Proceedings of A. Razmadze
Mathematical Institute
Vol. 133 (2003), 1-5

# ON ONE ANALOGUE OF LEBESGUE THEOREM ON THE DIFFERENTIATION OF INDEFINITE INTEGRAL FOR FUNCTIONS OF SEVERAL VARIABLES 

O. DZAGNIDZE AND G. ONIANI


#### Abstract

It is proved that an indefinite $n$-tuple integral of a summable on the unit $n$-dimentional cube function is differentiable almost everywhere, moreover, it has a strong gradient almost everywhere.    узлщдงь.


## 1. Definitions and Notation

Let us assume that $L(0,1)^{n}=\left\{f \in L\left(\mathbb{R}^{n}\right): \operatorname{supp} f \subset(0,1)^{n}\right\}$. The indefinite integral of a function $f \in L(0,1)^{n}$ denote by $F_{f}$, i.e., for every point $x=\left(x_{1}, \ldots, x_{n}\right)$ from $(0,1)^{n}$

$$
F_{f}(x)=\int_{\left(0, x_{1}\right) \times \cdots \times\left(0, x_{n}\right)} f
$$

For $t \in \mathbb{R}^{n-1}, \tau \in \mathbb{R}$ and $i \in \overline{1, n}$ denote by $(t, \tau)^{i}$ the point in $\mathbb{R}^{n}$ for which $(t, \tau)_{j}^{i}=t_{j}$ if $1 \leq j<i,(t, \tau)_{i}^{i}=\tau$ and $(t, \tau)_{j}^{i}=t_{j-1}$ if $i<j \leq n$.

Let a function $f$ is defined on $(0,1)^{n}, \tau \in \mathbb{R}$ and $i \in \overline{1, n}$. Denote by $f_{\tau, i}$ the function defined on $(0,1)^{n-1}$ by the equality

$$
f_{\tau, i}(t)=f\left((t, \tau)^{i}\right), \quad t \in(0,1)^{n-1}
$$

Denote for $n \geq 2$ and $x \in(0,1)^{n}$

$$
Q_{1}(x)=\left(0, x_{2}\right) \times \cdots \times\left(0, x_{n}\right), Q_{n}(x)=\left(0, x_{1}\right) \times \cdots \times\left(0, x_{n-1}\right) ;
$$

and for $n \geq 3, x \in(0,1)^{n}, 2 \leq i \leq n-1$

$$
Q_{i}(x)=\left(0, x_{1}\right) \times \cdots \times\left(0, x_{i-1}\right) \times\left(0, x_{i+1}\right) \times \cdots \times\left(0, x_{n}\right) .
$$

[^0]Let $n \geq 2$ and let $f \in L(0,1)^{n}$. By virtue of Fubini theorem for a.e., $x \in(0,1)^{n}$ we have that $f_{x_{i}, i} \in L(0,1)^{n-1}$ for every $i \in \overline{1, n}$, thus for a.e., $x \in(0,1)^{n}$ it makes sense the integrals $\int_{Q_{i}(x)} f_{x_{i}, i}, i \in \overline{1, n}$.

For $n \geq 2, h \in \mathbb{R}^{n}$ and $i \in \overline{1, n}$ denote by $h(i)$ the point in $\mathbb{R}^{n}$ such that $h(i)_{j}=h_{j}$ for every $j \in \overline{1, n} \backslash\{i\}$ and $h(i)_{i}=0$.

Let $n \geq 2$ and $f$ be a function defined in a neighborhood of a point $x \in \mathbb{R}^{n}$.If for $i \in \overline{1, n}$ there exists the limit

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x+h(i))}{h_{i}}
$$

then let us call its value as the $i$-th strong partial derivative of $f$ at $x$ and denote it by $D_{[i]} f(x)$.If $f$ has finite $D_{[i]} f(x)$ for every $i \in \overline{1, n}$ then let us say that there exists a strong gradient of $f$ at $x$ or $f$ has a strong gradient at $x$.

It is not difficult to verify that if a function $f$ has a strong gradient at a point $x$ then it is differentiable at $x$, and the converse assertion is not true:the function $f\left(x_{1}, x_{2}\right)=\left|x_{1} x_{2}\right|^{\frac{2}{3}}$ is differentiable at the point $(0,0)$, but $\bar{D}_{[1]} f(0,0)=\bar{D}_{[2]} f(0,0)=+\infty$ (see [1] for details). Thus the condition of differentiability at the fixed point is weaker then the condition of the existence of a strong gradient in the same point. Note that the same conclusion remains true even while comparison on the sets of positive measure, namely, according [2] there exists a continuous function such that the set of all points at which $f$ is differentiable but does not have a strong gradient is of full measure.

## 2. Result

According to the well-known Lebesgue theorem for every $f \in L(0,1)$ its indefinite integral $F_{f}$, at almost every point $x \in(0,1)$, is differentiable and $F_{f}^{\prime}(x)=f(x)$.

The following statement is a multidimensional analogue of Lebesgue theorem.

