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Abstract. For the functions of several real variables we establish: the
necessary and sufficient conditions for continuity, the necessary and suffi-
cient conditions for differentiability, the differentiability almost everywhere
of an indefinite double integral and of absolutely continuous functions of
two variables. The notion of an Lebesgue’s intense point of summable func-
tions of two variables is introduced. It is stated that almost every point
is an Lebesgue’s intense point at which an indefinite double integral and
absolutely continuous functions of two variables have a finite strong gradi-
ent. The notions of the continuity and the limit in the wide are introduced
and their connection with the continuity and the existence of the limit is
established.
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Preface

By the end of the XIX-th century we have already been familiar with the
examples of functions of two variables which are discontinuous at the given
point and continuous at the same point with respect to each of independent
variables.

By the same time it was shown that for a total differential of a function
of two variables to exist at the point 20 it is not necessarily that its partial
derivatives are continuous at that point, but their finiteness at the same
point is insufficient for the function itself to be continuous.

It is significant that each of the above-mentioned “pathological” prop-
erties of these functions can be observed only at separate points.

In the middle of the XX-th century G. P. Tolstov has proved that im-
pressive functions of two variables do exist and the sets of “pathological”
points for them are very massives.

These facts gave serious impact on the investigation of functions of
several variables for their continuity, as well as for the existence of a total
differential.

Thus two basic problems on the necessary and sufficient conditions for
functions of several variables have been outlines: for the continuity of a
function on the one hand, and for the existence of a total differential on the
other hand. Resolution of these problems will evidently allow one to solve
some other problems which form the third group of problems. This group of
problems involve the introduced here notions of the continuity in the wide
and the limit in the wide which are tightly connected with the continuity
and the existence of a limit.

The same group involves the proof that an indefinite double integral
and an absolutely continuous function of two variables possess a total diffe-
rential. These facts are realized at almost all points, that is at the points,
which are called by the author as Lebesgue’s intense points.

In the present monograph we investigate the above-mentioned problems
and those which are tightly connected with them.

The monograph consists of four chapters.

Each chapter is supplied with an abstract and introduction and divided
into sections and subsections. Theorems, propositions, formulas, etc. in
subsections have individual numbering. References inside subsections are
one-digital, and multi-digital outside subsections.
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CHAPTER 1

Separately Partial Continuity from Different
Points of View and Continuity

The goal of the present chapter is to resolve the problem on the conti-
nuity at a point of a function of several variables.

For the function of several variables there arises the question whether
there is some notion or property at the point z° with respect to a separate
independent variable such that the presence of that property at the point
29 for the function with respect to each of independent variables is the
necessary and sufficient condition for the function to be continuous at that
point?

Introduction

1. The notion continuity of a function of one variable extends auto-
matically to the functions of several variables in two variants: the continuity
(which is sometimes called joint continuity), and continuity with respect to
every independent variable for all the remaining fixed independent variables.

Evidently, the continuity implies the continuity in each variable, and
the inverse statement, as is known, is incorrect.

In greater detail, there exists a function of two variable which is dis-
continuous at the given point and continuous at that point with respect to
every variable. Moreover, there exists a function of two variables which is
discontinuous at a separate point and continuous along (with respect to) ev-
ery straight line passing through that point. Further, there exists a function
of two variables which is discontinuous at the given point, and continuous
along every analytic curve passing through that point ([14]).

It is also known that the continuity follows from the continuity along all
singly differentiable curves which pass through the given point, and the con-
tinuity not follows from the continuity along all twice differentiable curves
(120)).

It should be noted that these functions have neither the property to be
continuous, nor even the limit at a “pathological” point.

That “pathology” for such function can be observed only at a single
point.

There naturally arises the question as to what extent may be wide the
set of such “pathological” points?

14
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G. P. Tolstov answered this question and formulated his result in the
form of the following

Theorem A ([27], 432—433). There exists the function of two vari-
ables which is discontinuous at almost every point of the unit square and at
every point of that square continuous with respect to every variable* .

Note that this function cannot be discontinuous everywhere because it
belongs, by the Lebesgue theorem, to the first Baire class, and hence, it has
everywhere, by the Baire theorem, a dense set of points of continuity.

Detailed exposition of those and analogous facts can be found in Z. Pi-
otrowski’s review paper ([19]).

2. The present chapter is organized as follows: solution in two variants
of the above—formulated problem are given in Sections 2 and 3. Two new
notions: (a) separately strong partial continuity and (b) separately angular
partial continuity are introduced herein.

It is shown that each of those notions is equivalent to the notion of
continuity.

Here we present in short the content of the remaining sections.

§ 4. Connection between the continuity and the existence of a finite limit
for the function of one variable becomes exhausted in that the continuity
implies the existence of a finite limit and not vice versa.

For functions of several variables it became possible to establish the
necessary and sufficient conditions for the continuity, one of the conditions
is the existence of a finite limit.

§ 5. The functions of two variables take a special place in the mathemat-
ical analysis even because they are tightly connected with analytic functions
of a complex variable. In this section, for the functions of two variables we
formulate the results which have already been established for functions of
n variables.

§ 6. A total increment is, in most cases, connected with the continuity
of a corresponding function. An increment of another type can be obtained
by composing successively strong partial increments with respect to every
independent variable. The obtained in such a way expression is called by the
author an increment in the wide. Using this notion, we introduce the notion
of the continuity in the wide. The sufficient condition for the continuity in
the wide is established. In particular, the continuity implies the continuity
in the wide and not vice versa.

For functions of two variables it is stated that the continuity with re-
spect to every variable together with the continuity in the wide is equivalent
to the continuity.

§ 7. In the analysis the notion of the limit precedes the notion of the
continuity. Herein, for the continuity in the wide we have found the notion

*This Tolstov’s function does not possess almost everywhere even the property of
continuity in the wide (see Remark 6.6.1 below).
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of the limit in the wide. It is proved that the existence of a finite limit
implies the existence of an equal limit in the wide and not vice versa.

For the functions of two variables it is proved that if there exist equal
finite separated partial limits and if a finite limit in the wide is equal to
them, then the limit is also equal to them.

§ 8. For the continuity of functions of two variables the sufficient condi-
tions is given consistings in the continuity with respect to one of variables,
uniformly with respect to the other variable and partial continuity with
respect to the same other variable.

§ 9. The necessary and sufficient conditions for the continuity of func-
tions of two variables allow us to introduce the notions of unilateral limit
and unilateral continuity of functions of two variables. The obtained re-
sults maintain, in principal, all interconnections between the notions and
the existence of a limit or continuity for functions of one variable.

§ 1. Preliminaries
1.1. Basic Notions

1. For the point = = (x1,...,2,) from the n-dimensional real Eu-
clidean space R™ by ||z|| we denote any of the three equivalent norms

lzl[1 = [max |24, (1)

lzllz =) lail, (2)
i=1

falla = (32 02)"" )

i=1

which are connected by the well-known relations

[zl < llell2 < nlll), (4)
lzll < llzlls < Vol (5)
2]z < nljls. (6)

By U(2°,5), § > 0 we denote a é-neighborhood of the point z° =
(29,...,29) € R", ie., U(2°8) = {z € R" : ||z — 20| < §}. U°?,9)
denotes a punctured §-neighborhood of the point 2° (without center zV),
ie, U%2%0) =U(°0)\ {2} ={z e R": 0 < ||z — 2°|| < &}.

The symbols U(z") and U°(2°) denote, in general, a neighborhood and
punctured neighborhood of the point z°.

In what follows, it will be, unless otherwise stated, assumed that values
of functions are real and finite.

Let the function v = ¢(x), z = (1,...,%,), be defined in U°(2). A
finite number A is said to be a limit at the point 2° of the function ¢(z),
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symbolically
lim_ pl@)=A or lim ¢(x1,...,z,) = A, (7)
r—xT Tr1—T]
P

if for every number £ > 0 there exists the number § = §(2°, ¢, ) > 0 such
that for all points z € U%(2°,§) the inequality

lo(z) — Al <&, ze€U°26) (8)

holds.
For the given in U(x°) function f(z) a total increment, or briefly, an
increment at the point ¥ is called the difference

Apof(x) = f(z) - f(2°), z€U(a?). 9)

The function f(x) is called continuous at the point z° if the value f ()
is finite and
lim Agof(z) = 0. (10)

T—x
This equality means that for every € > 0 there exists a number § =
§(2%, e, f) > 0 such that

|f(x)—f(ac0)‘ <e, xcU(@°0). (11)

In this case the point z° is called the point of continuity of the function
f(z) and according to (7) we write
lim f(z) = f(2°). (12)
z—x0
2. Let the function ¢ (x) be defined on the set E C R™ and let the
set e be the subset of E, e C E. The cases are available when the function
1 (x) on the subset e or, what comes to the same thing, along the subset
e has better property than on E. Therefore it is advisable to consider the
function ¢|e defined only on e which is called a restriction of the function
1 on e. Hence (¢|e)(x) = ¢(x) for all € e. In that case they say that the
function % is an extension of the function |e from e to E.

1.2. General Theorem on the Continuity and Existence of a
Finite Limit
1. We have the following

Theorem 1.2.1. The function f(x) is continuous at the point x° or
has at 2° a finite limit A, if and only if there is a neighborhood U(x°,9)
representable by a union of a finite number of sets My, for which the restric-
tion f|My, along My, is continuous at z°, or has the limit A, k=1,...,p,
p= p(:co,f) < +00.

Proof. For the continuity or for the existence of a finite limit A the number p
is equal to 1. Conversely, let the restrictions f| M}, along M, be continuous
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at the point 2%, k = 1,...,p. Therefore for every € > 0 there exists d; > 0
such that
‘(f|Mk) (z) — f(:L'O)| <e for €U 6)NM,.
Obviously, the number ¢ = 1r<r%€11<1 0k is positive (due to the finiteness of
<k<p

the number p), and hence

|[(FIM) (@) = f(2%)] <&

for
z € U6 ( U Mk) = U°,6)((U(°,4)) = U(a°, 5).
k=1

Thus |f(z) — f(2°)] < € for z € U(2°,6), and the continuity of the
function f(x) at the point z2° is obvious.
The case for the finite limit A is considered analogously. U

2. In the sequel we shall need the following easily verifiable

Proposition 1.2.1. Let the function of n variables f(x1,...,x,) be
defined in the neighborhood U(z°) of the point 2 = (z1,...,20) € R™.
We take any finite numbers x91+1,...,x2n and consider the point T° =
(29,...,2%,2% . 1,...,2%). In the neighborhood U(z") of the point T° €

R™F™ we define the function F by the equality
F(z1, .y Tny g1y oy Tm) = f(@1,. 0., Tn).
Then:
1) the continuity of the function f(x1,...,2,) at the point x° implies
the same for the function F(x1,...,%n, Tni1,---,Tm) at the point TO;
2) if f(x1,...,2,) has a finite limit A at the point 2°, then A is the
limit at the point TO for the function F(x1,...,Zn,Tnils--.,Tm) as well.

1.3. Separated Partial Limits and the Notion of Separately
Partial Continuity

Along with the points # = (z1,...,7,) € R* and 2° = (29,...,29) €

R™ we introduce the following notation ([5]):
2(2l) = (T1, . o i1, 20, Ti 1, - Tn), (1)
2¥(zj) = (2,..., 20, 25,20 4,...,20), (2)

which will allow us to write long expressions in a short form.

Let the function f(z) be defined in the neighborhood U (z°) of the point
20, The function of one z; variable f(x°(z;)) is called the i-th partial func-
tion at the point 2° of the function f(z), or the i-th coordinate function
of f(z) at 2°, which sometimes is denoted symbolically as ¢ f(z;). Conse-
quently, we have the function of one z; variable

Zf(fﬂz) = f(fﬂo(mi))- (3)
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1. The limit
1im0if(aci) = limof(aco(aci)), (4)

either finite or infinite of fixed sign, is called the i-th partial limit, or the
limit with respect to x; variable at z° for the function f(z).
The relations
f(a2?) = f(2°) = £(2°(a?)) ()

are obvious.

Definition 1.3.1 ([6]). We say that the function f(z1,...,2,) pos-
sesses separated partial limits (perhaps not equal) at the point x° if limit
(4) exists for alli =1,...,n.

The absence of the limit at the point z° for the function f(z) is obvious
if limit (4) does not exist at least for one value i. But the existence of
all separated partial limits (4) and even their equality does not imply the
existence of limit for the function f(z) at the point 2° (see, for e.g., the
function ¢ (z1, z2) from 7.3).

2. DBesides the notion of the continuity at the point #° which is some-
times called joint continuity at that point, there exists the notion of a sep-
arately partial continuity at the given point.

If the partial function °f(z;) = f(2°(z;)) is continuous at the point
29, then the function f(x) is called partial continuous at the point z° with
respect to the variable x;.

In this case the value f(z) is finite and according to (5) we have

lim f(a;) = f2%) = Tim f(2"(x). (6)

Equality (6) means that for every e > 0 there exists the number §; =

8;(22, e, f) > 0 such that the inequality

|"f (@:) — f(2")] < e (7)
is fulfilled for all z; € (xlo — 0, x? + 0;).

If we apply the notion of a partial increment at the point z° for the
function f(x) with respect to the variable x,

Ago f(x) = f(a”(zn)) = f(2°), (8)
which, due to the function * f(x), takes the form
Aa%f(x) = kf(xk) - f($0), (9)
then we can write (6) and (7) respectively as
i A () =0 (10)

and
|Ax(l)f(1')| <eg, x; € (l‘? — &4, l‘? + 51) (11)
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If the function f(z) at the point 2z is partial continuous with respect
to every variable, i.e., if equality (6) is fulfilled for all ¢ = 1,...,n, then the
function f(x) is called separately partial continuous at the point x°.

Obviously, the separately partial continuity of the function ¢ (z) at the
point 2° implies the existence of finite separated partial limits of 1 (z) at
20, equal to ().

It is easily seen that every continuous at z° function is separately partial
continuous at the point z°.

Indeed, the continuity of the function f(x1,...,2,) at the point 20 =
(29,...,29) is equivalent to equality 1.1.(12). Of all natural numbers 1,...,n
we take any 7 and suppose in equality 1.1.(12) that z; is equal to x]Q for all
j # 4. As a result we get (6). Hence f(z) with respect to x; is continuous
at 2. Thus we have established the desired result due to the arbitrariness
of i.

The converse statement is invalid: the separately partial continuity does
not imply the continuity. In detail this problem has been considered by
Z. Piotrowski in [19]. Among such facts Tolstov’s Theorem A in Introduc-
tion is of special attention [27].

§ 2. The Continuity is Equivalent to a Separately Strong Partial
Continuity

For the function of several variables we introduce the notion of the
continuity with respect to individual independent variable whose fulfilment
with respect to all independent variables ensures continuity, and vice versa.

To this end, for the function f(z), z = (1,...,x,) defined in the neigh-
borhood U (2°) of the point 2° = (29, ..., 2%) we introduce some definitions
using the symbols of 1.3(1) and 1.3(2).

2.1. Separately Strong Partial Continuity

Definition 2.1.1 ([6]). The difference
Apg f () = f(z) = f(2(2})) (1)

is called a strong partial increment at the point x° of the function f(z) with
respect to the variable xy.

Definition 2.1.2 ([4], [6]). The function f(z) is called a strongly
partial continuous with respect to the variable z) at the point 20, if the
equality

lim A[xg]f(l') =0 (2)

z—x0

is fulfilled.

Under equality (2) we mean that for every € > 0 there exists the number
8k = 01(z% ¢, f) > 0 such that

‘A[xi}f(acﬂ <e, xcU(d). (3)
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Proposition 2.1.1. The strong partial continuity with respect to the
variable xy, at the point 20 of the function f(xz) implies the partial continuity
of f(x) at 2° with respect to the same variable x;,, and not vice versa.

Proof. The fulfilment of equality (2) implies that the function A(x1, ..., z,)=
A[xg]f(xl, ..., @y) of variables z1, . .., x,, defined in U(2°) has zero limit at
the point 2° = (29,...,2%). In particular, the function A(z1,...,x,) will
have zero limit at 2% along the Oz axis, i.e., for partial values z; = x?,
j # k. Hence f(z°(z)) — f(2") — 0 as zp — z9. Thus we have obtained
equality 1.3.(10) for i = k.

The impossibility of the converse statement is illustrated by an example

of the function
0 for 1 -22=0
a1, 22) = P (4)
1 for X1 -T2 75 0

Obviously, this function is separately partial continuous at the origin
0 = (0,0).

It can be easily verified that the function ¢(x1,z2) does not satisfy
condition (2) at the point O for k = 1,2. This follows from the equality

1 for z 0

plr, @) — p(0,22) = 270 (5)
0 for 2o =0
1 for z 0

w1, 22) — olw1,0) = L0 (6)
0 for 1 =0

Thus the function (1, x2) is separately partial continuous at the point
O and does not possess the property of the strong partial continuity with
respect to each of variables at O. O

Regarding Definition 2.1.2 we make the following remarks.

