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THE QUANTUM GROUP AND HARPER EQUATION
ON A HONEYCOMB LATTICE

M. Eliashvili, G. Tsitsishvili, and G. Japaridze UDC 512.5

Abstract. The tight-binding model of quantum particle on a honeycomb lattice is investigated in the

presence of homogeneous magnetic field. The one-particle Hamiltonian is expressed in terms of the

generators of the quantum group Uq(sl2). The corresponding Harper equation is rewritten as a system

of two coupled functional equations in the complex plane. The system is shown to exhibit certain

symmetry that allows one to resolve the entanglement, and the basic single equation determining the

eigenvalues and eigenstates is obtained. Equations specifying the roots of eigenstates in the complex

plane are found.

In 1994, Wiegmann and Zabrodin pointed out (see [1]) that the tight-binding Hamiltonian on a
square lattice is closely related to the quantum group Uq(sl2) (for mathematical treatment, see [2]).
Here we develop a similar approach and reveal the novel symmetry for a honeycomb lattice (see [4]).

We study the tight-binding model on a honeycomb lattice with the nearest neighboring hoppings
only. In the presence of a homogeneous magnetic field, the Hamiltonian under consideration has the
form

H =
∑

n,r

[
e−iγn(r)c†B(r + δn)cA(r)

]
+ h.c., (1)

where the sum with respect to r is implied over the sites r = j1a1 + j2a2. Here c†A(r) (cA(r))

and c†B(r + δn) (cB(r + δn)) are the particle creation (annihilation) operators on the site r of the

sublattice A and on the site r + δn of the sublattice B, respectively.
The magnetic field B is included in the Hamiltonian via the Peierls phases

γn(r) =
e

�

r+δn∫

r

A dl, (2)

where the vector-potential is taken in the Landau gauge A = (−By, 0).
We consider

Φ

Φ0
=

ν

N
, (3)

where ν and N are coprime integers, and concentrate on the odd values of N .

Then the Hamiltonian (1) can be presented as follows:

H =

∫

MBZ

Ψ†(k)H(k)Ψ(k) dk, (4a)

H(k) =

⎧
⎪⎪⎩ 0 I+X−(k)

I+X+(k) 0

⎫
⎪⎪⎭ , (4b)

where Ψ(k) is a (2N)-component column and the integration covers the magnetic Brillouin zone, which
is the N ’th part of the first Brillouin zone.
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Fig. 1. Honeycomb lattice (left) consists of two Bravais sublattices A and B.
The A-sites are located at r = j1a1 + j2a2, where a1,2 =

1
2 (±1,

√
3)a, and j1,2

are integers. The three B-sites nearest to a given A-site are located at r + δ1,2,3.

The (N ×N)-matrices X±(k) are given by

X+(k) = e−ika1β†Q+ e−ika2Qβ, (5a)

X−(k) = e+ika1Q†β + e+ika2β†Q†, (5b)

where

β =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

and

Q = diag
(
q1, q2, . . . , qN

)
(7)

with

q = e+iπ(ν/N). (8)

The operators X± satisfy the following relations of the quantum group Uq(sl2):
[
X+,X−] = i2(q − q−1)(K −K−1), (9a)

KX±K−1 = q±2X±, (9b)

where

K(k) = qe+ik(a1−a2)QβQ†β, (10a)

K−1(k) = q−1e−ik(a1−a2)β†Qβ†Q†. (10b)

For every complex number q �= ±1, the quantum group Uq(sl2) possesses the highest weight rep-
resentations similar to those of ordinary sl2. Furthermore, when q is the root of unity, the so-called

cyclic representation also exists.
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We study the eigenvalue equation

⎧
⎪⎪⎩ 0 I+X−(k)

I+X+(k) 0

⎫
⎪⎪⎭

⎧
⎪⎪⎩ ξ

ζ

⎫
⎪⎪⎭ = E

⎧
⎪⎪⎩ ξ

ζ

⎫
⎪⎪⎭ , (11)

which in the functional representation has the form

ξ(z) + e+
i
2
kxaq+

1
2 zξ(qz) + e−

i
2
kxaq−

1
2 zξ(q−1z) = Eζ(z), (12a)

ζ(z) + e+
i
2
kxaq−

1
2 z−1ζ(qz) + e−

i
2
kxaq+

1
2 z−1ζ(q−1z) = Eξ(z). (12b)

If any pair (ξ, ζ) is the eigenvector corresponding to the eigenvalue E = λ, then the pair (ξ,−ζ) is the
eigenvector corresponding to the eigenvalue E = −λ.

The main disadvantage of (12) is the entanglement of ξ(z) and ζ(z). This difficulty has been
overcome in [3] by “squaring up” Eqs. (11). Due to the “square up” trick, some portion of the
information encoded in (12) is lost. Here we propose an essentially different approach allowing us to

avoid this drawback (disadvantage) of the “square up” procedure.
The key point of our consideration is the observation that the system (12) is invariant under the

following transformation:

ξ(z) −→ (iz)ωζ(−z−1), (13a)

ζ(z) −→ (iz)ωξ(−z−1), (13b)

where the parameter ω is defined by qωe+ikxa = −1. This symmetry allows us to express solutions
of (12) as

⎧
⎪⎪⎩ ξ(z)

ζ(z)

⎫
⎪⎪⎭ =

⎧
⎪⎪⎩ f(z)

±(iz)ωf(−z−1)

⎫
⎪⎪⎭ , (14)

where f(z) satisfies the equation

f(z) + e+
i
2
kxaq+

1
2 zf(qz) + e−

i
2
kxaq−

1
2 zf(q−1z) = λ(iz)ωf(−z−1). (15)

The signs ± in (14) correspond to E = ±λ, respectively.

Setting e+
i
2
kxa = iq

1
2 , we reduce Eq. (15) to the form

f(z) + iqzf(qz)− iq−1zf(q−1z) = λz2Jf(−z−1), (16)

which admits polynomial solutions and generates N eigenvalues λ1, . . . , λN .
Since f(z) is a polynomial, we can write

f(z) =
2J∏

j=1

(z − zj), (17)

where z1, z2, . . . , z2J are the zeros of f(z).
Substituting (17) into (16) we find the following result:

izn =

2J∏

j=1

1 + qznzj
1 + znzj

−
2J∏

j=1

1 + q−1znzj
1 + znzj

, (18)
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Fig. 2. Typical distribution of the zeroes zn on the complex plane for
Φ

Φ0
=

204

307
≈ 2

3
.

which is the honeycomb analog of the Bethe ansatz equation obtained in [1] for a square lattice,

λ =
2J∏

j=1

zj , (19)

λ2 = 1 + i
(
q − q−1

) 2J∑

j=1

zj , (20)

2J∑

j=1

(
zj +

1

zj

)
= iq +

1

iq
. (21)

Thus, we have derived the relation among an eigenvalue and the roots of the corresponding poly-
nomial. The set of roots is determined by (18). Once the roots of a polynomial are known, the
corresponding eigenvalue can be calculated using any of (19) and (20). Relation (21) represents the

“sum rule.”
Note that the aforementioned invariance of (12) may be interpreted in terms of special conformal

transformation

z −→ w = w(z) = −1

z
. (22)

Under this conformal map a quasi-primary field Φ(z) transforms as follows:

Φ(z) −→ Φ′(w) =
(dw
dz

)−h
Φ(z), (23)

where h is the corresponding conformal weight.
Employing the results of numerical calculations, we present distributions of the zeroes on the com-

plex plane (see Fig. ??).
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