Theorem. For every $n \geq 2$ and $f \in L(0,1)^{n}$ the indefinite integral of $f$, at almost every point $x \in(0,1)^{n}$, is differentiable, moreover, has a strong gradient and $D_{[i]} F_{f}(x)=\int_{Q_{i}(x)} f_{x_{i}, i}$ for every $i \in \overline{1, n}$.

This theorem in two-dimensional case was proved in [1].

## 3. One Lemma

For $x \in \mathbb{R}^{2}$ denote by $\mathbb{I}(x)$ the collection of all two-dimensional intervals containing $x$ and for $I \in \mathbb{I}(x)$ by $\delta(I)$ denote the smallest among lengths of its sides.

The proof of Theorem is based on Lebesgue theorem and on the following statement that was established in [1](see also [3] for more general result)

Lemma. Let $f \in L\left(\mathbb{R}^{2}\right)$. Then for almost every $x \in \mathbb{R}^{2}$

$$
\lim _{I \in \mathbb{I}(x) \operatorname{diam}} \frac{1}{\delta \rightarrow 0} \int_{I}|f|=0 .
$$

## 4. Proof of Theorem

For any $i \in \overline{1, n}$ let us show that $D_{[i]} F_{f}(x)=\int_{Q_{i}(x)} f_{x_{i}, i}$ for almost every $x \in(0,1)^{n}$. Consequently, Theorem will be proved. For the simplicity of entries let us consider the case $i=n$.

For the numbers $a$ and $b$ by $J(a, b)$ denote the segment $[\min (a, b)$, $\max (a, b)]$.

Let $x \in(0,1)^{n}, h \in \mathbb{R}^{n},\left|h_{1}\right|<1, \ldots,\left|h_{n}\right|<1$ and $x+h \in(0,1)^{n}$. It is easy to check that

$$
\begin{align*}
& \frac{F_{f}(x+h)-F_{f}(x+h(n))}{h_{n}}=\frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}} \int_{Q_{n}(x+h) \times J\left(x_{n}, x_{n}+h_{n}\right)} f= \\
& =\frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}} \int_{Q_{n}(x) \times J\left(x_{n}, x_{n}+h_{n}\right)} f+ \\
& +\frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}}\left(\int_{Q_{n}(x+h) \times J\left(x_{n}, x_{n}+h_{n}\right)} f \int_{Q_{n}(x) \times J\left(x_{n}, x_{n}+h_{n}\right)} f\right)= \\
& =\eta_{1}+\eta_{2} ;  \tag{1}\\
& \eta_{2} \leq \frac{1}{\left|h_{n}\right|} \int_{\left(Q_{n}(x+h) \times J\left(x_{n}, x_{n}+h_{n}\right)\right) \Delta\left(Q_{n}(x) \times J\left(x_{n}, x_{n}+h_{n}\right)\right)}|f|= \\
& =\frac{1}{\left|h_{n}\right|} \int_{\left(Q_{n}(x+h) \Delta Q_{n}(x)\right) \times J\left(x_{n}, x_{n}+h_{n}\right)}|f|=\eta_{3} ;  \tag{2}\\
& \left(Q_{n}\left(x+h_{n}\right) \Delta Q_{n}(x)\right) \times J\left(x_{n}, x_{n}+h\right) \subset \bigcup_{j=1}^{n-1} S_{j}(x, h), \tag{3}
\end{align*}
$$

where $S_{j}(x, h)=\left\{y \in \mathbb{R}^{n}: y_{n} \in J\left(x_{n}, x_{n}+h_{n}\right), y_{j} \in J\left(x_{j}, x_{j}+h_{j}\right)\right.$; $\left.y_{k} \in\left(0, x_{k}+1\right), k \in \overline{1, n} \backslash\{n, j\}\right\} ;$

$$
\begin{equation*}
\eta_{3} \leq \sum_{j=1}^{n-1} \frac{1}{\left|h_{n}\right|} \int_{S_{j}(x, h)}|f| . \tag{4}
\end{equation*}
$$

Let us prove that

$$
\lim _{h \rightarrow 0} \frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}} \int_{Q_{n}(x) \times J\left(x_{n}, x_{n}+h_{n}\right)} f=\int_{Q_{n}(x)} f_{x_{n}, n}
$$

for almost every $x \in(0,1)^{n}$ and for any $j \in \overline{1, n-1}$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h_{n}} \int_{S_{j}(x, h)}|f|=0 \tag{5}
\end{equation*}
$$

for almost every $x \in(0,1)^{n}$. Therefore taking into account (1)-(4) we come to the validity of Theorem.

