ON ONE ANALOGUE OF LEBESGUE THEOREM ON THE DIFFERENTIATION OF INDEFINITE INTEGRAL FOR FUNCTIONS OF SEVERAL VARIABLES

O. DZAGNIDZE AND G. ONIANI

ABSTRACT. It is proved that an indefinite n-tuple integral of a summable on the unit n-dimensional cube function is differentiable almost everywhere, moreover, it has a strong gradient almost everywhere.

რეზიუმე. დამტკიცებულია, რომ *n*-განზომილებიან კუბზე ჯამებადი ფუნქციის *n*-ჯერადი განუსაზღვრელი ინტეგრალი დიფერენცირებადია თითქმის ყველგან. უფრო მეტი, მას ძლიერი გრადიენტი აქვს თითქმის ყველგან.

1. Definitions and Notation

Let us assume that $L(0,1)^n = \{f \in L(\mathbb{R}^n) : \text{supp } f \subset (0,1)^n\}$. The indefinite integral of a function $f \in L(0,1)^n$ denote by F_f , i.e., for every point $x = (x_1, \ldots, x_n)$ from $(0,1)^n$

$$F_f(x) = \int_{(0,x_1) \times \dots \times (0,x_n)} f.$$

For $t \in \mathbb{R}^{n-1}$, $\tau \in \mathbb{R}$ and $i \in \overline{1, n}$ denote by $(t, \tau)^i$ the point in \mathbb{R}^n for which $(t, \tau)^i_j = t_j$ if $1 \le j < i$, $(t, \tau)^i_i = \tau$ and $(t, \tau)^i_j = t_{j-1}$ if $i < j \le n$.

Let a function f is defined on $(0,1)^n$, $\tau \in \mathbb{R}$ and $i \in \overline{1,n}$. Denote by $f_{\tau,i}$ the function defined on $(0,1)^{n-1}$ by the equality

$$f_{\tau,i}(t) = f((t,\tau)^i), \quad t \in (0,1)^{n-1}.$$

Denote for $n \ge 2$ and $x \in (0,1)^n$

$$Q_1(x) = (0, x_2) \times \cdots \times (0, x_n), Q_n(x) = (0, x_1) \times \cdots \times (0, x_{n-1});$$

and for $n \ge 3, x \in (0, 1)^n, 2 \le i \le n - 1$

$$Q_i(x) = (0, x_1) \times \cdots \times (0, x_{i-1}) \times (0, x_{i+1}) \times \cdots \times (0, x_n).$$

²⁰⁰⁰ Mathematics Subject Classification. 26B05.

Key words and phrases. Differentiability, Indefinite Integral, Strong Gradient.

Let $n \geq 2$ and let $f \in L(0,1)^n$. By virtue of Fubini theorem for a.e., $x \in (0,1)^n$ we have that $f_{x_i,i} \in L(0,1)^{n-1}$ for every $i \in \overline{1,n}$, thus for a.e., $x \in (0,1)^n$ it makes sense the integrals $\int_{Q_i(x)} f_{x_i,i}, i \in \overline{1,n}$.

For $n \ge 2, h \in \mathbb{R}^n$ and $i \in \overline{1, n}$ denote by h(i) the point in \mathbb{R}^n such that $h(i)_j = h_j$ for every $j \in \overline{1, n} \setminus \{i\}$ and $h(i)_i = 0$.

Let $n \ge 2$ and f be a function defined in a neighborhood of a point $x \in \mathbb{R}^n$. If for $i \in \overline{1, n}$ there exists the limit

$$\lim_{k \to 0} \frac{f(x+h) - f(x+h(i))}{h_i}$$

then let us call its value as the *i*-th strong partial derivative of f at x and denote it by $D_{[i]}f(x)$. If f has finite $D_{[i]}f(x)$ for every $i \in \overline{1, n}$ then let us say that there exists a strong gradient of f at x or f has a strong gradient at x.

It is not difficult to verify that if a function f has a strong gradient at a point x then it is differentiable at x, and the converse assertion is not true:the function $f(x_1, x_2) = |x_1x_2|^{\frac{2}{3}}$ is differentiable at the point (0,0), but $\overline{D}_{[1]}f(0,0) = \overline{D}_{[2]}f(0,0) = +\infty$ (see [1] for details). Thus the condition of differentiability at the fixed point is weaker then the condition of the existence of a strong gradient in the same point. Note that the same conclusion remains true even while comparison on the sets of positive measure, namely, according [2] there exists a continuous function such that the set of all points at which f is differentiable but does not have a strong gradient is of full measure.