Remark 2.1.1. Every function of one variable a(z1) can be considered
as function of variables z1,...,z,, assuming A(z1,...,z,) = a(x1), n> 1.
Therefore the strong partial continuity at the point (z9,...,22) of the func-
tion A(x1,...,x,) with respect to the variable 21 means the continuity of
the function a(z1) at z9.

Thus the notion of the strong partial continuity with respect to indi-
vidual variable is a convenient generalization of the notion of the continuity
of functions of one variable.

Remark 2.1.2. The fulfilment of equality (2) implies the same equality
for all functions of type f +w, where w is arbitrary finite in U(2°) function,
independent from the variable xj.

Definition 2.1.3 ([4], [6]). The function f(z) is separately strong
partial continuous at the point ¥, if f(x) with respect to every variable
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is strongly partial continuous at 2V, i.e., equality (2) is fulfilled for all k =
1,...,n.

Remark 2.1.3. Equality (2) for partial values x; = z{ for j # k implies
the equality
lim [f((@) — Fa)] =0, k=1,....m, (7)
Tp—x)
which shows that the function f(z) possessing the finite limit A at the point
20 will satisfy equality (7) only in the case A = f(2°).

2.2. The First Basic Theorem on the Continuity

Theorem 2.2.1 ([4]). For the continuity of the function f(x) at the
point x°, it is necessary and sufficient that it possess separately strong partial
continuity at z°.

Proof. To establish the necessity of the condition of our theorem, we take
arbitrary number k from the numbers 1,...,n and write following obvious
equality

f@) = f(z(aR)) = [f(2) = FO)] + [f(=°) = fa(2}))]. (1)

Since the function f(x) is continuous at the point z°, the expressions
in square brackets are arbitrarily small when the point z is close enough
to the point x°. This is equivalent to equality 2.1.(2) for natural number
k, which is taken arbitrarily. Hence the function f(x) is separately strong
partial continuous at the point 2.

To establish the sufficiency of the condition of our theorem, we start
with the fact that the function f(z) with respect to the variable x; is
strongly partial continuous at the point z%. Thus equality 2.1.(2) holds
for kK = 1, or what is the same thing, we have the equality

zanle [f(z) = f(af,22,...,2,)] = 0. (2)1

Similarly, the strong partial continuity of the function f(z) at the point
20 with respect to the variable x5 is equivalent to the equality

1irnO [f(ac) — f(x1,29, 23, ... ,xn)} =0,
which in a particular case 71 = 29 takes the form
hmo [f(z(lJa T2,... 71'71) - f(x(l)vxga 3, .. 71'71)} =0. (2)2
r—T

This process, according to strong partial continuity of the function f(z)
with respect to the variable z,, at the point z°, ends with the equality

xhn;o [f(zla cee 7xn71;1'n) - f(l'la cee 71'7171;1'%)} = 07
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which for partial values z; = x]Q for j=1,...,n—1, takes the form
115210 [f(2y,...,20 1 2,) — f(2%)] = 0. (2)n

From equalities (2);—(2),, we easily find that
T, [£(2) ~ £a")] =0,
which by the finiteness of f(2°) is equivalent to the equality
lim f(z) = f(2°). D

Remark 2.2.1. The importance in Theorem 2.2.1 is that the equality
2.1.(2) must be fulfilled for all values k = 1,...,n. If equality 2.1.(2) is
fulfilled only n—1 values, then the function may turn out to be discontinuous

at the point z°. This can be illustrated by an example of the following
function:
1 for a9 #0
T1,Ty) = . 3
plas, w2) {0 for 2o =0 (3)

Obviously, the function u(x1, x2) is discontinuous at all points belonging
to the Oxq-axis.

Besides, the function p(z1,22) is strongly partial continuous with re-
spect to the variable z; at every point (z9,0).

Indeed, by equality 2.1.(2) we have

Aoy, x2) = (w1, v2) — p(al, z2). (4)

This difference is equal to 1 —1 =0 for 3 # 0 and to 0 — 0 = 0 for x5 = 0.
Hence for arbitrary point (x1,z2) we have the equality

Apoypu(z1, z2) = 0. (5)

Consequently, the function u(x1,x2) is strongly partial continuous at
every point (29,0) with respect to the variable ;.

The function u(z1,z2) does not possess the property of the strong par-
tial continuity with respect to the variable x5 at the points (2?,0). This
follows from the fact that for all points (x1,z2) with 2o # 0 the equality
w(xy,x2) — p(z1,0) = 1 —0 = 1 holds. Hence p(z1,x2) does not satisfy
equality 2.1.(2) at the points (z9,0) for k = 2.

2.3. Statements Following From the First Basic Theorem
From identity 2.2.(1) we get the following

Theorem 2.3.1 ([4], [6]). For the continuity of the function f(x) at
the point 2° = (29,...,29), the following two conditions are necessary and
sufficient:

1) the function f(x) with respect to some one variable, say to xy, is

strongly partial continuous at the point x°;
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2) the function f(z(xY)) depending on the rest n — 1 variables is con-
tinuous at the point xV.

Along with the symbols 1.3.(1) and 1.3.(2) we introduce one more sym-
bol. If in = (z1,...,x,) we make change z; = z{ and z; = x]Q for j # k,
then the obtained point will be denoted by the symbol

2(23, 29). M)

If now we apply Theorem 2.3.1 to the function f(z(z?)) from the same
theorem, we will obtain the following result.

Theorem 2.3.2 ([6]). For the function f(x1,...,x,) of n variables to

be continuous at the point 2° = (29,...,2%), the following joint conditions
are necessary and sufficient:
(ir) the function f(x1,...,x,) is strongly partial continuous at the point

20 with respect to some variable xy;

(irt) the function f(z(29)) of n — 1 variables is strongly partial contin-
uous at 20 with respect to some variable x; with ¢ # k;

(ik1s) the function f(z(z,29)) of n — 2 wariables is strongly partial
continuous at the point x° with respect to some variable xs for s # k and
s#£ L.

The obtained in such away function of only one variable is continuous
at the point x0.

In the sequel, the use will be made of the following

Proposition 2.3.1 ([6]). The strong partial continuity of the function
f(x1,...,2,) at the point 2° = (29,...,20) with respect to some variable
xy implies the strong partial continuity of the function f(x(z%)) at the point

20 with respect to the same variable x4, no matter whatever k # £ is.

Proof. The existence of a finite limit for the function ®(z) at the point z°
along some set E implies existence of the same limit for ®(z) at 2° along
every subset M C E with the limiting point 2°. Therefore the strong partial
continuity of the function f(x) at the point 2° with respect to the variable
z¢ implies the same for the function f(z(2?)) at the point z° with respect
to xy with £ # k.

In greater detail, in equality 2.1.(2) written for 20 we replace the point
x by a partial point :c(:cg) As a result, we obtain the equality

lim [f(e(e))) - f(2(f,20))] = 0. (2)

z—xz0
This means that the function f(z(z?)) is strongly partial continuous at the
point z° with respect to the variable z,. O

On the base of Proposition 2.3.1, from Theorem 2.3.2 we obtain the
following sufficient conditions for the continuity.



On the Continuity and Differentiability 25

Theorem 2.3.3 ([6]). If the function f(x1,...,2z,) with respect to
some one variable is partial continuous at the point x° = (29,...,2%) and,
besides, strongly partial continuous at x° with respect to every of the re-
maining n — 1 variables, then the function f(x1,...,2,) is continuous at
the point 2°, and hence f(x1,...,x,) is strongly partial continuous at x°
with respect to the same variable, mentioned at the begining of the theorem
(by Theorem 2.2.1).

§ 3. The Continuity is Equivalent to a Separately Angular
Partial Continuity

For the function of several variables we again introduce a new notion
of continuity with respect to a individual independent variable, whose ful-
filment with respect to all variables is equivalent to the continuity.

In the previous Section 2, the variable point = (x1,...,x,) tends to
the fixed point 20 = (29,...,2%) without some condition on that tending.
This fact was accompanied with the word “strongly”.

Now the tending will be considered under certain conditions. We begin
our investigation with the introduction of notions which will be needed in
the sequel.

3.1. Separately Angular Partial Continuity

Let a finite function f(z) be defined in the neighborhood U (z?) of the

point 2° = (29,...,29), x = (21,...,3,) € U(2?).

Definition 3.1.1. The expression
A% f(2) = f(@) — fla(an) for |o; —all < cjloe —afl, Gk (1)

depending on the variables x1,...,x,, is called an angular partial incre-
ment of the function f(x) at the point z° with respect to the variable xy,
corresponding to the collection ¢ = (¢1,...,¢Ck—1,Chkt1,--.,Cn) of positive
constants.

Definition 3.1.2 ([2], [4]). The angular partial continuity of the
function f(x) at the point 2° with respect to the variable z; means the
fulfilment of the equality

lim A% f(z) =0 (2)

Tp—T),
for every collection ¢ = (c1,. .., Ck—1,Ckt1,- - -, Cn) Of positive constants*.

Obviously, in this case we likewise have remarks analogous to Remark
2.1.1 and 2.1.2.

*From equality (1) we can see that: (1) the angular partial continuity with respect

to the given variable is defined by n — 1 arbitrary positive constants; (2) from z; — a:g

it follows that x; — :v(; for all 5 # k.
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It is also evident that the strong partial continuity of the function f(z)
at the point x° with respect to the variable x; implies its angular partial
continuity with respect to the same xj, at 2°.

Definition 3.1.3 ([2], [4]). The function f(x) is separately angu-
lar partial continuous at the point z°, if with respect to every variable
the function f(x) possesses the property of angular partial continuity at
the point 20, i.e., if for all k = 1,...,n and for every collection ¢ =
(c1y. -y Ck—1,Ckt1,-- -, Cn) of positive constants, equality (2) holds.

3.2. The Second Basic Theorem on the Continuity

Theorem 3.2.1 ([2], [4]). For the continuity of the function f(x) at
the point x°, the necessary and sufficient condition is its separately angular
partial continuity at z°.

Proof. The necessity of the condition follows from the fact that the continu-
ity of the function f(z) at the point 2° implies the strong partial continuity
of the function f(z) at #° with respect to every variable, by Theorem 2.2.1.
In its turn, this implies the angular partial continuity of the function f(x) at
20 with respect to every variable. Hence we have separately angular partial
continuity of the function f(z) at the point x°.

Let us now prove the sufficiency of the condition of the above theorem.
Let the function f(z) be separately angular partial continuous at the point
20, Hence equality 3.1.(2) holds for every variable zx(k = 1,...,n) and for
arbitrary collection of positive constants. In particular, equality 3.1.(2) will
take place for every zx(k =1,...,n) and for ¢; = 1, j # k.

We represent the space R"™ as a union of pyramids Pi,..., P, with
common vertices at the point 2°. Every pyramid Py is defined by a system
of inequalities |z; — 29| < |z — 2P| for all j # k. The pyramid here is
understood as two-sheeted, i.e., extending infinitely to both sides from the
vertex 0.

To establish the continuity of the function f(z) at the point 20, it
is necessary and sufficient to prove that, by virtue of Theorem 1.2.1, the
equality

lim f(x) = f(2%) (1)
e
is valid for every k =1,...,n.

Without loss of generality, it will be sufficient to prove equality (1) for
the case k = 1, so our subsequent reasoning is connected with that case.
Thus it will be assumed that the point = (z1,...,2,) tends from the
neighborhood U(z°) to the point 2° = (29,...,2%) under the condition
x € Pl.
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Since the function f(z) possesses the property of angular partial conti-
nuity at the point z° with respect to the variable z;, we have the equality

tin, [f(2) — f(o(aD)] = 0. @)
b
The point x(2?) = (29,22,...,2,) belongs to some pyramid* from

Ps, ..., P,. Suppose that the point 2(z{) belongs to A;, with i; # 1. Along
with equality (2); and the fact that the function f(z) is angular partial
continuous with respect to the variable x;, at the point 2°, we have the
equality
,Hmo [f(x(ac?)) - f(x(ac?,x?l ))} =0, (2)1'1
x(z(]?_{gPll

where z(29, 20 ) denotes that point (29, ...) from P;,, whose i1-th coordinate

is 22 (see notation 2.3.(1)).

Now the point ac(x?,x?l) belongs to some P;, with i # 1 and i3 # ;.
Continuing this process, as a result we obtain a point whose all coordinates
are fixed, except one.

This variable coordinate is z;, ,. Thus the point belongs to the pyramid
P;, ., and it can be written as 2°(z;,_,) (see notation 1.3.(2)). As a result,
we have the equality

lim [f (xo(minfl) - f(xo)] =0. (2)%71

I*MEO

zo(zin71 )EP;

n—1

Consequently, starting from the point = (z1,...,2,) € P belonging
to U(z?), we took by one point from every pyramid P,, and finally arrived
at the point z°, m = 2, ..., n. In such a way we have taken into account the
behavior of the function f(z) in U(z") with respect to every independent
variable.

Comparing equalities (2)1, (2);,—(2);,_,, we obtain equality (1) for
k=1.0

3.3. The Third Theorem on the Continuity

In proving the sufficiency of the condition of Theorem 3.2.1, we have
revealed the fact that which was formulated in the form of the following

Theorem 3.3.1. For the function f(z), x = (x1,...,2,) to be contin-
uous at the point 2° = (29,...,20), it is necessary and sufficient that
. 0 _
lim — [f(z) = f(z(z}))] =0 (1)
Tp—T )
z;—af|<|zp—af|
J#k
*In case n = 2 we have the points z = (z1,22), 2° = (2,z2), and the point
z(z9) = (29,22) belongs to the pyramid P», which in this case represents the angle

{(z1,32) : |w2 — 29| > |21 — 2?|}. More precisely, the point z(z{) belongs to the straight
line z1 = 29. In case n = 3, the point z(z9) = (29, 22, z3) belongs to Py, or to Ps.
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foreveryk=1,... n.

3.4. The Summarizing Theorem on the Continuity

On the base of Theorems 2.2.1, 3.2.1 and 3.3.1 we obtain the following
summarizing theorem.

Theorem 3.4.1 ([4]). Separately strong partial continuity of the func-
tion f(z), = (x1,...,2y), at the point 2° = (29,...,2%) and separately
angular partial continuity of the same function f(x) at the point x° are
equivalent, and each of them is equivalent to the continuity of the function
f(x) at the point 20, which in its turn is equivalent to the fulfilment of

equality 3.3.(1) for every k =1,... n.

Remark 3.4.1. The content of Sections 2 and 3 shows that to the notion
of the continuity of the function of one variable there correspond separately
strong partial continuity and separately angular partial continuity.

Remark 3.4.2. If the equality
lim [f(z) — f(z(z}))] =0,
Tp—Ty
lzj—al|=|ey—z3]
#k
does not hold at least for one value k from 1,...,n, then the function f(z)
is not continuous at the point x°.

§ 4. The Nonexistence of the Limit and the Continuity
4.1. The Nonexistence of the Limit

Theorem 2.3.1 states, in particular, that the continuity of the function
f(x), v = (21,...,2,) at the point 2° = (29,...,29) follows from the
following two facts:

1) the function f(x) with respect to some one variable z; is strongly
partial continuous at the point z°;

2) the function of the remaining n — 1 variables f(x(x9)) is continuous
at the point 2°.

There naturally arises the question: Does the function f(z),
x = (21,...,2Zn), n > 1, possess the limit at the point 2° = (29,...,29), if
condition 1) is fulfilled, and instead of condition 2) the condition that

2') the function f(z(x9)) has the limit at the point z, is fulfilled?

The answer is negative. This can be illustrated by an example of the
function p(x1,x2) given by equality 2.2.(3), which is strong partial contin-
uous with respect to the variable x1 at all points (29, 0).

Hence condition 1) is fulfilled for j = 1 at every point (29,0). Moreover,
the function u (21, x2) has no limit at all points (29,0). In fact, the function
w(x1, ) at the points (z9,0) has numbers 0 and 1 as partial limits with
respect to variables z7 and xs, respectively. Hence the function p(z1,22)
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has at all points (29,0) the finite separated partial limits, different from
each other.
This implies that the function p(x1, x2) has no limit at all points (29, 0).
All the above-said can be summarized in the form of the following

Proposition 4.1.1 ([6]). The strong partial continuity of the function
flz1,...,2n), n > 1, with respect to some one variable x; at the point 20 =
(29,...,29) and the existence of the finite limit for the function f(:c(:c?))
with respect to the remaining n — 1 variables collectively at the point z°, do
not guarantee the existence of the limit for the function f(x1,...,xy) at the

point z°.

Remark 4.1.1. In connection with Proposition 4.1.1, it should be noted
that the necessary and sufficient conditions for the existence of a finite limit
will be given in subsection 7.3.

