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ON ONE ANALOGUE OF LEBESGUE THEOREM ON THE

DIFFERENTIATION OF INDEFINITE INTEGRAL FOR

FUNCTIONS OF SEVERAL VARIABLES

O. DZAGNIDZE AND G. ONIANI

Abstract. It is proved that an indefinite n-tuple integral of a sum-
mable on the unit n-dimentional cube function is differentiable almost
everywhere,moreover, it has a strong gradient almost everywhere.

îâäæñéâ. á�éðçæùâ�ñèæ�, îëé n-à�êäëéæèâ�æ�ê çñ�äâ þ�éâ��áæ

òñêóùææï n-þâî�áæ à�êñï�ä�ãîâèæ æêðâàî�èæ áæòâîâêùæîâ��áæ�

åæåóéæï õãâèà�ê. ñòîë éâðæ, é�ï úèæâîæ àî�áæâêðæ �óãï åæåóéæï

õãâèà�ê.

1. Definitions and Notation

Let us assume that L(0, 1)n = {f ∈ L(Rn) : supp f ⊂ (0, 1)n}. The

indefinite integral of a function f ∈ L(0, 1)n denote by Ff , i.e., for every
point x = (x1, . . . , xn) from (0, 1)n

Ff (x) =

∫

(0,x1)×···×(0,xn)

f.

For t ∈ R
n−1, τ ∈ R and i ∈ 1, n denote by (t, τ)i the point in R

n for
which (t, τ)i

j = tj if 1 ≤ j < i, (t, τ)i
i = τ and (t, τ)i

j = tj−1 if i < j ≤ n.

Let a function f is defined on (0, 1)n, τ ∈ R and i ∈ 1, n.Denote by fτ,i

the function defined on (0, 1)n−1 by the equality

fτ,i(t) = f
(

(t, τ)i
)

, t ∈ (0, 1)n−1.

Denote for n ≥ 2 and x ∈ (0, 1)n

Q1(x) = (0, x2) × · · · × (0, xn), Qn(x) = (0, x1) × · · · × (0, xn−1);

and for n ≥ 3, x ∈ (0, 1)n, 2 ≤ i ≤ n − 1

Qi(x) = (0, x1) × · · · × (0, xi−1) × (0, xi+1) × · · · × (0, xn).
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Let n ≥ 2 and let f ∈ L(0, 1)n. By virtue of Fubini theorem for a.e.,
x ∈ (0, 1)n we have that fxi,i ∈ L(0, 1)n−1 for every i ∈ 1, n, thus for a.e.,
x ∈ (0, 1)n it makes sense the integrals

∫

Qi(x)

fxi,i, i ∈ 1, n.

For n ≥ 2, h ∈ R
n and i ∈ 1, n denote by h(i) the point in R

n such that
h(i)j = hj for every j ∈ 1, n\{i} and h(i)i = 0.

Let n ≥ 2 and f be a function defined in a neighborhood of a point
x ∈ R

n.If for i ∈ 1, n there exists the limit

lim
h→0

f(x + h) − f(x + h(i))

hi

then let us call its value as the i-th strong partial derivative of f at x and
denote it by D[i]f(x).If f has finite D[i]f(x) for every i ∈ 1, n then let us
say that there exists a strong gradient of f at x or f has a strong gradient

at x.
It is not difficult to verify that if a function f has a strong gradient at

a point x then it is differentiable at x, and the converse assertion is not
true:the function f(x1, x2) = |x1x2|

2

3 is differentiable at the point (0, 0),
but D[1]f(0, 0) = D[2]f(0, 0) = +∞ (see [1] for details). Thus the condition
of differentiability at the fixed point is weaker then the condition of the
existence of a strong gradient in the same point. Note that the same con-
clusion remains true even while comparison on the sets of positive measure,
namely, according [2] there exists a continuous function such that the set of
all points at which f is differentiable but does not have a strong gradient is
of full measure.

2. Result

According to the well-known Lebesgue theorem for every f ∈ L(0, 1) its

indefinite integral Ff , at almost every point x ∈ (0, 1), is differentiable and

F ′

f (x) = f(x).
The following statement is a multidimensional analogue of Lebesgue the-

orem.

Theorem. For every n ≥ 2 and f ∈ L(0, 1)n the indefinite integral of f ,

at almost every point x ∈ (0, 1)n, is differentiable, moreover, has a strong

gradient and D[i]Ff (x) =
∫

Qi(x)

fxi,i for every i ∈ 1, n.

This theorem in two-dimensional case was proved in [1].

3. One Lemma

For x ∈ R
2 denote by I(x) the collection of all two-dimensional intervals

containing x and for I ∈ I(x) by δ(I) denote the smallest among lengths of
its sides.
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The proof of Theorem is based on Lebesgue theorem and on the following
statement that was established in [1](see also [3] for more general result)

Lemma. Let f ∈ L(R2). Then for almost every x ∈ R
2

lim
I∈I(x)diam I→0

1

δ(I)

∫

I

|f | = 0.