2. Result

According to the well-known Lebesgue theorem for every $f \in L(0,1)$ its indefinite integral F_f , at almost every point $x \in (0,1)$, is differentiable and $F'_f(x) = f(x)$.

The following statement is a multidimensional analogue of Lebesgue theorem.

Theorem. For every $n \ge 2$ and $f \in L(0,1)^n$ the indefinite integral of f, at almost every point $x \in (0,1)^n$, is differentiable, moreover, has a strong gradient and $D_{[i]}F_f(x) = \int_{Q_i(x)} f_{x_i,i}$ for every $i \in \overline{1,n}$.

This theorem in two-dimensional case was proved in [1].

3. One Lemma

For $x \in \mathbb{R}^2$ denote by $\mathbb{I}(x)$ the collection of all two-dimensional intervals containing x and for $I \in \mathbb{I}(x)$ by $\delta(I)$ denote the smallest among lengths of its sides.

The proof of Theorem is based on Lebesgue theorem and on the following statement that was established in [1](see also [3] for more general result)

Lemma. Let
$$f \in L(\mathbb{R}^2)$$
. Then for almost every $x \in \mathbb{R}^2$

$$\lim_{I \in \mathbb{I}(x) \operatorname{diam} I \to 0} \frac{1}{\delta(I)} \int_{I} |f| = 0.$$

4. Proof of Theorem

For any $i \in \overline{1, n}$ let us show that $D_{[i]}F_f(x) = \int_{Q_i(x)} f_{x_i,i}$ for almost every $x \in (0, 1)^n$. Consequently, Theorem will be proved. For the simplicity of entries let us consider the case i = n.

For the numbers a and b by J(a,b) denote the segment $[\min(a,b), \max(a,b)]$.

Let $x \in (0,1)^n$, $h \in \mathbb{R}^n$, $|h_1| < 1, \ldots, |h_n| < 1$ and $x + h \in (0,1)^n$. It is easy to check that

$$\frac{F_f(x+h) - F_f(x+h(n))}{h_n} = \frac{\operatorname{sign}(h_n)}{h_n} \int_{Q_n(x+h) \times J(x_n, x_n+h_n)} f =
= \frac{\operatorname{sign}(h_n)}{h_n} \int_{Q_n(x) \times J(x_n, x_n+h_n)} f +
+ \frac{\operatorname{sign}(h_n)}{h_n} \left(\int_{Q_n(x+h) \times J(x_n, x_n+h_n)} f \int_{Q_n(x) \times J(x_n, x_n+h_n)} f \right) =
= \eta_1 + \eta_2;$$
(1)

$$\eta_{2} \leq \frac{1}{|h_{n}|} \int_{\substack{(Q_{n}(x+h) \times J(x_{n}, x_{n}+h_{n})) \land (Q_{n}(x) \times J(x_{n}, x_{n}+h_{n}))}}{\int} |f| = \frac{1}{|h_{n}|} \int_{\substack{(Q_{n}(x+h) \land Q_{n}(x)) \times J(x_{n}, x_{n}+h_{n})}} |f| = \eta_{3};$$
(2)

$$(Q_n(x+h_n) \triangle Q_n(x)) \times J(x_n, x_n+h) \subset \bigcup_{j=1}^{n-1} S_j(x,h),$$
(3)

where $S_j(x,h) = \{ y \in \mathbb{R}^n : y_n \in J(x_n, x_n + h_n), y_j \in J(x_j, x_j + h_j); y_k \in (0, x_k + 1), k \in \overline{1, n} \setminus \{n, j\} \};$

$$\eta_3 \le \sum_{j=1}^{n-1} \frac{1}{|h_n|} \int_{S_j(x,h)} |f|.$$
(4)

Let us prove that

$$\lim_{h \to 0} \frac{\operatorname{sign}(h_n)}{h_n} \int_{Q_n(x) \times J(x_n, x_n + h_n)} f = \int_{Q_n(x)} f_{x_n, n}$$

for almost every $x \in (0,1)^n$ and for any $j \in \overline{1, n-1}$

$$\lim_{h \to 0} \frac{1}{h_n} \int_{S_j(x,h)} |f| = 0$$
(5)

for almost every $x \in (0,1)^n$. Therefore taking into account (1)–(4) we come to the validity of Theorem.