4.2. The Continuity Under the Finite Limit

There arises the question: if the finite limit does exist, what kind of
additional conditions are necessary and sufficient for the function of several
variables to be continuous?

Theorem 4.2.1 ([6]). For the function f(z), x = (x1,...,2,) to be
continuous at the point 2° = (29,...,20), the following two conditions are
necessary and sufficient:

1) the function f(x) at the point x° is partial continuous with respect
to some one variable (see equality 1.3.(6));

2) the function f(x) has finite limit at the point z°.

Corollary 4.2.1 ([6]). For the continuity of the function f(x) at the
point x°, the following two conditions are necessary and sufficient:

1) the function f(x) at the point 2° has either the property of a strong
partial continuity, or that of an angular partial continuity with respect to
some one variable;

2) the function f(x) has a finite limit at the point x°.

§ 5. Results on the Continuity of Functions of Two Variables

It seems to us advisable to collect all the results on the continuity of
functions of two variables which have been stated for functions of n variables.
This is convenient owing to the fact that the two-dimensional case is more
transparent from the geometrical viewpoint.

Thus let a finite function of two variables ¢(x1,z2) be defined in the
neighborhood U (z) of the point 2° = (29, x9).
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5.1. Separately Strong Partial Continuity, and Continuity

The strong partial continuity of the function ¢(x1,z2) at the point

20 = (29, 29) with respect to the variable 1 means the fulfilment of the
equality
hmo [(p(xth) - (p(x(l)a $2)} =0 (1)
T1—T]
$2—>:C8

and the strong partial continuity of the same function with respect to the
variable x5 means the fulfilment of the equality
lim [p(x1,22) — (21, 25)] = 0. (2)
3,‘1—>l‘1
{172*%173
The function ¢(x1,z2) is separately strong partial continuous at the
point 20, if equalities (1) and (2) are fulfilled.
For that case, the first basic Theorem 3.2.1 on the continuity reads as
follows:

Theorem 5.1.1 ([2]). For the function ¢(x1,x2) to be continuous at
the point 2, i.e., for the equality
lim (w1, w2) = (2, 23) (3)
zlﬂz(f
$2—>:C8
to be fulfilled, it is necessary and sufficient that the function ¢(x1,22) be
separately strong partial continuous at the point z°.

Theorems 2.3.1 and 2.3.2 are especially simple for the case n = 2, where
they coincide and take the form of

Theorem 5.1.2 ([2], [4]). For the function ¢(x1,x2) to be continuous
at the point 2°, it is necessary and sufficient that p(x1,32) be strongly partial
continuous at 0 with respect to one of the variables, and partial continuous
at the point x° with respect to the other wvariable. That is, it is necessary
and sufficient that either equality (1) and the equality

11111090@?7302) = go(ac?,xg) (4)

T2—Ty
or equality (2) and the equality
lim o(x1,23) = p(af, 23) (5)

z1—xf
be satisfied pairwise.
This theorem results in the following

Corollary 5.1.1 ([4]). Let the function p(z1,22) be separately partial
continuous at the point 2, i.e., let equalities (4) and (5) be fulfilled. Then
for the function p(x1,x2) to be continuous at the point x° it is necessary and
sufficient that p(x1,x2) to have at the point 20 the property of the strong
partial continuity with respect to one of the variables.
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Corollary 5.1.1 and Theorem 5.1.1 lead to

Corollary 5.1.2 ([4]). If the function o(x1,12) at the point z° pos-
sesses the properties of strong partial continuity with respect to one of the
variables and partial continuity with respect to to the other wvariable, then
the function @(x1,x2) possesses the property of the strong partial continuity
at the point 20 with respect to that latter variable.

For n = 2, Theorem 4.2.1 takes the form of

Theorem 5.1.3 ([6]). For the continuity of the function ¢(x1,x2)
at the point 2° = (29, 29), the following two conditions are necessary and
sufficient:

1) the function ¢(z1,x2) has finite limit at the point x°;

2) either equality (4), or equality (5) is fulfilled.

5.2. Separately Angular Partial Continuity, and Continuity
The angular partial continuity of the function ¢(x1,z2) at the point
20 = (29, 29) with respect to the variable 21 means that the equality*

lim [p(a1,x2) — p(af, x2)] =0 (1)

:Cl—>£C(1)
lz2— 5| <oz —=9|

is fulfilled for every constant co > 0.
The angular partial continuity of the function ¢(z1, z2) at the point z°
with respect to the variable x5 means that the equality
hmo [@(Ila IQ) - 4,0(301,308)} =0 (2)
T2—To
|z —a?|<cilwa—z8)

is fulfilled for every constant ¢; > 0.

The separately angular partial continuity of the function ¢(z1,z2) at
the point 2° means that the function ©(x1,22) has at the point 20 the
properties of angular partial continuity both with respect to z; and to xs.

For n = 2, the second basic Theorem 3.2.1 on the continuity takes the
form of

Theorem 5.2.1. ([2]). For the function ¢(z1,x2) to be continuous at
the point ¥, it is necessary and sufficient that this function be separately
angular partial continuous at the point x°.

The following theorem is also valid.

Theorem 5.2.2 ([2], Corollary 1.1). For the function @(x1,x2) to be
continuous at the point x°, it is necessary and sufficient that the following

*The relation zo — xg in equality (1) follows from the relations z; — a:(l) and
|z2 — 29| < co|z1 — 29|. Similarly in (2).
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two equalities

lim [p(a1,x2) — p(a,x2)] = 0 (3)

$1—>£C(1)
zy—z5| <clw —af|

and
lim [o(z1,22) — @(x1,29)] =0 (4)

1}2*)1}%
|2~ a3 >cler—af]

be fulfilled at least for one constant ¢ > 0.
The third Theorem 3.3.1 on the continuity has the form of

Theorem 5.2.3. For the continuity of the function ¢(x1,x2) at the
point z°, the following two equalities
lim [cp(:cl, 1‘2) - 30(1'(1); 1'2)] =0 (5)

11*)1(1)

22 —5|< |1~y

and

lim [ap(xl, x2) — (1, xg)] =0 (6)

$2—>:C8
o1 —af|<|z2—a3)

are mecessary and sufficient.

Remark 5.2.1. The fulfilment of equality (3) separately for one of the
constant ¢ > 0, in particular of equality (5), is not equivalent to angular
partial continuity of the function (p(x1,x2) at the point 2° with respect to
the variable x1.

Similar situation takes place for the variable x5.

Remark 5.2.2. The sufficient condition for the continuity of the function
of two variables, when it is continuous with respect to each of variables, can
be found Theorem 2.2.3 of Chapter III.

§ 6. Continuity in the Wide and Its Application

6.1. Increment in the Wide

Let the function f(x), x = (z1,..., %) be defined in the neighborhood
U(z) of the point 20 = (29,...,29).
Construction of the increment

Ago f(x) = fla) — f(2°) (1)
for the function f(x) at the point 2° (see equality 1.1.(9)) shows that the in-
crements x; fm?, 7 =1,...,n are attached simultaneously to all coordinates

9 of the point z°.
We shall now construct an expression of another structure, which will
be called an increment in the wide sense.
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It is clear that the expression, defined by equality 2.1.(1), depends on
the variables x1,...,2y:

Aporf(x) = f(z) = f(a(ay). (2)
We introduce an auxiliary function

and write equality (2) for the function A(z1,...,x,) at the point 2° with
respect to some variable z; with j # k. As a result we obtain the new
function

which again depends on x1,...,x, variables.

For the function u(x1, ..., x,) we likewise write equality (2) at the point
20 for some variable z,, where ¢ # k and ¢ # j. This procedure will be
continued until all x4, ..., x, variables are exhausted. Final result is called
an increment in the wide of the function f(x) at the point #° and denoted
by Aﬁco]f(l’)

An important property of the above procedure is that the final result
does not depend on the order of forming strong partial increments at the
point 2° by formula (2) for the required functions. Therefore the following
definition is correct.

Definition 6.1.1 ([4], [7]). An increment in the wide at the point z°

for the given in U(2°) finite function f(z), z = (x1,...,2y), is called the
expression
Al o f(2) = (Alag) 0 Apggy 0 -+ 0 Aoy ) () (@), (5)
where
A[mg}F(x) = F(x) — F(:c(m?)) (6)

Hence to get A&O}f(x) we have to take in the equality (6) instead of
F and j the f and j = n, Apof and j = n — 1, and so on, and finally
A[mg] o:-+0 A[a%]f andj =1.

The case n = 2 we distinguish separately. If a finite function of two

variables (1, x2) is defined in the neighborhood of the point 20 = (29, 9),

then the strong partial increment at the point 20 with respect to the variable
x1 for p(xq1,x2) is

Apop(er, z2) = o(x1, 1) — @(a, 22) (7)
and the strong partial increment with respect to o is equal to

Apge(er, 22) = p(21, 1) — (21, 25). (8)
Hence the increment in the wide at the point 2° for p(x1,22) is equal to

A[2;c0]90(x1a1'2) = cp(xlazQ) - 30(1'(1)’ 1'2) - 50(1'1733(2)) + (p(l‘?,l‘o). (9)
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It should be noted that expression (9) takes place in the definition of
the function of bounded variation (see, e.g., [11], § 254).

6.2. The Continuity in the Wide

Definition 6.2.1 ([4], [7]). The given in U(z") finite function f(x) is
said to be continuous in the wide at the point z°, if

In what follows, it is expedient to write the continuity in the wide for the
function of two variables, in the form of two equivalent equalities.

The function ¢(z1,22), finite in the neighborhood of the point z° =

(29, 29) is said to be continuous in the wide at the point z°, if

Hmo [@(Ith) - (p(xcl)7x2) - @(Il, $(2J) + (p(x(lJ) Ig)] =0 (2)
T1—x]

To—x)
or what is the same thing, if
lim [p(2?,22) + ¢(z1,25) — p(21,22)] = p(a], 23). 3)
.

6.3. The Increment in the Wide for the Sum

If in the neighborhood U(z°) of the point 2° = (29,...,2%) there are
finite functions fi(z1,...,2Zn),. ., fm(z1,...,2,), then the equality

Afo) > fil@) =D Alofi(), z=(21,....2,) €UE"). (1)
j=1 j=1

holds.

6.4. The Increment in the Wide for the Special Sum

Consider finite functions of special type:
Y R SR, k=1,...,n, (1)
each of which depends on n — 1 variables. Consider the summary function

1/)(55) = ¢1($2,$37 e 71'71) + T/)2(9917333a .. azn)+

+"'+wn(zlaz2a"'azn71) (2)
depending on & = (x1,...,2y).
From equality 6.1.(2) it follows that
A[xg]ll)k(l') :0, k= 1,...,n. (3)

Taking into account the fact that succession order in equality 6.1.(5)
does not play an important role, from equalities (3) we obtain

A&o]wk(lﬂ) :0, k= 1,...,n. (4)
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Now, equalities 6.3.(1) and (4) yield

Consequently, every finite in U (20) function v (x) of type (2) is contin-
uous in the wide at every point z° = (29,. 0) even for discontinuous in
the ordinary sense at z¥ functions ¥y (x), k

6.5. The Sufficient Condition for the Continuity in the Wide*

Theorem 6.5.1 ([4], [7]). If the function f(x) is strongly partial
continuous with respect to some one variable at the point x°, then f(zx) is
continuous in the wide at the point z°, and not vice versa.

Proof. Suppose that the function f(z) is strongly partial continuous at the
point z° with respect to the variable z;. Then the equality

Tim [£(2) — f(2(23))] =0 (1)

holds.
Since Aﬁco] f(x) does not depend on the order of making up strong

partial increments, to construct the right-hand side of equality 6.1.(5) we
shall start with that of Ao f (z). Our next step is to construct a strong
J
partial increment for the function Ao f(z) at the point 20 with respect to
J
some variable z, with £ # j. Having realized all this, we have

Ao (Ao f) (@) = Apoyf(z) — (A[xg]f(fﬂ))w:xg =
= [f@) = f(2@)] = [f(2) = f(2(@)], —po =
= [f(@) = f(z(a))] — [f(z(2?)) — f(a(2F,2D))].

By equality (1), the both differences in the square brackets tend to zero
as T — .

As a result of finite number of steps, we obtain equality 6.2.(1), i.e., the
function f(x) will turn to be continuous in the wide at the point z°.

By means of formula 6.4.(5) we find that the converse statement is in-
valid. Indeed, for arbitrary finite functions a(x1) and 3(x2), not necessarily
continuous, we have

A[on]w(acl, x2) =0, (2)
where 20 = (20, 29) is arbitrary point from R?, and
w(wy, w2) = a(z1) + B(w2). (3)

Hence the function w(xy,z2) is continuous in the wide at every point
from R2. O

Theorems 2.2.1 and 6.5.1 lead to

*Another sufficient condition for the continuity in the wide for functions of two
variables will be given in Chapter III (see Proposition 2.2.1 of Chapter III).
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Corollary 6.5.1 ([4], [7]). If the function f(x) is continuous at the
point 20, then it is continuous in the wide at the same point z°. The con-
verse statement is invalid.

Remark 6.5.1. The function w(z1, z2), defined by equality (3), is con-
tinuous at the point 2° = (29, 29), iff a(x1) is continuous at ¥, and B(x2)
is continuous at 9.

This follows from Theorem 5.1.1 and from the fact that
w(zy, 13) — w(al, 22) = a(zy) — a(x)), (4)

w(z1,22) —w(z1,23) = B(x2) — Bla). (5)

Remark 6.5.2. The function p(zq,xz2), defined by equality 2.2.(3), is
continuous in the wide at every point from R2.

Indeed, the continuity in the wide of the function p(z1,z2) at the point
(29, 0) follows from Theorem 6.5.1, with regard for the fact that the function
u(x1, x2) at these points is strongly partial continuous with respect to the
variable 1. The function u(xy,z2) at the remaining points from R? is
continuous and therefore is continuous in the wide, by Corollary 6.5.1.

Remark 6.5.3. The statement of Theorem 6.5.1 can be easily realized
for functions of two variables.

Indeed, if the function op(x1,2) at the point 2° = (29, 29) is strongly

partial continuous with respect to the variable x1, then we write the right-
hand side of equality 6.1.(9) in the form
[@(Zla :L'Q) - (p(l‘(l), 1‘2)} - [cp(:cl, l‘g) - (p(l‘(l), 1’(2))};
which tends to zero as (z1,x2) — (29, 29).
However, if the function ¢(z1,22) at the point x° is strongly partial
continuous with respect to the variable x2, then we write the right-hand
side of the same equality in the form

[@(Zla :L'Q) - cp(:cl,acg)} - [(p(l‘?,l‘g) - (p(l‘(l), 1’(2))};

which also tends to zero as (1, x2) — 2°.

6.6. The Continuity of the Function of Two Variables Under Its
Continuity in the Wide

From subsection 1.3 it is well-known that separately partial continuity
does not imply the continuity™.

Moreover, as we see, the property of continuity in the wide is far from
that of the continuity.

*Below will be given one sufficient condition for the continuity of the function, when
this function is separately partial continuous (see Theorem 2.2.3 in Chapter III).
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Let us now prove that these two properties simultaneously guarantee
the continuity, and vice versa.

Just this is the answer to the question: what useful information does
the notion of the continuity in the wide carry?

Theorem 6.6.1 ([7]). The finite function @(x1,x2) defined in the
neighborhood of the point 2° = (29, 29) is continuous at 2°, iff the function
o(z1,22) at the point 2° is both separately partial continuous and continuous
in the wide.

Proof. If the function ¢(z1,z2) possesses both the above-mentioned prop-
erties at the point 20, then its continuity at 2% follows from the equality

(p(l’(l) + h,l‘g + k) - SD(I'(I)a :L'(QJ) =
+p(a} + h,ad) — p(af, a3)] + [p(af, 25 + k) — p(af,25)]. (1)
It is then obvious that the continuous at the point 2° function ¢(z1, z2)
possesses both properties, mentioned in Theorem 6.6.1. [J

The following corollaries of that theorem are worth mentioning.

Corollary 6.6.1. Let the function o(x1,x2) be separately partial con-
tinuous at the point 2° = (29,29). Then for the continuity of the function
o(z1,22) at the point x°, it is necessary and sufficient that this function be

continuous in the wide at 9.

Corollary 6.6.2. Let the function p(x1,x2) be continuous in the wide
at the point 2° = (29,29). Then for the continuity of the function o(z1,z2)
at the point x°, it is necessary and sufficient that this function be separately

partial continuous at z°.

Remark 6.6.1. Discontinuous at the given point functions of two vari-
ables, mentioned in subsection 1.3 are not continuous in the wide at that
point. G. Tolstov’s functions from Theorem A fail to have the property of
the continuity in the wide at the points of discontinuity, i.e., at almost all
points (see Introduction in Chapter I).

