O. DZAGNIDZE AND G. ONIANI

On One Analogue of Lebesgue Theorem on the Differentiation of Indefinite Integral for Functions of Several Variables

(Reported on 03.07.2003)

Definitions and notation. For $x \in (0, 1)^n$ denote

$$Q(x) = (0, x_1) \times \dots \times (0, x_n),$$

$$Q_1(x) = (0, x_2) \times \dots \times (0, x_n),$$

$$Q_i(x) = (0, x_1) \times \dots \times (0, x_{i-1}) \times (0, x_{i+1}) \times \dots \times (0, x_n) \quad (2 \le i \le n-1),$$

$$Q_n(x) = (0, x_1) \times \dots \times (0, x_{n-1}).$$

The indefinite integral of a function $f \in L(0,1)^n$ is denoted by F_f and is defined as follows

$$F_f(x) = \int_{Q(x)} f(t)dt, \quad x \in (0,1)^n$$

For $t \in \mathbb{R}^{n-1}$, $\tau \in \mathbb{R}$ and $i \in \overline{1, n}$ denote by (t, τ, i) the point in \mathbb{R}^n for which $(t, \tau, i)_j = t_j$ if $1 \leq j < i$, $(t, \tau, i)_i = \tau$, and $(t, \tau, i)_j = t_{j-1}$ if $i < j \leq n$.

Let a function f is defined on $(0,1)^n$, $\tau \in \mathbb{R}$ and $i \in \overline{1,n}$. Denote by $f_{\tau,i}$ the function defined on $(0,1)^{n-1}$ by the equality

$$f_{\tau,i}(t) = f(t,\tau,i), \quad t \in (0,1)^{n-1}$$

Note that by virtue of Fubini's theorem for $f \in L(0, 1)^n$ for a.e. $x \in (0, 1)^n$ we have that $f_{x_i,i} \in L(0, 1)^{n-1}$ for every $i \in \overline{1, n}$. Thus for a.e. $x \in (0, 1)^n$ it has sense the integrals

$$\int_{Q_i(x)} f_{x_i,i}(t) dt, \quad i \in \overline{1, n}.$$

For $n \ge 2, h \in \mathbb{R}^n$ and $i \in \overline{1, n}$ denote by h(i) the point in \mathbb{R}^n such that $h(i)_j = h_j$ for every $j \in \overline{1, n} \setminus \{i\}$ and $h(i)_i = 0$.

Let $n \geq 2$ and f be a function defined in a neighborhood of a point $x \in \mathbb{R}^n$. If for $i \in \overline{1, n}$ there exists the limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x+h(i))}{h_i}$$

then let us call its value as the *i*-th strong partial derivative of f at x and denote it by $D_{[i]}f(x)$. If f has finite $D_{[i]}f(x)$ for every $i \in \overline{1, n}$ then let us say that there exists a strong gradient of f at x or f has a strong gradient at x.

In [1] and [2] it is noted that if a function f has a strong gradient at a point x then it is differentiable at x, and the converse assertion is not true: the function $f(x_1, x_2) =$ $|x_1x_2|^{\frac{2}{3}}$ is differentiable at the point (0,0), but $\overline{D}_{[1]}f(0,0) = \overline{D}_{[2]}f(0,0) = +\infty$. Thus the condition of differentiability at the fixed point is weaker then the condition of the existence of a strong gradient in the same point. Note that the same conclusion remains true even while comparison on the sets of positive measure, namely, in [3] it is proved

139

²⁰⁰⁰ Mathematics Subject Classification: 26B05.

Key words and phrases. Differentiability, indefinite integral, strong gradient.

that there exists a continuous function such that the set of all points at which f is differentiable but does not have a strong gradient is of full measure.

Result. By virtue of the well-known theorem of Lebesgue for every $f \in L(0,1)$ its indefinite integral F_f , at almost every point x, is differentiable and $F'_f(x) = f(x)$.

The following assertion is a multidimensional analogue of Lebesgue theorem.

Theorem. For every $n \ge 2$ and $f \in L(0,1)^n$ the indefinite integral of f, at almost every point x, is differentiable, moreover, has a strong gradient and

$$D_{[i]}F_f(x) = \int_{Q_i(x)} f_{x_i,i}(t)dt \quad \text{for every} \quad i \in \overline{1,n}$$

This assertion in two-dimensional case was proved in [1].

References

1. O. Dzagnidze, On the differentiability of functions of two variables and of indefinite double integrals. *Proc. A. Razmadze Math. Inst.* **106**(1993), 7-48.

2. O. Dzagnidze, A necessary and sufficient condition for differentiability functions of several variables. Proc. A. Razmadze Math. Inst. 123(2000), 23-29.

3. G. Oniani, On the relation between conditions of the differentiability and existence of a strong gradient. Proc. A. Razmadze Math. Inst. 132(2003), 150-151.

Authors' addresses:

G. Oniani

I. Tsereteli Kutaisi State University 55, Tamar Mephe St., Kutaisi 4600 Georgia

O. Dzagnidze

A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 0193 Georgia