Due to Fubini theorem there is a set $E \subset \mathbb{R}$ with full measure such that for any $t \in E$ the function $\mathbb{R}^{n-1} \ni (r_1, \ldots, r_{n-1}) \mapsto f(r_1, \ldots, r_{n-1}, t)$ is summable on \mathbb{R}^{n-1} . So for given $y \in (0, 1)^{n-1}$ we can consider the function g_y defined as follows: $g_y(t) = 0$ for $t \in \mathbb{R} \setminus E$ and for $t \in E$

$$g_y(t) = \int_{(0,y_1) \times \dots \times (0,y_{n-1})} f(r_1, \dots, r_{n-1}, t) dr_1 \cdots dr_{n-1}.$$

By virtue of Fubini theorem for any $y \in (0,1)^{n-1}$ we have that $g_y \in L(0,1)$, therefore due to Lebesgue theorem

$$\lim_{\alpha \to 0} \frac{\operatorname{sign}(\alpha)}{\alpha} \int_{J(t,t+\alpha)} g_y(\tau) d\tau = g_y(t)$$

for almost every $t \in (0, 1)$. Consequently, taking into account Fubini theorem we conclude that for almost every $x \in (0, 1)^n$

$$\lim_{h \to 0} \frac{\operatorname{sign}(h_n)}{h_n} \int_{Q_n(x) \times J(x_n, x_n + h_n)} f =$$

$$= \lim_{h \to 0} \frac{\operatorname{sign}(h_n)}{h_n} \int_{J(x_n, x_n + h_n)} g_{(x_1, \dots, x_{n-1})}(\tau) d\tau =$$

$$= g_{(x_1, \dots, x_{n-1})}(x_n) = \int_{Q_n(x)} f_{x_n, n}.$$

For the simplicity of entries let us prove (5) in the case j = n - 1. If n = 2 we have only one possibility: j = 1, and $S_1(x, h) = J(x_1, x_1 + h_1) \times (x_2, x_2 + h_2)$. Consequently, by virtue of Lemma for almost every $x \in (0, 1)^2$ we have

$$\lim_{h \to 0} \frac{1}{h_2} \int_{S_1(x,h)} |f| = \lim_{h \to 0} \frac{1}{h_2} \int_{J(x_1, x_1 + h_1) \times J(x_2, x_2 + h_2)} |f| = 0.$$

Let now $n \ge 3$. Repeating arguments given for g_y , for any fixed $y \in (0, 1)^{n-2}$ we can consider the function l_y summable on $(0, 1)^2$ which at almost every point $(t_1, t_2) \in (0, 1)^2$ is defined as follows

$$l_y(t_1, t_2) = \int_{(0, y_1 + 1) \times \dots \times (0, y_{n-2} + 1)} |f(r_1, \dots, r_{n-2}, t_1, t_2)| dr_1 \cdots dr_{n-2}.$$

According to Fubini theorem for any $y \in (0,1)^{n-2}$ we have that $l_y \in L(0,1)^2$. Consequently, by virtue of Lemma

$$\lim_{(\alpha_1,\alpha_2)\to 0} \frac{1}{\alpha_2} \int_{J(t_1,t_1+\alpha_1)\times J(t_2,t_2+\alpha_2)} l_y(\tau_1,\tau_2) d\tau_1 d\tau_2 = 0$$

for almost every $(t_1, t_2) \in (0, 1)^2$. Where from taking into account Fubini theorem we conclude that for almost every $x \in (0, 1)^n$

$$\lim_{h \to 0} \frac{1}{h_n} \int_{S_{n-1}(x,h)} |f| =$$
$$= \lim_{h \to 0} \frac{1}{h_n} \int_{J(x_{n-1}, x_{n-1} + h_{n-1}) \times J(x_n, x_n + h_n)} l_{(x_1, \dots, x_{n-2})}(\tau_1, \tau_2) d\tau_1 d\tau_2 = 0.$$

Theorem is proved.

References

- 1. O. Dzagnidze, On the differentiability of functions of two veriables and of indefinite double integrals. *Proc. A. Razmadze Mat. Inst.*, **106**(1993), 7–48.
- G. Oniani, On the relation between conditions of the differentiability and existense of a strong gradient. Proc. A. Razmadze Mat. Inst. 132(2003), 151–152.
- 3. G. Karagulian, On the growth of integral means of functions from $L^1(\mathbb{R}^n)$. East J. on Approx., **3**(1997), No. 1, 1–12.

(Received 08.09.2003)

Authors' addresses:

A. Razmadze Mathematical Institute, Georgian Academy of Sciences1, Aleksidze St., Tbilisi 0193Georgia

Department of Physics and Mathematics, Kutaisi State University 55, Tamar Mepe St., Kutaisi 6400 Georgia