§ 7. The Limit in the Wide and Its Application
7.1. The Notion of the Limit in the Wide

In the analysis, the notion of the continuity is introduced on the base
of the notion of the limit. For the notion of the continuity in the wide we
can refer preceding notion of the limit in the wide.

It is obvious that the increment in the wide defined by equality 6.1.(5)
for f(z) at the point 2° involves the f(z°).
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Now we replace the f(2°) in A0, f(z) by finite B and the obtained
expression write symbolically as

n

o)/ (@) 5 g0y - (1)
Introduce the following

Definition 7.1.1 [([7]). The finite B is said to be the limit in the wide
for the function f(z) at the point 20, if the equality
xli_{glo (A&O]f(l‘”f(zO):B) =0 (2)

holds.
The following proposition is obvious.

Proposition 7.1.1. The function f(x) continuous in the wide at the
point 0 has the limit in the wide at 2°, which is equal to f(x°).

Definition 6.2.1 can now be rephrases in the form of

Definition 7.1.2 ([7]). The function f(z) is continuous in the wide at
the point 29, if the f(2) is finite and f(2°) is the limit in the wide for the
function f(x) at the point 2°.

On the base of equality 6.1.(9), the finite B will be the limit in the wide
for the function ¢(x1,x2) at the point 29 = (29, 29), if
Tim [p(ar,22) — (o, 22) — ple1,23) + B] = 0. (3)
el
Generally number L, finite or infinite of fixed sign, will be the limit in
the wide for the function ¢(z1,x2) at the point (29, 29), if
lim_ (e, 22) + ol@1,29) — p(a,22)] = L. (1)

T1—T]
CEQ*)CEg

Proposition 7.1.2 ([7]). If the function f(x) has a finite limit in the
wide at the point x°, then this limit is unique.

In order to show this, it is necessary write equality (2) for finite B and
B; and then consider their difference.

7.2. The Existence of the Limit in the Wide

Theorem 7.2.1 ([7]). If the function f(x) has finite limit B at the
point 2°, then B is likewise the limit in the wide for the function f(z) at
the point z°.

Proof. 1If the function f(z) is continuous at the point z°, then f(x) is
continuous in the wide at 2, by Corollary 6.5.1. Therefore the finite f(x°)
is the limit in the wide for f(x) at 2°, by Definition 7.1.2.
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Suppose now that the function f(x), possessing at the point 2° the
finite limit B, is discontinuous at .

If we introduce a new function f*(x) = f(z) for z # 2° and f*(2°) = B,
then f*(z) is continuous at 2°, and inequality f*(z) # f(x) is fulfilled only
for z = x°. Thus

Afyo (@) = Afyoy f*(2) = f(2°) = £*(2°) = f(=°) - B,

whence
Af;O}f(:c)|f(x0):B — Afo f*(z) =B—B=0. (1)
But according to Corollary 7.5.1, we have
Jim, A () = @

Equality 7.1.(2) is obtained now from equalities (1) and (2). O

Proposition 7.2.1 ([7]). The existence of the finite limit in the wide
for the function u(z1,...,x,), n > 1, at the point 2° does not imply the
existence the limit for u(x1,...,x,) at 2°, neither finite, nor infinite.

Proof. The function p(z1,22) given by equality 2.2.(3) is continuous in
the wide at every point from R?, in particular at the points (z9,0), by
Remark 6.5.1. Therefore the function u(z1,22) at the points (z9,0) has
the limit in the wide equal to u(29,0) = 0, by Proposition 7.1.1. On the
other hand, the function p(r1,z2) has no limit at the points (z9,0), as is
mentioned in subsection 4.1. [J

7.3. The Necessary and Sufficient Conditions for the Existence a
Finite Limit for Functions of Two Variables

As is known, the existence of the finite limit does not follows from
existence of equal finites separated partial limits. This can be illustrated,
for example, by means of the function ¥ (z1, z2) = fflﬁci for (z1,x2) # (0,0)
and ¢(0,0) = 0. This function is separately partial continuous at the origin
O = (0,0). In particular, ¢(x1,22) has zero separated partial limits at
the point O. The absence of the limit for ¢(z1,z2) at O follows from the
equality ¢(r cos6,rsin6) =  sin 26.

Besides, the existence of the finite limit does not follows from the exis-
tence of the finite limit in the wide (see Proposition 7.2.1).

Remarkable is that the both properties together implies the existence
of the finite limit, and vice versa.

Thus we have shown what informational load carries the notion of the
limit in the wide.

Theorem 7.3.1 ([7]). The finite number A will be the limit for the
function ¢(x1,x2) at the point 2° = (29, 29), iff the function p(x1,x2) has
simultaneosly at the point x° separated partial limits and the limit in the

wide which are equal to A.
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Proof. If A is the limit at the point 2 for the function ¢(z1, z2), then A for
©(x1,x2) is both the limit in the wide (see Theorem 7.2.1) and, obviously,
separated partial limits.

The converse follows from the equality, which will be obtained by sub-
stituting (29, 29) by A in equality 6.6.(1). O

Remark 7.3.1. The function ¢ (x1,x2) from subsection 7.3, devoid of
the limit at the point O = (0,0), has no zero limit in the wide at the point
O, by Theorem 7.3.1. Majority functions mentioned in subsection 1.3 of
Piotrowski’s work ([19]) possess analogous property.

§ 8. Partial Continuity with Respect to One of the Variables,
Uniformly with Respect to the Other Variable

We have already got acquainted with the necessary and sufficient con-
ditions for the continuity of functions of two variables (see § 5 and subsec-
tion 6.6). In this section we give somewhat different sufficient condition for
the continuity of functions of two variables. The facts stated here will be
applied to the questions of Chapter IV (see § 6, § 7 and § 9).

Let the finite function of two variables ¢(x,y) be defined on the rectan-
gle Q@ = {(z,y) € R?:a <2 <b, c<y<d}, and let the point (zo,y0) € Q.

Definition 8.1 ([2]). The function ¢(z,y) is called partial continuous
with respect to z at the point 2°, uniformly with respect to y on the [c1, d1],
c < c1 < di <d, if the equality

lim [p(z,y) — ¢(z0,y)] =0 (1)

z—z0
takes place uniformly with respect to the variable y € [¢1, d1].

Similarly, the function ¢(z,y) is partial continuous with respect to y at
the point yo, uniformly with respect to x on the [a1,b1], a < a3 < by <b, if
the equality

Jim, [p(z,y) — @(,90)] =0 (2)
is fulfilled uniformly with respect to the variable x € [a1, b1].

Proposition 8.1 ([2]). If the function ¢(x,y) is partial continuous
with respect to x at the point xo, uniformly with respect to y on the [c1,d1],
then @(x,y) is strongly partial continuous with respect to x at every point
(zo,y™) with c1 < y* < dj.

Proof. For sufficiently small k, the point y* + k belongs to [c1, d;], and by
equality (1) we have

k—0
Thus equality 5.1.(1) is fulfilled. O
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Proposition 8.2 ([2]). If the function ¢(x,y) is partial continuous
with respect to x at the point 2°, uniformly with respect to y on the [c1,d1]
and the function of one variable o(x,y) is continuous at some point y* with
1 < y* < dy, then the function p(x,y) is continuous at the point (xg,y*).

Proof needs Proposition 8.1 and Theorem 5.1.2.

Remark 8.1. If the function (g, y) is not continuous at the point y*,
then the conclusion of Proposition 8.2 is invalid.

Indeed, let the function a(x) be continuous at the point g € [a, b], and
let the finite function S(y) be discontinuous at the point y* € (c¢1,d;). Then
the function g(x,y) = a(z) + B(y) is discontinuous at the point (xq,y*),
although

9(z,y) — g(wo,y) = a(x) + B(y) — a(zo) — By) = a(z) — a(zg) — 0

uniformly with respect to y from the neighborhood of the point y*, as
xr — XZg-

Theorem 8.1 ([2]). Let the function o(x,y) be continuous on the
rectangle Q. Then ¢(x,y) is:

1) partial continuous with respect to x at every point xg € [a,b], uni-
formly with respect to y on the [c,d];

2) partial continuous with respect to y at every point yo € [c,d], uni-
formly with respect to x on the [a,b].

Proof. Since the function ¢(x,y) is continuous on the bounded closed set
Q, then ¢(z,y) is uniformly continuous on the @, by the classical Cantor’s
theorem. Therefore for every € > 0 there exists the number § = d(e, ) > 0
such that
lo(@1,51) — @(w2,2)| < € (3)

for (z1,y1) € Q and (z2,y2) € Q under |z — x2| < § and |y — ya| < 4.

We take arbitrary points g € [a, b] and yo € [c, d], suppose that zo = xg
in inequality (3) and replace 1 by any point = € [a,b] with the property
|z — zg| < 6. Moreover, we take arbitrary point y € [¢, d] and suppose that
in inequality (3) y1 = y = y2. So, inequality (3) takes the form

‘cp(x,y)fgo(mo,y)‘ <g, |£L’*l‘0| <4, c<y<d (4)

Hence we have established statement 1).
Analogously we obtain the inequality

lp(z,y) — oz, 90)| <&, a<z<b, |y—yol <. (5)
Consequently, statement 2) holds. [J

Corollary 8.1 ([2]). If the function ¢(x,y) is partial continuous with
respect to x at every point xog € [a,b], uniformly with respect to y on the
[e,d], and the function p(xo,y) is continuous at every point yo € [c, d], then
o(z,y) is uniformly continuous on the Q.



42 O. Dzagnidze

Proof. In the above suppositions the function ¢(x,y) is continuous at every
point (zg, yo) € @ and uniformly continuous on @, by Cantor’s theorem. O

Corollary 8.2 ([2]). Let the function ¢(x,y) be partial continuous with
respect to x at every point xog € [a,b], uniformly with respect to y on the
[e,d] and let the function p(xo,y) be continuous at every point yo € [c,d].
Then @(x,y) is partial continuous with respect to y at every point yo € [c,d],
uniformly with respect to x on the [a,b].

Proof. Tt is sufficient to take advantage of Corollary 8.1 and Theorem 8.1. [J

Remark 8.2. The continuous on the @ function ¢(x,y) is characterized
by inequalities (4) and (5).

Theorem 8.2 ([2]). Let the function ¢(x,y) have bounded partial
deriwative @l (x,y) on the rectangle

r(xo,é)z{(x,y)€R2:$0—5<x<xo+5, clgygdl}CQ. (6)

Then @(x,y) is partial continuous with respect to x at the point xg,
uniformly with respect to y on the [c1,d:].

Proof. Arbitrary point (x,y) € r(xg,0) we connect with the point (zg,y)
through the linear segment and write for it the Lagrange formula

o(x,y) — (0, y) = (x — 20)¢% (& v)-

Due to the boundedness of ¢! (z,y) on the r(xg,d), there exists the
constant ¢ > 0 such that |/, (x,y)| < cfor all points (x,y) € r(xo,d). Taking
arbitrary number £ > 0, we chose a number 7 > 0 with the properties n < §
and n-c<e.

If now x is so close to x that |x — x| < 7, then

‘gp(z,y)f¢(z0,y)|<5 for |z —xzo|<n and ¢ <y<d;. O

8 9. Unilateral Limit and Continuity of Functions of Two
Variables

The notions of unilateral limit and unilateral continuity for functions of
one variable are well-known.

From the right limit and the from the right continuity at the point
to = 0 can be called as the Tlimit and the *continuity at the point to = 0.
In the sequel, this terminology will be retained for every point .

Thus we can easily get the notions for the Tlimit [~limit], as well as
for the Tcontinuity [~continuity] in the given point with respect to each
independent variable of functions of two variables, but they are ineffective.

Namely, let the function ¢(z), x = (21, 22) be defined in the neighbor-
hood U(2?), or in the punctured neighborhood U%(z") = U(z) \ {2°} of
the point 2% = (9, 29). If the function ‘p(x;), i = 1,2, defined by equality



On the Continuity and Differentiability 43

2.1.(3) has at the point z{ unilateral *limit

lim  ‘o(z;),
:n.;~>:n?+
then the function (p(x) has at the point 20 partial *limit with respect to
the variable x;; this can be written in the form
lim ¢(x,29) and lim  @(2?, z5).
x1—zd+ ro—xy+
If the limit
lim  “op(z;)
M*W?Jr
is equal to ‘p(29) = ¢(2°), then the function ¢(z) is partial *continuous at
the point ¥ with respect to the variable x;, i = 1, 2.

Analogously are defined the partial ~limit and the partial ~continuity
for the function () at the point 2 with respect to the variable z;, i = 1, 2.

The existence of partial *limits with respect to z; and z and also
their equality is, in general, insufficient for the function ¢(x), z = (z1, z2),
to have limit at the point 2° = (29, 29).

Similarly, synchronous *continuity does not, generally speaking, imply
the continuity.

As is seen, the notions of the Tlimit [~limit] and of the *continuity
[~ continuity] for one-dimensional case are introduced in a natural manner.
This natural character is due to the natural partitioning of the neighborhood
of the point.

By analogy with the above notions we have introduced the insignificants
notions of partial Tlimit [partial ~limit] and of partial Tcontinuity [partial
~continuity] with respect to the given independent variable, the functions
of two variables.

A unique method of partitioning the neighborhood of the point is in-
available for two-dimensional case: two-dimensional interval can be divided
into portions by different ways. Which of these partitionings is more suitable
for the problem posed?

Using the notions of strong partial continuity and angular partial con-
tinuity (see subsections 2.1 and 3.1), we shall introduce below the notions
of unilateral limit and unilateral continuity.

9.1. Strong Unilateral Limit and Continuity

Let the function f(x), * = (x1,x2), be defined in the neighborhood
U(z?), or in the punctured neighborhood U°(z°) = U(2°) \ {2} of the
point z° = (29, 29).

Introduce the following sets:
Af = {(z1,22) € U(a°) 121 > 2V}, Af = {(a¥,22) € U(2") : 22 > 23},
AT ={(z1,22) €U(a°) 12y <2}, Ay = {(a¥,22) € U(2") : 22 <23},
Af, = AT UAS, AL, = A7 UA;.
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Obviously, Af, N A}, = @ and
Al U AL, =U°@"). (1)

Hence the punctured neighborhood is represented as a union of two
nonintersecting sets, and the limit with respect to each of them will be
called respectively the strong Tlimit and the strong ~ limit, according to
the definitions given below.

1. Definition 9.1.1 ([8]). We say that the function f(z) has at the
point 20 the strong Tlimit, symbolically f(z°[+]), if there exists finite or
infinite of fixed sign limit

F@®+]) = lim f(z). (2)
zeAf,

The strong ~limit
f@@’[=]) = lim f(z) 3)

Cl)*):l)o

TEAL,
is defined analogously.

If there exist f(2°[+]) and f(z°[—]), then we say that the function f(x)
has strong *limits at the point z°.

Taking into account (1), the above reasoning allows us to arrive at

Proposition 9.1.1 ([8]). For the function f(x) to have the limit at
the point z°, it is necessary and sufficient that the *limits for f(x) at z° be
equal.

If these assumptions are fulfilled, we have

PO = Jim, f(@) = (@[], @

2. Definition 9.1.2 ([8]). The function f(z) is called strongly *con-
tinuous at the point f(x°), if f(«°) is finite and
F@[+]) = f (). (5)

Analogously, the function f(z) is called strongly ~continuous at the
point 20, if f(2) is finite and

F’[=]) = f(a%). (6)

The function f(z) is called strongly *continuous at the point z°, if f(x)
at 2V is both strongly *continuous and strongly ~ continuous.

The following proposition is obvious.

Proposition 9.1.2 ([8]). For the function f(x) to be continuous at
the point 20, it is necessary and sufficient that f(x) be strongly * continuous
at the point x0.
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9.2. Strong Jump
1. Definition 9.2.1 ([8]). If f(2°[-]) and f(2°[+]) are finite for the

function f(x), then we call

Q(f,2°%) = [f(2°[+]) = f(2°[-))] (1)
a strong jump of the function f(x) at the point 2°, and z° is called a point
of a finite strong jump of f(x).

The following proposition is obvious.

Proposition 9.2.1 ([8]). For the function f(x) to have finite limit at
the point 20, it is necessary and sufficient that

Q(f.2°) =0 (2)
and in case this equality is fulfilled, we shall have
FEO1-D) = T f(@) = FOL4). 3)

2. If 2° is the point of discontinuity of the function f(z), i.e., f(z)
is not continuous at z° and equality (2) holds, then 20 is called strongly
removable point of discontinuity of the function f(z): if the limit

lim_f(x),

z—x0
being finite and equal to the strong *limits of f(z) at 2° is taken as the
value of the function f at the point z°, then as a result of such correction
the newly obtained function will be continuous at the point z°.

This procedure is called strong correction for continuity of the function
f at the point 2°, and the point 2 itself is called strongly correctable point
of discontinuity of the function f(x).

