in Introduction might be true.
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Two samples from the sequences ErN(S), n = 2, 3, . . . , 100, which are more or less typical
representatives, along with corresponding values of norms ‖φ−

N‖ and ‖S − SN‖∞ are plotted in
figure 1. Note that ‖S+

N(t)KN − S+(t)‖ is as small as ‖S − SN‖∞ within the range N ∈ [2, N0].
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