4. Proof of Theorem

For any i ∈ 1, n let us show that D[i]Ff (x) =
∫

Qi(x)

fxi,i for almost every

x ∈ (0, 1)n. Consequently, Theorem will be proved. For the simplicity of
entries let us consider the case i = n.

For the numbers a and b by J(a, b) denote the segment [min(a, b),
max(a, b)].

Let x ∈ (0, 1)n, h ∈ R
n, |h1| < 1, . . . , |hn| < 1 and x + h ∈ (0, 1)n. It is

easy to check that

Ff (x + h) − Ff (x + h(n))

hn

=
sign (hn)

hn

∫

Qn(x+h)×J(xn,xn+hn)

f =

=
sign (hn)

hn

∫

Qn(x)×J(xn,xn+hn)

f+

+
sign (hn)

hn

(

∫

Qn(x+h)×J(xn,xn+hn)

f

∫

Qn(x)×J(xn,xn+hn)

f

)

=

= η1 + η2; (1)

η2 ≤
1

|hn|

∫

(Qn(x+h)×J(xn,xn+hn))△(Qn(x)×J(xn,xn+hn))

|f | =

=
1

|hn|

∫

(Qn(x+h)△Qn(x))×J(xn,xn+hn)

|f | = η3; (2)

(Qn(x + hn) △ Qn(x)) × J(xn, xn + h) ⊂
n−1
⋃

j=1

Sj(x, h), (3)

where Sj(x, h) = {y ∈ R
n : yn ∈ J(xn, xn + hn), yj ∈ J(xj , xj + hj);

yk ∈ (0, xk + 1), k ∈ 1, n \ {n, j}};

η3 ≤

n−1
∑

j=1

1

|hn|

∫

Sj(x,h)

|f |. (4)



4 O. DZAGNIDZE AND G. ONIANI

Let us prove that

lim
h→0

sign (hn)

hn

∫

Qn(x)×J(xn,xn+hn)

f =

∫

Qn(x)

fxn,n

for almost every x ∈ (0, 1)n and for any j ∈ 1, n − 1

lim
h→0

1

hn

∫

Sj(x,h)

|f | = 0 (5)

for almost every x ∈ (0, 1)n. Therefore taking into account (1)–(4) we come
to the validity of Theorem.

Due to Fubini theorem there is a set E ⊂ R with full measure such that
for any t ∈ E the function R

n−1 ∋ (r1, . . . , rn−1) 7→ f(r1, . . . , rn−1, t) is
summable on R

n−1. So for given y ∈ (0, 1)n−1 we can consider the function
gy defined as follows: gy(t) = 0 for t ∈ R \ E and for t ∈ E

gy(t) =

∫

(0,y1)×···×(0,yn−1)

f(r1, . . . , rn−1, t)dr1 · · ·drn−1.

By virtue of Fubini theorem for any y ∈ (0, 1)n−1 we have that gy ∈ L(0, 1),
therefore due to Lebesgue theorem

lim
α→0

sign (α)

α

∫

J(t,t+α)

gy(τ)dτ = gy(t)

for almost every t ∈ (0, 1). Consequently, taking into account Fubini theo-
rem we conclude that for almost every x ∈ (0, 1)n

lim
h→0

sign (hn)

hn

∫

Qn(x)×J(xn,xn+hn)

f =

= lim
h→0

sign (hn)

hn

∫

J(xn,xn+hn)

g(x1,...,xn−1)(τ)dτ =

= g(x1,...,xn−1)(xn) =

∫

Qn(x)

fxn,n.

For the simplicity of entries let us prove (5) in the case j = n − 1. If
n = 2 we have only one possibility: j = 1, and S1(x, h) = J(x1, x1 + h1) ×
(x2, x2+h2). Consequently, by virtue of Lemma for almost every x ∈ (0, 1)2

we have

lim
h→0

1

h2

∫

S1(x,h)

|f | = lim
h→0

1

h2

∫

J(x1,x1+h1)×J(x2,x2+h2)

|f | = 0.
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Let now n ≥ 3. Repeating arguments given for gy, for any fixed y ∈ (0, 1)n−2

we can consider the function ly summable on (0, 1)2 which at almost every
point (t1, t2) ∈ (0, 1)2 is defined as follows

ly(t1, t2) =

∫

(0,y1+1)×···×(0,yn−2+1)

|f(r1, . . . , rn−2, t1, t2)|dr1 · · ·drn−2.

According to Fubini theorem for any y ∈ (0, 1)n−2 we have that ly ∈
L(0, 1)2. Consequently, by virtue of Lemma

lim
(α1,α2)→0

1

α2

∫

J(t1,t1+α1)×J(t2,t2+α2)

ly(τ1, τ2)dτ1dτ2 = 0

for almost every (t1, t2) ∈ (0, 1)2. Where from taking into account Fubini
theorem we conclude that for almost every x ∈ (0, 1)n

lim
h→0

1

hn

∫

Sn−1(x,h)

|f | =

= lim
h→0

1

hn

∫

J(xn−1,xn−1+hn−1)×J(xn,xn+hn)

l(x1,...,xn−2)(τ1, τ2)dτ1dτ2 = 0.

Theorem is proved.
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