If there exist finite f(2°[—]) and f(2°[+]), but f(z°[—]) # f(z°[+]), or
what is the same thing, there is a bilateral inequality

0 < Q(f, 2°) < +oo, (4)

then 2 is called the point of strongly first kind discontinuity of the function
f(@).

If there does not exist at least one of f(2°[—]) and f(2°[+]), or there
exist both, but at least one of them is infinite with a fixed sign, then 2° is
called the point of strongly second kind discontinuity of the function f(x).

9.3. Angular Limit and Angular Continuity

In subsection 9.1 we have considered strong unilateral *limits and *con-
tinuities. Our consideration was based on such partitioning of the neigh-
borhood of the point, which was dictated by the notion of separately strong
partial continuity.

Moreover, the continuity is likewise equivalent to separately angular
partial continuity (see subsection 5.2). This allows us to introduce angular
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limit, angular continuity and unilateral angular limit, unilateral angular
continuity.

Let the function ¢(z), x = (x1,22), be defined in the neighborhood of
the point 29 = (29, 29).

1. We start with introducing the notion of an angular limit with re-
spect to the given variable.

Definition 9.3.1 ([8]). We say that the function ¢(x) at the point z°
has angular limit with respect to the variable z, symbolically (2% A (z1)),
if for every constant ¢ > 0 there exists an independent of ¢ finite or infinite
limit

P(a® A(n) = lim ol + oo 4 ho). )

1
|h2|<c|hi]|

Similarly, the function ¢(z) at the point 2° has angular limit with
respect to the variable x5, if for every constant ¢ > 0 there exists an inde-
pendent of £ finite or infinite limit

o(a° A (22)) = Jim o(x) + hy, 2 + ho). (2)
2—?
|hy|<e)hs]

If p(2° A (z1)) and @(2° A (22)) do exist, we say that the function ¢(z)

has separated angular limits at the point z.

Theorem 9.3.1 ([8]). The function p(x) will possess the limit at the
point x°, iff at the point x° there exist equal separated angular limits for
o(x). If these conditions are fulfilled, we shall have

(2" A (21)) = Tim () = @(z” A (22)). (3)

Proof. The existence for the function o(x) of the limit at the point z°
implies the existence of the same limit for the function ¢(x) at the point
20 with respect to every subset with limiting point at . In particular, as
such are the sets under the limit sign, indicated in equalities (1) and (2).
Therefore lim ¢(x) is equal to each of the limits (1) and (2).

T—x

If o(a° A (21)) = @(z° A (22)), then the function ¢(z) at the point
29 has equal limits with respect to those two subsets, which correspond to
particular cases ¢ = 1 and ¢ = 1. But union of the two subsets gives the
neighborhood of the point °. O

The process of proving Theorem 9.3.1 and Proposition 9.1.1 leads us to
the following

Theorem 9.3.2. The existence for the function o(x), © = (x1,22), of
the limit at the point 2° = (29, 29) is equivalent to each of the following two
statements:

1) the function @(x) at the point x° has equal strong T limits;
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2) the right-hand sides of equalities (1) and (2) are equal for particular
cases c=1 and £ = 1.

The limat lim_ o(x) is equal to each value from statements 1) and 2).

r—xT

2. Below we shall introduce the notion of an angular continuity with
respect to the given variable. This notion differs from that adopted by us for
angular partial continuity with respect to the same variable (see equalities
5.2.(1) and 5.2.(2)).

The matter is that the angular partial continuity was introduced due
to the specific difference. The subtrahend of that difference is obtained
by substitution of a partial value of the given variable into the function.
Moreover, the minuend of the same difference is value of the function at the
point inside the angle, while the subtrahend is value of the function at the
point not belonging to the given angle.

Here we shall give the notion of angular continuity with respect to the
given variable. This notion involves values of the function only at those
points, which belong to the angle which corresponds to the given variable.

Definition 9.3.2 ([8]). Angular continuity with respect to the variable
x1 of the function ¢(x) at the point 2° means that p(2°) is finite and

p(a” A (21)) = p(a”). (4)

Similarly, angular continuity with respect to the variable x5 of the func-
tion o(x) at the point 2° means that p(2°) is finite and

p(a” A (22)) = p(a”). ()

The function ¢(z) is separately angular continuous at the point 20, if
p(x) at 20 is angular continuous with respect to the variables x; and x»
(separately angular partial continuity took place in subsection 5.2).

Theorem 9.3.3 ([8]). For the function p(x) to be continuous at the
point 10, it is necessary and sufficient that o(z) be separately angular con-
tinuous at x°.

Proof. If the function ¢(z) is continuous at the point °, then ¢(2°) is finite
and lim o(x) = ©(z%). Limits (1) and (2) are the particular cases of the
T—T

left-hand side of that equality, and therefore
p(a? A (21)) = p(a”) = (2 A (22)).
Hence the function ¢(z) is separately angular continuous at the point °.
Conversely, if each of the limits (1) and (2) is equal to the finite ¢(z°),
then to this (%) are equal limits (1) and (2) for the cases ¢ = 1 and ¢ = 1.
Union of these sets gives the neighborhood of the point z°. Hence the limit

of the function ¢(z) at the point 2° is equal to the finite p(2°), i.e., p(x) is
continuous at the point 2°. O

From Theorems 9.3.3, 5.1.1, 5.2.1 and Proposition 9.1.2 follows
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Theorem 9.3.4. The continuity of the function ¢(x) at the point x°
is equivalent to:

1) separately angular continuity of the function p(x) at the point 2°;

2) separately strong partial continuity of the function o(z) at the point 2°;

3) separately angular partial continuity of the function o(x) at the point
20;

4) strong T continuity of the function p(z) at the point z°.

9.4. Angular Unilateral Limit and Continuity

Angular *limits at the point 2° of the function ¢(x) with respect to

A A
x1, symbolically ¢(z° + (z1)) and p(2° — (1)) respectively, will be defined
below by means of equalities (1) and (2), in case these limits exist and do
not depend on the constants a > 0 and b > 0:

A
go(acO + (7)) = hlin(l)+ @(x? + hl,xg + ha), (1)
|ha|<ahi

A
Pla’ = (@) = lim (@t +haf+ ho) @
\hﬁg—bhl

Angular Tlimits at the point ° of the function ¢(z) with respect to the
variable x5 can be defined by equalities (3) and (4) under similar assump-
tions on ¢ > 0 and d > 0:

A
pa® +(22)) = lim (@l +hy,as + ho), (3)
h2225|h1\

AN
o(x° — (z2)) = hhn(} o(x) + h1, x5 + ha). (4)
hgé*d‘hl‘

We have the following

Proposition 9.4.1 ([8]). The function o(x) has angular limit with

respect to the variable x1 at the point a0, iff there exist equal quantities
A A

o(2° = (z1)) and p(z° + (x1)). In this case we have the following relations:

A A

p(a? = (21)) = p(a” A (21)) = p(2° + (21)). (5)

Analogous proposition is, obviously, valid for the variable x5 as well.
From Theorem 9.3.1 and propositions above we arrive at the following

Corollary 9.4.1 ([8]). The function p(x) has at the point 2° the limit,
iff the quantities defined by equalities (1)—(4) exist and all are equal between
each other. In case these conditions are fulfilled, their common value is
equal to lim_ o(x).

r—T



On the Continuity and Differentiability 49

Definition 9.4.1. The function ¢ with respect to the variable x; is
angular Tcontinuous at the point 20, if p(2°) is finite and the equality

A
oz + (21)) = p(a)
is fulfilled.

Similarly, ¢(z) with respect to x; is angular ~continuous at the point
20, if p(20) is finite and

A
p(a? = (21)) = p(a).

Finally, the function ¢(x) with respect to the variable z; is angular
continuous at the point z°, if ¢(x) at 2° is angular Tcontinuous and an-
gular ~continuous with respect to the variable x.

We have the following

+

Proposition 9.4.2. The function o(z) at the point 2° is angular con-
tinuous with respect to the variable x1, iff (z) at z° is angular * continuous
with respect to x1.

Analogously we define angular *continuity, ~continuity and *continuity
at the point 20 of the function o(x) with respect to the variable x.

From Theorem 9.3.2 we arrive at

Theorem 9.4.1. For the function ¢(x) to be continuous at the point
20, it is necessary and sufficient that o(z) be angular *continuous with
respect both to x1 and to xs.

9.5. Angular Jump

Definition 9.5.1 ([8]). If the function ¢ has finite ¢(2° A (z1)) and
(2% A (22)), then the value
w(p,2°%) = [o(2° A (1)) — (2 A (22))] (1)
is called angular jump of the function ¢(x) at the point z°.
The following proposition holds.
Proposition 9.5.1 ([8]). The equality

w(p,a) =0 (2)
is the necessary and sufficient condition for the function p(z) to have finite

limit at the point x°. If equality (2) is fulfilled, then the common value
029 A (1) = p(2° A (22) is the limit of the function o(z) at the point z°.

Here, as above, we can introduce the notions of: angularly removable
point of discontinuity of the function ¢(x), angular correction for continuity
of the function ¢(z) at the point 2%, angular correctable point of discon-
tinuity of the function ¢(x), angular first kind discontinuity point of the
function (), angular second kind discontinuity point of the function ¢(x).
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9.6. Equivalence of Strong and Angular Corrections

Proposition 9.6.1 ([8]). If the function f(x) admits strong correction
for the continuity at the point x°, then f(x) likewise admits angular cor-
rection for the continuity at the point 0. The converse statement is also
valid.

Proof. Since f(x) admits strong correction for continuity at the point x°,
equality 9.2.(2) is fulfilled. This implies the existence of the finite limit of the
function f(z) at the point 2%, by Proposition 9.2.1, and hence the fulfilment
of equality 9.5.(2), by Proposition 9.5.1. Therefore angular correction of the
function f(x) for its continuity at the point 2° is quite possible.

Converse statement can be established in a similar way. O

The above proposition allows us to come to an agreement that the
function f(x) is called correctable for continuity at the point x°, if f(z)
admits strong or angular correction for continuity at the point z°.

Finally, if the function f(z) at the point 2° has noncorrectable, or what
is the same thing, unremovable discontinuity, then z° is called the point of
essential discontinuity of the function f(x), and the function itself is called

essentially discontinuous at the point z°.



CHAPTER 1II

Separately Partial Differentiability in Various
Senses and Differentiability

The main goal of the present chapter is to resolve the problem on the
existence at a point of a total differential.

Regarding a separate independent variable there arises the question:
does there exist a notion, or a property at the point 2° for the function f
of several variables, such that the fulfilment of that property at the point
20 with respect to all independent variables is the necessary and sufficient
condition for the function f to be differentiable at the point 2°?

Introduction

The notion of a derivative of functions of one variable can be extended
automatically to functions of several variables, and we obtain the notion of
a partial derivative with respect to the given variable.

The existence of all finite at the point z° partial derivatives of the
function f, or what is the same thing, the finiteness at the point z° of
a gradient of f does not imply the existence at the point z° of a total
differential of the function f. Moreover, the function, possessing a finite
gradient at the point xz°, may be discontinuous at z°. Such, for example,
are at the point (0,0) the most of the functions of two variables indicated
in Piotrowski’s work [19].

It is remarkable that this fact can be realized at all points of a set, whose
plane measure is arbitrarily close to a total measure. Due to its significance,
this fact, stated by Tolstov, can be formulated in the form of

Theorem B ([27], § 4). For every positive number u < 1 there
exists the function F(x,y), defined on the square Q = {(z,y) €eR? : 0<
x <1, 0 <y <1}, possessing at all points of the Q finite partial derivatives
of all orders, and moreover F(x,y) is discontinuous on some set E C Q of
plane measure p12.

In particular, the grad F'(x,y) of the Tolstov’s function F(z,y) is finite
in neighborhoods of many points (from the set E), but F(x, y) fails to have a

51
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total differential at these points. The function (see equality 2.4.(12) below)
2
Y for 22 +1y%2>0

Y(z,y) = 22 +y? ;
0 for z=0=y

is the realization of that fact at one point.

Further, the function may be differentiable at some point (xg,yo), and
moreover, in every punctured neighborhood of the point (g, yo) there exist
points at which its gradient is devoid of sense. Hence its gradient is not
continuous at (xg,yo). For the point (0,0) such is the function (see equality
2.4.(10) below)

1
zysin— for -y #0
9(z,y) = zy :
0 for x-y=0

Moreover, differentiable at the point x° function may be disconontinuous
at all points of the punctured neighborhood of x° (see equalities 2.4.(5),
2.4.(7) and 2.4.(9) below).

It is well known for a long time that the continuity of the grad f(z)
at the point 2° = (29,...,29) is the sufficient condition for the function
f(x1,...,2,) to be differentiable at the point 2. The above-mentioned
functions confirm that the continuity of the gradient is only the sufficient
condition for the differentiability.

The content of Chapter II is presented by sections.

§ 1 is devoted to the well-known elementary statements.

In § 2 we introduce the notion of an angular gradient of the function
f at the point z° and the main results sounds as follows: the finiteness of
the angular gradient of the function f at the point x° is the necessary and
sufficient condition for the function f to have a total differential at the point
20,

Some examples of functions for their differentiability are considered
herein.

In § 3 we likewise introduce a new notion of a strong gradient of the
function f at the point 2°, whose finiteness implies the differentiability of
the function f at the point 2°. The converse statement may turn out to be
invalid almost everywhere.

It is proved that the continuity of the gradient at a point implies the
finiteness of a strong gradient at the same point. Falsity of the converse
statement is realizable almost everywhere.

§ 4 illustrates that the notions of strong and angular partial derivatives
allow one to consider the corresponding unilateral partial derivatives and
differentials for functions of two variables.

§ 5 shows that the necessary and sufficient conditions for the differentia-
bility of functions of two real variables (see Theorem 2.5.3 below) together
with the Cauchy—Riemann condition allow us to formulate in the form of
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one equation
the necessary and sufficient condition for the complex function F'(z) of the

complex variable z = x4y to have at the point zg = x¢-+iyg finite derivative
F'(zp).

§ 1. Differentiability and Separately Partial Differentiability
1.1. Partial Derivative and Separately Partial Differentiability

Let the finite function v = f(x), * = (z1,...,2,) € R™, be defined
in the neighborhood U(z") of the point 2% = (29,...,2%) € R™. Here we
use the functions of one variable ? f(x;) = f(2°(x;)), i = 1,...,n, which are
connected with f(z) (see I, 1.3). If ¢ f(z;), or what is the same, f(z°(z;)) has
at the point 29 € R a derivative (‘f(x;)) (z?), respectively (f(z°(z;))) (z?),
which is finite or infinite of fixed sign (i.e., +00 or —c0), then this derivative
is called a partial derivative at the point z° of the function f with respect
to the variable 2;. We denote it symbolically f; (2°), 0, f(z°), %(Jco).

Hence
1% = lim S0 (1)) —Of(xo) ~ m M (1)

It is easily seen that in order to find a partial derivative with respect to
the variable x; at the point 2° = (29,...,2%) for the function f(z1,...,2,)
it is necessary to replace z; in f(x1,...,2,) by ac? for all j # i. As a result
we obtain the function of one variable z;, and its derivative at z? is given
by equality (1).

If for all i = 1,...,n there exist f, (2°), finite or infinite, then we
consider the gradient at the point z° of the function f(x), which is defined
by the equality

grad f(2%) = (f! (2°),..., f1,(2°)). (2)

1
If all f;k(aco) are finite, K = 1,...,n, then the function f(z) is called
separately partial differentiable at the point z°, what is equivalent to the
finiteness of the grad f(2°). In case f], (2°) is finite, we denote the quantity
fi.(a%)dx;, do; = x; — 2, by the symbol dg, f(2°) and call it the partial

differential with respect to the variable x; at the point 2° = (29,...,2%) of
the function f(x1,...,2,).
Thus
dy, f(2°) = fr,(2°) da;. (3)

1.2. The Notion of the Differentiability

The notion of the differentiability of functions of two variables has taken
its complete shape on the junction of the XIX-XX centuries. The modern
definition of a total differential has been introduced by Stolz. The advantage
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of that definition is illustrated in the works due to Pierpont, Frechet and,
especially, to Young.

Definition 1.2.1. Let the function f(z), x = (x1,...,2,) be defined,
and finite in the neighborhood U(z°) of the point z° = (29,...,2%). The

function f is called differentiable at the point x°, if there exists a collection
of finite numbers A = (A4, ..., A,,) such that the ratio of the quantity

f(@) = f(z°) = (A, — z0) (1)
to the positive quantity

n
lz —woll =) |zi — a7 (2)
i=1

tends to zero, as * — xg, where it is assumed that

n

(A,z —2°) = ZAi (w; — ). (3)
i=1
The above ratio is defined for all z # 2° and remains undefined for
x =20
For the notion of the differentiability it is very important to know the be-
havior of the above-mentioned ratio in the punctured neighborhood U°(x?)
of the point 2°. Since this ratio has zero limit at the point 20, its value at
that point is assumed to be zero. This fact can be realized by introducing
in the neighborhood U(2?) the function

flx) = f(2°) = (A, — o
wyo(7) = |z — 20
0 for x =2

for x # 2° ' )

0

Using the function w,o, the notion of the differentiability of the function
f at the point 20 will take the following form.