Due to Fubini theorem there is a set $E \subset \mathbb{R}$ with full measure such that for any $t \in E$ the function $\mathbb{R}^{n-1} \ni\left(r_{1}, \ldots, r_{n-1}\right) \mapsto f\left(r_{1}, \ldots, r_{n-1}, t\right)$ is summable on $\mathbb{R}^{n-1}$. So for given $y \in(0,1)^{n-1}$ we can consider the function $g_{y}$ defined as follows: $g_{y}(t)=0$ for $t \in \mathbb{R} \backslash E$ and for $t \in E$

$$
g_{y}(t)=\int_{\left(0, y_{1}\right) \times \cdots \times\left(0, y_{n-1}\right)} f\left(r_{1}, \ldots, r_{n-1}, t\right) d r_{1} \cdots d r_{n-1} .
$$

By virtue of Fubini theorem for any $y \in(0,1)^{n-1}$ we have that $g_{y} \in L(0,1)$, therefore due to Lebesgue theorem

$$
\lim _{\alpha \rightarrow 0} \frac{\operatorname{sign}(\alpha)}{\alpha} \int_{J(t, t+\alpha)} g_{y}(\tau) d \tau=g_{y}(t)
$$

for almost every $t \in(0,1)$. Consequently, taking into account Fubini theorem we conclude that for almost every $x \in(0,1)^{n}$

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}} \int_{Q_{n}(x) \times J\left(x_{n}, x_{n}+h_{n}\right)} f= \\
=\lim _{h \rightarrow 0} \frac{\operatorname{sign}\left(h_{n}\right)}{h_{n}} \int_{J\left(x_{n}, x_{n}+h_{n}\right)} g_{\left(x_{1}, \ldots, x_{n-1}\right)}(\tau) d \tau= \\
=g_{\left(x_{1}, \ldots, x_{n-1}\right)}\left(x_{n}\right)=\int_{Q_{n}(x)} f_{x_{n}, n} .
\end{gathered}
$$

For the simplicity of entries let us prove (5) in the case $j=n-1$. If $n=2$ we have only one possibility: $j=1$, and $S_{1}(x, h)=J\left(x_{1}, x_{1}+h_{1}\right) \times$ $\left(x_{2}, x_{2}+h_{2}\right)$. Consequently, by virtue of Lemma for almost every $x \in(0,1)^{2}$ we have

$$
\lim _{h \rightarrow 0} \frac{1}{h_{2}} \int_{S_{1}(x, h)}|f|=\lim _{h \rightarrow 0} \frac{1}{h_{2}} \int_{J\left(x_{1}, x_{1}+h_{1}\right) \times J\left(x_{2}, x_{2}+h_{2}\right)}|f|=0 .
$$

Let now $n \geq 3$. Repeating arguments given for $g_{y}$, for any fixed $y \in(0,1)^{n-2}$ we can consider the function $l_{y}$ summable on $(0,1)^{2}$ which at almost every point $\left(t_{1}, t_{2}\right) \in(0,1)^{2}$ is defined as follows

$$
l_{y}\left(t_{1}, t_{2}\right)=\int_{\left(0, y_{1}+1\right) \times \cdots \times\left(0, y_{n-2}+1\right)}\left|f\left(r_{1}, \ldots, r_{n-2}, t_{1}, t_{2}\right)\right| d r_{1} \cdots d r_{n-2}
$$

According to Fubini theorem for any $y \in(0,1)^{n-2}$ we have that $l_{y} \in$ $L(0,1)^{2}$. Consequently, by virtue of Lemma

$$
\lim _{\left(\alpha_{1}, \alpha_{2}\right) \rightarrow 0} \frac{1}{\alpha_{2}} \int_{J\left(t_{1}, t_{1}+\alpha_{1}\right) \times J\left(t_{2}, t_{2}+\alpha_{2}\right)} l_{y}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2}=0
$$

for almost every $\left(t_{1}, t_{2}\right) \in(0,1)^{2}$. Where from taking into account Fubini theorem we conclude that for almost every $x \in(0,1)^{n}$

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{1}{h_{n}} \int_{S_{n-1}(x, h)}|f|= \\
=\lim _{h \rightarrow 0} \frac{1}{h_{n}} \int_{J\left(x_{n-1}, x_{n-1}+h_{n-1}\right) \times J\left(x_{n}, x_{n}+h_{n}\right)} l_{\left(x_{1}, \ldots, x_{n-2}\right)}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2}=0 .
\end{gathered}
$$

Theorem is proved.

## References

1. O. Dzagnidze, On the differentiability of functions of two veriables and of indefinite double integrals. Proc. A. Razmadze Mat. Inst., 106(1993), 7-48.
2. G. Oniani, On the relation between conditions of the differentiability and existense of a strong gradient. Proc. A. Razmadze Mat. Inst. 132(2003), 151-152.
3. G. Karagulian, On the growth of integral means of functions from $L^{1}\left(\mathbb{R}^{n}\right)$. East J. on Approx., 3(1997), No. 1, 1-12.
(Received 08.09.2003)
Authors' addresses:
A. Razmadze Mathematical Institute,

Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 0193
Georgia
Department of Physics and Mathematics, Kutaisi State University 55, Tamar Mepe St., Kutaisi 6400
Georgia


[^0]:    2000 Mathematics Subject Classification. 26B05.
    Key words and phrases. Differentiability, Indefinite Integral, Strong Gradient.