Definition 1.2.2. The function f is called differentiable at the point

20, if there exist a collection of finite numbers A = (ay,...,4,) and a
function w,o such that for every point z € U(z°) the equality
fa) = f(@%) + Az —a°) + [lz — 2°|| - wyo () ()

holds, where the function wgo is continuous at the point z° and equal to
zero at 2V

lim wyo(2) = 0 = wyo (). (6)

z—z0

Equality (6) means that for any arbitrarily small positive number &
there exists a positive number § = §(2°, ¢, f) with the property

|weo (2)| < & (7)
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for all z satisfying the condition ||z — 2°|| < §. Therefore equality (5), or
what is the same thing, differentiability of the function f at the point x° is
equivalent to the fulfilment of the inequality

[f(z) = f(2°) = (A2 =) <& o — 2 (8)

for all z with the properties 0 < ||z — 2°|| < § and 6 = §(2%, ¢, f) > 0.
In such a case, a total differential, or briefly, a differential at the point
20 of the function f is called a linear mapping

ZAi (g — 2?), 9)

which corresponds to the increments z; — 29, ..., 2, — 2% of independent
variables.

A total differential of the function f at the point z° is denoted sym-
bolically df (x°, dx), or in short, df (z"), where dx = (dz1,...,dz,). Conse-
quently,

df(IO) = zn:Al . da:i, (10)
i=1

where dx; stand for the increment z; — ac? which need not be infinitely small.

In this case the point z° is called the point of differentiability of the
function f(x), and df (z°) is sometimes called the first order differential at
the point 2° of the function f.

If the function ¢(z) is differentiable at every point of some set £ C R™,
then ¢(z) is called a differentiable function on the set E.

The expression “there exists df (z%)” is equivalent to that of “the func-
tion f(z) is differentiable at the point z°”.

Definition 1.2.3. The function f(x1,...,2,) is called continuously

differentiable at the point 20 = (29, ...,29), if the function

gradf(:c) = (f:l (l‘), sy a/:n(x))a T = (xla cee 71'71)) (11)
is finite in the neighborhood U(2°) and continuous at the point 20, i.e., if the

first order partial derivatives f;j (z), j =1,...,n, are continuous functions
at the point «°.

1.3. Elementary Properties of Differentiable Functions

For our exposition to be more complete, we present here the proof of
the well-known statement.

Proposition 1.3.1. The differentiability of the function f at the point
20 implies:

1) the existence and finiteness of all partial derivatives f,. (2°) and of
the equality

2) the finiteness at the point z° of the grad f(x°);
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3) separately partial differentiability of the function f at the point x°;
4) the equality

df (2°) = Z fr (@) dx;. (2)

Proof. All z; but x; in equality 1.2.(5) are replaced by their partial values
:c?, j # i. Thus we obtain the equality

f(fco(fﬂi)) = f(2°) + A - (2 — fc?) + |z — 99?| " Wyo (ﬂfo(fﬂz)) (3)
Using a partial increment, the latter will take the form (see I, equality
1.3.(8))

Agof(z) = A+ (2 —a) + (w5 — 2f) - ——F ~weo(2%(21)).  (4)
¢ i — X;
Here we introduce an auxiliary function
0
. T — X;
w;o (Iz) = ﬂ * Wg0 (IO(Ii)), T; 75 I? (5)
i i

Since the function |x; — 29|/(x; — 29) of the variable z; is bounded in the
punctured neighborhood of the point 27, and the left-hand side of relation
1.2.(6) is likewise valid for the partial value x = 2%(z;), from (5) we obtain
the equality _
Jim ula(a) =0 (©)
and (4) takes the form
Ago f(x) = Ai- (s — ) + (2 — 27) - wio (@) (7)

The last two equalities imply that the function f(2°(x;)) has a deriva-
tive at the point 29, and the equality (f(z°(z;)))'(2?) = A; holds.

Since the function f(x) is differentiable at the point 2, all numbers
A; are finite. Hence there exist finite partial derivatives f, (2°) = 4;, i =
1,...,n. This in its turn means that the function f(z) is, by the definition,
separately partial differentiable at the point 2°, and the grad f(z°) is finite.
Thus according to equality 1.2.(10) we obtain equality (2). O

For df (z°) we have the following well-known

Proposition 1.3.2. 1) The df (2°) is linear function of differentials of
independent variables dx;, 1 =1,...,n;
2) the df (z°) is the sum of partial d, f(x°) differentials

wﬂ:Z%M% (8)

3) the increment Ao f(x) = f(x) — f(a°) for the function f at the point
29 admits the representation

Ao f(z) = df (2°) + [l — 2°|| - o(1), 9)
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where o(1) denotes an infinitesimal at the point 2° function w,o(x) satisfying
condition 1.2.(6).

The summand df (z°) in the right-hand side of equality (9) is called a
principal part of the increment Ao f(z) of the function f at the point 2°,
which is equipped with the property

lim df (z°) =0 (10)
z—x0
(due to the fact that all dz; — 0 as x — z9).
For the second summand from equality (9) the equality

lim ||z —2°|| - 0o(1) =0 (11)
z—x0
is obvious.
From the last two equalities we obtain the equality
lim Agof(xz) =0, (12)
z—xz0

which means that the function f is continuous at the point 2.
This fact can be formulated in the form of the following

Proposition 1.3.3. If 20 is the point of differentiability of the function

f, then f is continuous at z°.

This proposition is likewise evident from the relations
|f(@) = f(2)] < |f(2) = f(2°) = (A = 2®)[ + |(4,2 — 2%)| <
_.0 _ 0. 1.0
<eflz =27 + e — 27 - max |f2.(@%)].

If along with 1.1.(2) we introduce the vector de = (dz1,...,dx,), then
equality (2) can be written in the form of the scalar product

df (2°) = (grad f(2°), dz). (13)

Proposition 1.3.4. Let the function f(z), x = (z1,...,2,) be differ-

entiable at the point 2° = (29,...,2%). We take arbitrary natural number

m > n and define for v € U(2°) and (zn41,---,2Zm) € R™™™ the function

F by the equality

F(z1, ..y Tny g1y oy Zm) = f(@1,.. ., Zn). (14)

Then the function F(T), where T = (T1,...,Tn, Tnt1,---,Tm), 1S differen-

tiable at the point T° = (29, ..., 29, 29, 1,...,2%), no matter how the point
(29 1,...,2%) is, and the equality

dF(@°)(dx1,. .., dry) = df (2°)(d2y,. .., dz,). (15)

takes place.

Proof. The property appearing in inequality 1.2.(8) can now be written as

fl@) = f(a?) —Zféi(xo) (@i —af)| <ellz -2 (16)
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for all z with the properties 0 < |z — 2| <d/m, k=1,...,n
As far as the function F' is constant with respect to the variables
Tpgly -y Toms F’j(fo) =0for j =n+1,...,m. On the other hand, it is ob-

T

vious that ||z —2°|| < ||z —2Z°|| for any system |z, 11 — 29, 4], .. ., |zm —23,|.
In particular, take |z; — :L'Q| <d/m,j=n+1,...,m. Thus we have
m
F(z) ) =D (wp—ap) - Fy, (@) <ellz—2°| (17)
k=1

under 0 < ||z —2°|| = Z |z — 20 <m-d/m = 4.

Hence the function F is differentiable at the point Z°, and

dF(@°)(dz, ..., dz,,) =

tnqs

Ny, = Zfzk Yday, = df (2°)(day, . .., dz,). O

=~
Il

1

Corollary 1.3.1. Let the functions a(x1) and b(xz2) have finite deriva-
tives a'(xY) and V' (x3) at the points 2 and 3, respectively. Then the func-
tions (x1,22) = a(x1) + b(z2), ¥(r1,22) = a(x1) - blaz) and w(xy, x2) =
a(z1)/b(xa) (if b(xa) # 0 in the neighborhood of the point x3) have total
differentials at the point (x0,23), and the equalities

dip(af, 23) = a'(2})dwy + b (x3)dz2, (18)
dip(a?, 23) = d(aY) - b(ah)dawy + b (25) - a(a)dxs, (19)

dw(z(l)a 1'(2)) =

ey ¢ @@ dn — ¥ (@)a(@l)dza].  (20)

are valid.

Proof. The function a(z1), being as the function of two variables (x1,z2),
is differentiable at all points (29, 13), by Proposition 1.3.3. Analogously,
the function b(z) has the total differential at all points (21, 29). The both
functions a(z1) and b(xs), being the functions of two variables, have total
differentials at the point (9, 29). Next, we use the well-known formulas:

d(u £ v) = du £ dv,
d(uv) = udv + vdu, (21)

d(%) = v%[vdu —udv}, v#0. O

Remark 1.3.1. 1) We know from Proposition 1.3.1 that the differ-

entiability of the function f at the point 2% implies the finiteness of the

expression
n

Zf; (2°) dz; = (grad f(2°), dz). (22)

i=1
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The converse statement is invalid because from the finiteness of (22)
we cannot conclude that (22) is the differential of the function f at the
point 20 for a very simple reason that f need not be differentiable and even
continuous at the point 2° ( see Introduction in Chapter II).

2) The differentiability is defined by means of the norm 1.2.(2). We
have made such a choice for a very simple reason that different estimations
can be easily performed by using this norm, and moreover, the notion of the
differentiability does not depend on the norms 1.1.(1)-1.1.(3) from Chap-
ter I. This follows from the fact that the ratio of each of the above-mentioned
norms to another norm is bounded below by an absolute or dependent only
of the dimension n of the space R™ a positive constant (see estimates 1.1.(4)—
1.1.(6) of Chapter I).

3) For the function of one variable A(t), the existence at the point ¢y of
a finite derivative A'(to) implies that the equality

lim At) = Alto) = (t —to) - N (to)
t—to t—1to

— 0. (23)

is fulfilled.
For the same function A(¢), the notion of the differentiability 1.2.1 at the
point to implies the fulfilment of the equality (in fact, for the function of one
variable the differentiability is equivalent to the finiteness of its derivative)
i A1) = Alto) = (t —to) - N'(to)

t—to |t — t0|

= 0. (24)

The last two equalities are equivalent.

Indeed, if t > tg, then equalities (23) and (24) coincide. If ¢ < t, then
the denominator in equality (24) is |t — to| = —(t — to), and these equalities
are again coincide because —0 = 0.

4) It is evident that the results established for real-valued functions
u = f(z), x € R", u € R are extended to vector-valued functions v =
(U1, ..., um), u € R™, if every function u; = u;j(z1,...,x,) has the needed
properties, j =1,...,n.

1.4. The Differentiability with Respect to a Subcollection of
Variables

As is known, the existence with respect to x; of the partial differential
de, f(zY) at the point 20 = (29,...,20) for the function f(x1,...,2,) is
equivalent to the existence at the point 2° of a finite partial derivative
f4. (") with respect to the same variable ;.

This situation can be widened, if we consider the problem on the exis-
tence at the point z° of a differential of the function f with respect to ar-
bitrary subcollection of variables from the principal collection (x1, ..., 2y,).

To avoid formal complications, we will consider the existence at the
point z¥ of a differential of the function f with respect to the subcollection
(x27 SRR mn)
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To this end, we have in f(z1,...,7,) to replace 1 by z} and then to
consider the new function ¢(xa, ..., z,) = f(29,22,...,7,).

Definition 1.4.1. If the differential at the point (29,...,2%) of the
function ¢(z2,...,x,) exists, then we say that the function f(z1,...,2,)
with respect to the subcollection (xa,...,2,) has the differential at the
point zV.

It can be easily seen that statement 1) in Proposition 1.3.1 admits the
following generalization.

Proposition 1.4.1. If the function f(x1,...,2z,) is differentiable at
the point 2° = (29,...,2%), then the function f with respect to every sub-

collection from the collection (1, ...,x,) is differentiable at x°.

The converse statement is invalid. This is understood in a sense that
the differentiability at the point z° does not follow from the differentiability
at the point 2% with respect to every subcollection consisting of a lesser
number of independent variables than the principal collection. This is seen
by an example of the function

1 for z-y#0
,Y) = . 1
#l@,y) {0 for x-y=0 (1)

This function is discontinuous and, the more so, non-differentiable at the
point (0, 0), although the function ¢(z, y) has zero partial derivatives at the
point (0, 0).

The sufficient conditions allowing one to conversing Proposition 1.4.1,
will be given in Theorem 3.4.1.

§ 2. Differentiability is Equivalent the Finiteness of an Angular
Gradient

Before proving the basic theorem on the necessary and sufficient condi-
tion for the differentiation, we will cite some definitions.

Let the function f(z), © = (x1,...,2,) € R", be defined and finite in
the neighborhood U (z°) of the point 2° = (29,...,2%) € R™.

2.1. Angular Partial Derivative and Angular Gradient

Definition 2.1.1 ([2], [5]). We say that the function f has at the point

20 an angular partial derivative with respect to the variable z;,, symbolically

I3, (x0), if for every collection ¢ = (c1,...,Ck_1,Chi1,---,Cn) Of positive

n — 1 constants there exists an independent of the ¢ finite or infinite (of
fixed sign) limit

A%g f(x)

s Sk 1)

L (%) = lim
T —T, Tk _xk,

T



On the Continuity and Differentiability 61

where (see I, equality 3.1.(1))
Alo f(x) = flz) = f(a(zp)) for |z —af| <cjlaow —apl, j#k (2

Relations (1) and (2) can be written in short as follows:

z) — f(x(z?
fék (2°) = xl}l_rg() %(xék)), (3)

|25 —af|<cjler—ai]
i#k
If the angular partial derivative f5 (2) is finite, then equality (3) means
that for every arbitrarily small number € > 0 and for every collection of
positive constants ¢ = (¢1,...,Ck—1, Ckt1,- - -, Cn) there exists a number § =
§(20, e, ¢, f) such that

x) — f(z(z)
f=JE) o) <e @)
for all ’s with the properties 0 < [l — 2°|| < & and |z; — 29| < ¢;|a), — 27|
for all j # k.

The existence of fék(aco) implies existence of the partial derivative

7. (2%), and the equality fék(mo) = [, (2"). To show this, we have to
putin (3) z; = :cg-) for all j # k.

The existence of the angular partial derivative does not, in general,
follow from existence of the partial derivative. Indeed, the function ¢(x1, x2)
defined by equality 1.4.(1) has finite partial derivatives at the point O =
(0,0) and has no angular partial derivatives at O. In fact, the absence at O
of an angular partial derivative with respect to the variable x; follows from
that the ratio in equality (3) for ¢(z1,z2) has the form (21, x2)/x1, which
has no limit at O, if the conditions mentioned in (3) are satisfied (this ratio
along the Ox; axis has the form 0/z; = 0, while along the line xo = 27 it
has the form 1/z1, 0 # 21 — 0).

If f%, (20) is finite, then the function f(x) with respect to the variable xy,

has the property of angular partial continuity at the point z° (see Chapter I,
Section 3.1).
Arbitrary finite function a(x1) of one variable can be considered as

a function of several variables v (z1,...,2,), which is equal to a(xz1) for
arbitrary w1, ..., x,. Therefore the derivative a’(z?), if it is, coincides with
1[)%1(1‘(1),1‘2, ..., &y) for arbitrary xa, ..., xy,.

Definition 2.1.2 ([2], [5]). If there exist f} (2°), k =1,...,n, finite
or infinite (of fixed signs), then we call f(z) the function possessing an
angular gradient at the point z° and write

ang grad f(z°) = ( él(mo), cel fén (:co)). (5)

Definition 2.1.3. We say that the function f(z) with respect to the
variable z; has the property of angular partial differentiability at the point
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20, if f2 (2°) is finite and we write

dz, f(2°) = f3, (a°) day. (6)

Moreover, dz, f(x°) is called an angular partial differential with respect
to the variable xj, of the function f(x) at the point 2°.

Definition 2.1.4 [2], [5]. The function f has at the point z° the
property of separately angular partial differentiability, if fék (2°) are finite
for all k =1,...,n, and this means that ang grad f(z°) is finite.

2.2. The First Basic Theorem on the Differentiability

Theorem 2.2.1 ([2], [5]). For the function f(x) to be differentiable at
the point 20, it is necessary and sufficient that ang grad f(z°) is finite, i.e.,
it is necessary and sufficient that the function f(x) is separately angular
partial differentiable at the point x°.

Proof. The necessity. Suppose that the function f(z) is differentiable at
the point 2% and establish that fi. (20) is finite for all k = 1,...,n.
We write the identity

J@) = f(0(@) = (o —ad)fr, (@) = [f(2) = fa")]-
=Y (s —a s, @) = [F(e@d) = £ = Y (ws —afr, @) (1)

Jj=1 j#k
Suppose we have an arbitrary positive number € and a collection ¢ =
(C1y. -y Ck—1,Ckt1,-- -, Cn) Of positive constants. Since the function f(x) is
differentiable at the point 2%, then for e* = €/4(1 4+ 3 ¢;) there exists a
7k
number 6§ = §(2°, ¢, e, f) > 0 such that an absolute value in the right-hand
side of identity (1) will be, by estimate 1.2.(8), smaller than the value

n n
5*Z|xj—x?|+s*2|mjfm?| §2€*Z|xj—x?| =
j=1 j=1

7k
= 26" (Jow —afl + Y |y — 251) (2)
7k
for all 2’s with the properties 0 < ||z — 29| < 4.
If along with the condition 0 < ||z — 2°|| < 4 the point x = (z1,...,7,)

is subjected to the conditions |x; — z}| < ¢;|xy — 2P| for all j # k, then the
absolute value in the left-hand side of identity (1) will be, by virtue of (2),
smaller then the value

. 1
|z — 29| - 2 (1 + Zq) = §€|xk — 2| < elzg — oY
7k
Hence inequality 2.1.(4) is fulfilled, and f; (2°) = f7, (2°).

Tk
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Since the function f(z) is differentiable at the point 2°, all partial
derivatives f (2°) are finite, k =1,...,n.

Consequently, the function f possesses at the point 20 the property of
separately angular partial differentiability, or what is the same thing, the
ang grad f(x°) is finite.

Moreover, it is stated that the total differential df (z°) of the differen-
tiable at the point z° function f admits the following two representations:

n

df (2°) = f4,(a°) da, (3)
k=1
and
df (2°) = " ds, f(2°). (4)
k=1

Sufficiency. Let the function f possesses at the point z° the property
of separately angular partial differentiability, i.e., all f3 (20) are finite, k =
1,...,n. Therefore limit 2.1.(3) is finite for all values of k and for arbitrary
collection ¢ = (c¢1, ..., Ck—1,Ckt1, - - -, Cn) Of positive constants, in particular,
forc; =1, j#k.

By Py we denote a set of all points = (x1,...,2,) € R™ each of which
satisfies the conditions |z; — 29| < |zy — 2| for all j # k. A set of all points
x € P likewise satisfying the condition ||z — 2°|| <7, n > 0, we denote by
P'. Thus the neighborhood U (z°,7) is the union of a finite number of sets
PIZ, k=1,...,n.

Take arbitary number ¢ > 0. Since all f3 (zY) and all values k =

1,...,n are finite, there is a number 6 = §(z°, ¢, f) > 0, suitable for all
values k = 1,...,n, such that the inequality
|f(@) = fa(aR) = (zx —2}) - f3,(%)] < elzn — | ()

will be satisfied by all points z € P \ {2°}.

To establish that the function f is differentiable at the point °, we have
to state that inequality 1.2.(8) in the punctured neighborhood U (2, 6)\ {«°}
is fulfilled. Towards this end, in its turn it is sufficient that inequality 1.2.(8)
be fulfilled for each of P} \ {2} separately, k = 1,...,n.

Without loss of generality, we may be satisfied with the proof of the
same inequality 1.2.(8) for one set, say for P{ \ {z°}. Therefore in the
sequel we will assume that the point x, tending to the point z%, always
belongs to P} \ {x°}.

Since the point = belongs to Py \ {z°}, inequality (5) is fulfilled for
k = 1. Hence the inequality

|f(2) = f(2(a})) = (@1 — ) f3, (2%)] < elz1 — 2] (6)1

is fulfilled for all z with the properties 0 < [lz — 2°|| < ¢ and |z; — 29| <
|zg — 2| for all j =2,...,n.
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The point z(2)) = (29,22, ...,2,) appearing in the punctured neigh-
borhood U(x?,§)\ {z°} does not belong to the set P \ {x°}; it will belong*
to some Pfl \ {z°} with ¢; # 1. Therefore again, by virtue of inequality (5)
for k = {1, the inequality

[ (2(a?)) — f(2(ad,27,)) — (we, —2p,) 7, (2°)] <
< €|:L'€1 - 1‘21 |7 (6)41
will be fulfilled, where x(xl,xz ) denotes that point (2,---) whose ¢1-th
coordinate is equal to zy (see I, notation 2.3.(1)).

Now the point z(z9, 1’21) whose two coordinates are already fixed, will
belong to some Pzi \ {2} with £5 # 1 and ¢y # /5.

Continuing this process, as a result we obtain a point whose all, but one,
coordinates are fixed. This single varying coordinate is z,, ,. Then using
symbol 1.3.(2) from Chapter I, we can write this point as 2°(zy, _,). This
means that the point 2°(zy, ,) belongs to the set anil \ {2°}. Applying
inequality (5) for k = ¢,_1, we have

f(2°(xe,_1)) = f(a°) = (xe,y =29, )i, (2] <
< E|g§4n71 - 932”71 | (6)57171

Write the following identity
n
flx)—f O—Zxk—xg fa, (a°) =
k=1

= [f(@) = f(2(@D)) = (21 = 2D f3, ()] +
+[f($($?)) - f(x(x?,xgl)) - (f% - 3%) ézl (300)}‘*‘
+o [f(@0, ) = f@°) = (e, — 2l ) fE,  (@%)]. (T)

It follows from inequalities (6)1—(6),, _, that the absolute value in the left-
hand side of equality (7) is less than the value
e(jar — 2] + foey — | + -+ e,y —af_]) = el — 2.
Hence the function f(z) is differentiable at the point 2°, and its differ-
ential df (z°) at 20 is equal to the sum

Zflk ) dzy,. (8)

Thus the proof of Theorem 2.2.1 is complete. I

Corollary 2.2.1. The finiteness of the expression (8) is the necessary
and sufficient condition in order that, (8) to be the differential of the function
f at the point x°.

*If n = 2, then the point z(29) = (29, z2) will necessarily belong to the set P\ {2°},
which in this case has the form {(z1,z2) : |[z2 — 29| > |z1 — 2{|}. In case n = 3, the
point z(z) = (29, z2, z3) will belong to PJ \ {z°}, or to P{ \ {z0}.



On the Continuity and Differentiability 65

2.3. The Second Theorem on the Differentiability

As we have seen, every angular partial derivative is defined by using
a collection of arbitrary positive constants. If the function depends on m
independent variables, then for that function we have m angular partial
derivatives, and the definition of every angular partial derivative involves a
collection of (m — 1) arbitrary positive constants. The arbitrariness of these
positive constants is needed for the definition, i.e., for the existence of a
separate angular partial derivative.

But while proving the second part of Theorem 2.2.1 we have revealed
the following fact: if in the definitions of all angular partial derivatives of
the function f(z) at the point 2° one takes all constants c; equal to 1, then
the finiteness of all the obtained in such a way values is sufficient for the
function f to be differentiable at the point zV.

This fact will be used in the sequel in investigating of functions for their
differentiability (see Section 2.4 below). We formulate it in the form of the
following

Theorem 2.3.1 ([5]). For the function f(z1,...,z,) to be differen-

tiable at the point 2° = (2, ...,29), it is necessary and sufficient that
0
x) — f(z(z
;l)k*);l)()i T — xk
|oj —af|<|er—af|
ik

is finite for allk =1,... n.

Corollary 2.3.1 ([5]). The finiteness of all Dz, f(2°) implies finite-
ness of all fékf(zo), and the equality

£, (%) =Ds, f(2%), k=1,...,n, (2)
df(2°) =Y Ds, f(2°) day. (3)
k=1

Corollary 2.3.2. From the finiteness of all Dz, f(z°) it follows that
the function f(x) possesses at the point x° the property of separately angular
partial differentiability, or what is the same, the function f(x) has a finite
ang grad f(x°).

Introduce the notation
Df(a°) = (D3, f(2°),..., Dz, f(z°)), (4)

whose finiteness is understood in a sense that every component Dz, f(x°),
k=1,...,n, is finite.
Now Theorem 2.3.1 can be rephrased as follows.
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Theorem 2.3.2 ([5]). For the existence of df (x°) it is necessary and
sufficient that D f(z%) be finite. If Df(x°) is finite, we have the equality

df (2°) = (Df(z°), dz). (5)

2.4. Examples on the Differentiability

Using Theorem 2.3.1, we can establish the differentiability as well as
non-differentiability of concrete functions.

On the differentiability we investigate some appearing frequently func-
tions.

Proposition 2.4.1 ([5]). Suppose the numbers o; are positive, j =
1,...,n. Then the condition

a1 t+ag++a, >1 (1)
is necessary and sufficient for the everywhere continuous function
(@1, mn) = [@a]* - 2] - | [ (2)
to be differentiable at the point z° = (0,--- ,0).
In particular, the function v(x1,...,x,) = (Jx1]- - |za])® is differen-
tiable at the point z° if and only if o > %
Proof. Sufficiency. By equality 2.3.(3) we have
[ 2N Qn [ 2NN Qn
e gy gyt
z,—0 Tk z,—0 T Tk
|z ]<|zx| |z | <]k
7k 7k
Under the above conditions it follows that
|‘771|O(1 e |$n|an a1 Qg ap—1 g a
o Sl T [T [T T =
|z |
— |xk|(a1+~~~+ak71+ak+ak+1+~~~+an)fl —0, zr — 0.

Hence Dz, ¢(2°) =0 for all k = 1,...,n, and by equality 2.3.(3) we obtain
dip(a) = 0. 3)

Necessity. For a; > 0 and oy + a + -+ - 4+ a,, < 1 there exists none finite
Dz, (%), in particular, ¢(z) is not differentiable at the point 2°. Indeed,
should the finite Dz, p(2°) exist for some k, the expression

|$k|a1"'|ﬂ?k o B |mk|a1+---+an
Tk N Tk o
|i—k| for o +---+a, =1
- k
|2k -3 _ ’
— a7 for ardtan <1, B=1— (a4t an)
k

would have a finite limit, but this is not the case.
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In particular, the function
p(wr, w2) = /|| - |22 (4)
is non-differentiable at the point (0,0). O
Remark 2.4.1. By Proposition 2.4.1, the function
My, z0) = |z - 2o|/3 (5)

is differentiable at the point (0,0), while A(z1,22) is non-differentiable at
the points (a,0) and (0,b), where a # 0 and b # 0.

Indeed, should the function A(z1,22) be differentiable at the point (a, 0),
a # 0, there would exist a finite partial derivative

X, (a,0) = (Aa,22))"(0) = [al’? - (jao]/*)'(0),

but this is not the case®.
Hence the function (4) is differentiable only at those points both coor-
dinates of which are different from zero, or equal to zero.

Proposition 2.4.2. Suppose the numbers 3; > 1, j =1,...,n. Then
the function

n
|27 for all rational x;
olan )= & ®

0 at the remaining points
is differentiable at the point 2° = (0,...,0),
dp(z°) =0 (7)
and discontinuous at all the remaining points (x1,...,x,) # (0,...,0).

Proof. We have

z—0 Tk
|2 <|a]
£k
L .
21 |xj|ﬁ7 - Zk|m]|ﬁJ |x | |I |Bk
— lim = J — lim 2R IERL g
oy <ol o w0 ok o
ik

and equality (7) follows from 2.3.(3).

The discontinuity of the function ¢ at every point  # 2° follows from
that there exist two sequences of points, which tend to x and the values of
the function ¢ tend to zero along one of the sequences and do not tend to
zero along the other sequence. [J

*And what is more, (|z2|2/3)’(0+) = +o0 and (|z2]?/3)'(0—) = —c0.
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Proposition 2.4.3. The corresponding to the number q¢ > 1 function

~ q
(Z |:cj|) for all rational x;
j=1

‘Il(xl,...,xn): ) (8)
0 at the remaining points
possesses the same properties as the function (6).
Proof.
(3 e’ = (3 I’
D;, ¥(2°) = lim —= 7
z,—0 Tk
lzj| <[zl
72k
But
= q q
(3 1)~ (3 Jal)
Jj=1 J#k <
Tk
2( ) |=xl)*
— q
SR T U1 LU
|| ||
Hence
d¥(z%) = 0. 9)

As regards the discontinuity, the function 1 is similar to the function ¢. [J

Proposition 2.4.4. The corresponding to the number a > 0 function

1+a

(i:ﬁ) © for all rational x;
j=1

0 at the remaining points

w(T, ..., xn) = ) (10)

possesses all properties of functions (6) and (8).

Proof. Again,

n 1ta 1ta
(5% - (5"
D; w(z®) = lim —= ke
z—0 Tk
EFIRSEN
J
and
n 1ta 1to n 1ta n 1to
(Xaf) * (X)) 7 22X} 20xa)°*
Jj=1 J#k Jj=1 Jj=1
Tk || ||
2na2) = 2T |yt 1
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Proposition 2.4.5. The function

X1 Sin or x1-x9 #0
g(xl,acg) = T1X2 f 7& (11)
0 for x1-20=0

is differentiable at the point x° = (0,0), and its gradient grad g(x1,x2) is
indeterminate at the punctured neighborhood of the point x°.

Proof. We have

g(zlva)fg(OaxQ) —  lim g(zlaIQ)

x1—0 1 x1—0 1
|z2|<|z1] |z2|<|z1]
But
0 for 29 =0
‘9(931,1”2)‘ _ 1 2
T ‘l‘g csin ——| < |zo| < z1| for zg #0
T1T2

Therefore Dz, ¢(0,0) = 0. Similarly we find that D5,g(0,0) = 0. Hence
dg(z°) = 0. (12)

Next, at all points (0,b) with b # 0 we have

, b) = 9(0,b) PR |

! -1 g(xla ) —p. ] .

gwlg(o,b) Sy o b Jim, sin o

Therefore there non-exist neither g (0,b), nor g/ (a,0) for a # 0. Hence

the grad g(w1,22) is indeterminate in the neighborhood of the point 2°,
and at this stage we cannot speak about the continuity of the function
grad g(x1,z2) at the point (0,0). O

Proposition 2.4.5. The function

2 -2 for x2 +22 >0
(w1, 22) = ¢ 27 + 73 L (13)
0 for 1 =0=x9

possesses the following properties:
1) (a1, x9) is continuous everywhere;
2) grad ¢ (x1, z2) is finite everywhere;
3) ¥(x1,x2) is not differentiable at the point (0,0);
4) grad (a1, x2) is not continuous at the point (0,0).

Proof. The continuity of the function ¢ (z1, 22) at the points (21, x2) # (0,0)
is obvious.

For the function t(z1,22) to be continuous at the point (0,0), it is
necessary and sufficient that equalities 5.1.(1) and 5.1.(2) from Chapter I
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are fulfilled for 2§ = 0 and 9 = 0, respectively. We have

|1Z)(£E1,5E2) - 1/1(0,5E2)| = |1/)(=’E1,5E2) - 1/1(991,0)‘ = ‘1/)(11,12)| =

2 2
7 - |22 x7 - |2
R < x? = la2| =0, (21,22) — (0,0).

Thus the function 1 (x1,z2) is continuous at the point (0,0) as well.

The finiteness of the grad+(z1,z2) at all points (z1,22) # (0,0) is
obvious, while for the point (0,0) we have ¢/ (0,0) = (¢(21,0))'(0) =0 =
1/);2 (0,0). Therefore the grad(x1,x2) is finite everywhere.

The non-differentiability of the function 1 (z1,22) at the point 20 =
(0,0) follows from the nonexistence, for e.g., of Dz 1 (0,0). Indeed, the
ratio appearing in equality 2.3.(1) for £ = 1 has the form

fﬂz'xz B (14)
wi(@f +a3)  af+ )

Let us take arbitrary positive number ¢ < 1 and put in equality (14) zo =
¢xy. Then |x2| < |x1|, and the obtained for that case ratio is equal to #.
This means that Dz,1(0,0) and hence di(z°) do not exist.

Finally, were the grad(x1,x2) continuous at the point 20, di(z°)
would exist, but this is not the case. [J

Remark 2.4.2. The fact that the finite limit
fla) = fla(}))

lim 15
lo;—z3|=|zk—z3|
£k
does not exist at least for one value k from 1, ..., n, is the sufficient condition
for the function f(x1,...,x,) is non-differentiable at the point (29,...,z9).

2.5. The Necessary and Sufficient Conditions for the
Differentiability of Functions of Two Variables

As far as real functions of two real variables are tightly connected with
analytic functions of a complex variable, to simplify our investigation it is
more convenient to formulate separately the results which correspond to the
case n = 2.

The differentiability of the function (1, z2) at the point 20 = (29, 29)
implies the existence of ¢’ (z°) and ¢/ ) (z") and the fulfilment of the equal-

ity

(@, xe) —p(a°) = (w1 —aR)p! (a°) = (v2—aB)¢!_(2°)

lim 5 ! 0 . =0. (1)
z1—azf lz1 — 27| + |22 — 23]
;cz—mcg

The existence for the function ¢(z1, z2) of the angular partial derivative

0%, (20) at the point z°, means that for every constant co > 0 there exists
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a finite, or an infinite (of fixed sign) limit

;0 : o(x1,29) — p(af, x2)
N = 1 2
03, (27) i, p— , (2)

|zo—25|<calwy —af|

which does not depend on cs.
Analogously, the existence of ¢% () means that of a finite, or an infi-
nite limit

’ 0 . (p(.fl,xg) —@(Il,Ig)
% = lim 3
T2 (I ) x21 ;cg 9 1,(2) ) ( )

|1 —20|<c1|we—zf|
for an arbitrary constant ¢; > 0 such that this limit would be independent

from c¢;.
Moreover (see equality 2.1.(5)),

ang grad p(z°) = (90121 (z%), ©%, (xo)) ) (4)
1. The first basic Theorem 2.2.1 results in

Theorem 2.5.1 ([2]). For the function p(x1,x2) to be differentiable
at the point 2° = (29, 29), it is necessary and sufficient that angular partial
derivatives % (z°) and % (2°), or what is the same, anggrad (z°), be
finite. The finiteness of the ang grad () is equivalent to the existence of
the equality

dp(z°) = @5, (%) doy + ¢, (2°) das. (5)
Specific character of a plane set allows one to prove the following

Theorem 2.5.2 ([2]). For the function p(x1,x2) to be differentiable
at the point 2° = (29, 1Y), it is necessary and sufficient that the limits

_ 0
hmo (,0(1‘1,1'2) 500(1'1;1'2) (6)
T1—Tq Iy — Ty
zy—z)|<clei—z3|
and o
Hmo (p(xlva) :(pchlva). (7)
Ta—T, T2 — Iy

|z2—a|>c|zi—af|
be finite for some one constant ¢ > 0. If these limits are finite, they are
equal to % (x°) and 5 _(2°), respectively.

For the particular case 0 = 0 = 29, Theorem 2.5.2 can be interpreted
from geometrical viewpoint. When calculating limit (6), the point (z1,x2)
always belongs to the union of mutually vertical angles, containing the Ox1-

axis,
120 x1 <0
and
—cx1 < z2 < cxq cr1 < xo < —cx1
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At the same time, the point (0,z2) is outside of that union, on the
Oxo-axis.

When calculating limit (7), the point 2° = (29, 29) belongs to the union
of angles

z2 >0 o <0
1 and 1 1 ,
——x2 <11 < —X2 —r2 <z < ——1I2
c c c c

while the point (x1,0) lies on the Oz;-axis.
By Theorem 2.3.1, for the function ¢(x1,z2) to be differentiable at the
point 20 = (29, 29), it is necessary and sufficient that limits
1) (2) and (3) for c2 =1 = ¢4,
or
2) (6) and (8) for ¢ =1
be finite.
Thus we have the following

Theorem 2.5.3 ([5]). For the function p(x1,x2) to be differentiable

at the point 2° = (29, 29), it is necessary and sufficient that the quantities

_ 0
Doy(e% =  lm  PELT) ey e 8)
z1—x) 1 — Iy
|zo—25|<|z1—a7|
and .
b0 g eEE) el .
n) = lm, L8 Q
|21 —af| <|wo—af|
be finite.
If these limits are finite, we have the following equalities:
¢z, (2°) = Dz, p(2°),  ¢3,(2°) = Dz, 0(2°), (10)
dp(2°) = Dz, p(2°)dzy + Dz, 0(2°) das. (11)

2. Here we present one somewhat different necessary and sufficient
condition for the differentiability of a function of two variables, when be-
forehand are known finiteness its partial derivatives.

Theorem 2.5.4 ([30], p. 139). If the grad¢(z°) is finite, then for
the differentiability of the function o(x1,x2) at the point 29 = (29, 29) it is
necessary and sufficient that the equality

. A[QzO](P(x17x2)
lim

erad Jor — 2 ¥ oz — @
582—588

0| = (12)

be fulfilled, where
A[on]sa(mla 1'2) = cp(xlazQ) - 30(1'(1)’ 1'2) - cp(acl, l‘g) + (p(l‘(l), 1'0)' (13)
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Proof. We have
(a1, 22) — 9(a°) — (21 — 20 (1) — (22 — 29)¢ (2°)] —
—Af o p(a1, x2) = [p(r1,23) — @(a®) — (z1 —2f)¢! (2%)]+
+p(ah, 22) — @(a°) — (22 — 2)¢!, (2°)]. (14)
Since partial derivatives ¢/ (z°) and ¢ s (2°) are finite, for arbitrary
e > 0 there exists 6 = d(g,2°,) > 0 such that the absolute value in the
right-hand side of equality (14) is less than e(|z1 — 29)| + |22 — 29|) under

|z1 — 29| < & and |22 — 29| < §. Thus we have

p(@1,22) — p(a®) - (21 — o), (29) — (22 — 2Q)! (a°)

|21 — 29| + |2g — 28]

Af o p(1, 22)

0 0
— < — <9 — < 4.
lz1 — 29| + |22 — 29 = ol <o e

It is clear that equalities (1) and (12) are, or are not fulfilled together.
(]

Remark 2.5.1. Below we will give somewhat different sufficient condi-
tions for the existence of a total differential for functions of two variables
(see Theorem 2.2.1 and statement (2) of Theorem 2.2.3 in Chapter III).

§ 3. Finiteness of a Strong Gradient Implies Differentiability

Here we introduce the notion of a strong gradient and state that the
finiteness of the strong gradient implies differentiability, and not vice versa.
It is also established that the continuity of the gradient implies the existence
of a finite strong gradient, and not vice versa.

3.1. A Strong Partial Derivative and a Strong Gradient

For the finite function f(x), x = (21,...,%,) defined in the neighbor-
hood U(z") of the point 2° = (29,...,29) € R" we introduce the following

Definition 3.1.1 ([2], [5]). We say that the function f(z) possesses
at the point x° a strong partial derivative with respect to the variable z,
symbolically f['xk] (20), if there exists a finite, or an infinite (of fixed sign)

limit )
£ = tim = /) "

[z e T — )
where (see I, equality 2.1.(1))
Apoyf (@) = f(z) = f(a(a}))- (2)
If f[’zk](xo) is finite, equality (1) means that for every e > 0 there exists
the number 6 = 0 (2%, &, f) > 0 with the property

| A f (@) = (2 — 2R) f{r, (2°)] < el — 23 3)
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for all z € U%(zY, 6;).

The existence of the finite f[’ on] (2°) implies, obviously, that with respect
to the variable xj the function f is strongly partial continuous at the point
20 (see I, equality 2.1.(2)).

Proposition 3.1.1 ([2], [5]). If the continuous in the neighborhood
U(z") of the point 2° function f has in the punctured neighborhood U° ()
a finite partial derivative f], (x) for which there exists at z° the limit

. /
lim f, (2) (4)

finite, or infinite, then the equality
Jloy (@) = Timn, 11, (2) 5)

holds. However, if limit (4) is finite, then the partial derivative f, (x) is
continuous at the point x°, and there takes place the equality

T @) = £, (@), (6)

The proof of the above proposition is contained in the proof of Theo-
rem 3.2.1, below.

Note that one can consider the derivative of a function of one variable
in terms of a strong partial derivative with respect to the same variable
of the same function, but interpreting it as dependent formally of several
variables.

Definition 3.1.2 ([2], [5]). We say that the function f has at the point

20 a strong gradient, symbolically strgrad f(z°), if for every k = 1,...,n
there exist finite or infinite ff, , (20), and we write
strgrad f(2°) = (f['ml] (%), ... s Flen) (2")). (7)

The following proposition is obvious.

Proposition 3.1.2 ([2], [5]). If there exists a strgrad f(a°), then
there likewise exists ang grad f(x°), and the equalities

strgrad f(2°) = ang grad f(z°) = grad f(z°) (8)
hold.
Definition 3.1.3. The function f is called strongly partial differen-

tiable at the point z° with respect to the variable x, if there exists finite
f[lmk] (20), and in this case we write

a1 F(2°) = fip, (2°) da. 9)

Moreover, d|,) (20) is called a strong partial differential with respect to
the variable z;, of the function f at the point z°.
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Definition 3.1.4. The function f(x) possesses at the point z° the
property of separately strong partial differentiability, if there all f[’xk](aco)

exist and are finite, i.e., if there exists a finite str grad f(z).

3.2. The Continuity of a Gradient Implies the Existence of a
Finite Strong Gradient

Theorem 3.2.1 ([2], [5]). If in the neighborhood U(x°) of the point z°
the function f(z) is continuous and in the punctured neighborhood U°(z?)
it has a finite grad f(x), for which there exists a finite, or an infinite limit

lim grad f(z), (1)
then the equality
strgrad f(z°) = lim grad f(x) (2)

holds.
However, if limit (1) is finite, then the grad f(zx) is continuous at the
point £°, and we have the equality

strgrad f(2°) = grad f(2°). (3)

Moreover, the existence of the finite str grad f(x°) does not, in general,
imply the continuity of grad f(x) at the point x°.

proof. Equality (2) yields
Aporf(z) =

= (zg fxg)f;k(xl,...,mk,l,zg + Op(wp — 20), Ths1, ., Tn), 0<O,<1.

The finiteness of limit (1) implies both the continuity of grad f(z) at
the point 2% and equality (3) due to the fact that the partial derivative,
possessing the finite limit at some point, is continuous at the same point.

That the converse to the concluding statement of the above theorem is
invalid can be illustrated by an example of the function g(z1,x2) defined
by equality 2.4.(11). It is already known that the function g(z1,z2) is
differentiable at the point (0,0) and its gradient is not continuous at (0, 0).

Let us now prove that the strong gradient of the function g(x1,x2) at
the point (0,0) is finite. By the definition, we have

g(w1,72) — g(0,72)

7 1(0,0) = lim =
g[ﬁ“]( ) (z1,22)—(0,0) T
= lim T sin =0.
(z1,22)—(0,0) T1T2

In a similar way we obtain the equality gf 2] (0,0) = 0. Hence

strgrad ¢g(0,0) = (0,0). O (4)
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3.3. Relation Between the Continuity of a Gradient of a
Function and the Finiteness of Its Strong Gradient

1. For a function of one variable we can indicate two properties which
are equivalent almost everywhere, though one of the properties is stronger
at an individual point.

Such properties are, for example:

1) continuity and symmetric continuity ([22], p. 266);

2) derivability and symmetric derivability ([13], p. 381; [22], p. 249);

3) derivability and existence of a finite upper derivate (see [21], pp. 270
and 108).

Tolstov’s Theorem shows that the continuity of a function of two vari-
ables and its continuity with respect to each of variables are the properties
of that function which may be nonequivalent almost everywhere (see The-
orem A in introduction of Chapter I).

2. In proving the concluding part of Theorem 3.2.1 we have stated
that the function g(x1,z2) defined by equality 2.4.(11) has the finite strong
gradient at the point 2% = (0, 0), and moreover, its gradient is not continu-
ous at the point z°.

Here we prove that the just mentioned nonequivalence can be realized
almost everywhere.

Theorem™ 3.3.1. There exists an absolutely continuous function of two
variables which has almost everywhere both finite strong and discontinuous
gradients.

Proof. For bounded and everywhere on the [0,1] discontinuous functions
a(z) and B(y) we consider the corresponding indefinite L-integrals

xT

y
Ax) = /a(x) dt and B(y) = /5(7) dr.
0 0

The function of two variables v(z,y) = A(x) + B(y) on the unit square
Q = [0,1] x [0,1] is absolutely continuous (see Definition 2.1.1 in Chap-
ter IV) and possesses a total differential at almost all points (x,y) € @ (see
Corollary 1.3.1),

dv(z,y) = a(x) dr + 6(y) dy.

Since the derivative of the function of one variable is its strong partial
derivative with respect to the same variable (see 3.1), then at the points
(z,y) € @, at which the total differential dv(z,y) exists, the finite is

strgradv(z, y) = (a(z), B(z)).
On the other hand, the gradv(z,y) = (a(x),B(y)) is discontinuous
almost everywhere. Hence the strgradv(z,y) is finite almost everywhere
and the grad v(z,y) is discontinuous almost everywhere. [

*The author’s this result is published for the first time.
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3.4. The Finitenes of a Strong Gradient Implies Differentiability

Theorem 3.4.1 ([2], [5]). The existence of a finite str grad f(zV)
implies existence of a total differential df (x°) and

strgrad f(z°) = ang grad f(2°) = grad f(z°). (1)

The First Proof. In the neighborhood of the point 20 the expression

n

f@@) = f(2%) = ) (zr = 2]) iy (@) (2)
k=1
is finite. It can be represented as

[f(x) — f(x(z(l))) — (z1 — z(l))f[’xl](xo)}Jr
+[f (@) — £ (2(2f,29) — (w2 — 29)) flop @] + -+

+[f (2 (@n)) = f(2°) = (@0 — 2) f1,,1(=°)]- 3)
In (3), for every square bracket we make use of estimate 3.1.(3). Note
that for the values k = 2,...,n we put in 3.1.(3) partial values z; = x]Q for

j=1,... k1.
It is clear that the absolute value of (2) is less than

E(|x1 —x(f| + | T2 —x8| +-+xy, —x%|) =gz —ac0||.

Hence df (z°) exists.
The Second Proof is obtained by virtue of Theorem 2.2.1 with regard
of Proposition 3.1.2. O

Remark 3.4.1. Classical result that the continuity of a gradient implies
the existence of a total differential can be obtained from Theorems 3.2.1
and 3.4.1.

Proposition 3.4.1 ([2], [5]). The finiteness of ang grad f(x°), or what
is the same, the existence of df (x°) does not imply the existence of (neither
finite, nor infinite) str grad f(a°).

Proof. As is known, the function
A1, w2) = |21 - wo[*/? (4)

defined by equality 2.4.(4), is differentiable at the point z° = (0,0).
Let us now show that the strgrad A\(#°) does not exist. Indeed, for a
particular case x1 > 0 we have the expression (here 2 = 0 = z9)

ApgA@1,22)  (1]2a)?/3 (w_§)1/3
X1 X1 X1
which has no limit as (z1,22) — (0,0). This follows from the fact that the

last expression tends to different numbers for #3 = x1 (to 1) and for x5 = x
(to 0). Hence )\le](xo) does not exist.

Consequently, the str grad A(z°) does not exist. [J
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Remark 3.4.2. The gradient of the function A(x1,x2) = |z - 22|?/3 is
not continuous at the point z° = (0,0). This follows from Theorem 3.2.1
with regard of the fact that the str grad A(2°) does not exist.

Remark 3.4.3. In [16] has been announced the following result: for
every n > 2 there exists a continuous function f : R®™ — R which is almost
everywhere differentiable, but has no almost everywhere a finite strong gra-
dient.

3.5. The Sufficient Condition for Differentiability of a Function,
when It Is Differentiable with Respect to a Subcollection of
Variables

As is already known, the function A(z1,z2) defined by equality 3.4.(4)
is differentiable at the point (0,0), but it has no strong partial derivatives
at that point. This fact indicates that equality 2.2.(1) does not imply the
existence of f[’xk](xo), when df (2°) does exist.

But despite this fact, equality 2.2.(1) allows nevertheless us to find for
one and the same function the connection between its differentiability both
for n and for n — 1 variables at a given point.

The theorem below follows directly from equality 2.2.(1) and Definiti-
on 1.4.1.

Theorem 3.5.1 ([5]). For the function f(z1,...,z,) to be differen-
tiable at the point 29 = (29,...,2%), it is sufficient that the function f(z)

at the point z° have a finite strong partial derivative with respect to some
one variable xj, and at the point x° differentiable is function

f(x(z(li)):f(zla"'axkflaxgaszrl;-"73371)7 (1)
depending on the remaining n — 1 variables.

Obviously, we can apply Theorem 3.5.1 to the function f(z(z?)) from
the same theorem and then continue the procedure until we get a function
of one variable.

Therefore the following theorem is valid if we take into account that a
derivative of function of one variable can be interpreted as its strong partial
derivative with respect to the same variable (see 3.1).

Theorem 3.5.2. For the function f(x1,...,2,) to be differentiable at
the point 20 = (29,...,29), it is sufficient that the following conditions be
fulfilled:

(ir) f(z) has at the point 2° a finite strong partial derivative with respect
to one, say x, variable;

(ike) f(z(x?)) has at the point z° a finite strong partial derivative with
respect to the other variable, say with respect to xg, £ # k;

(ikes) f(z(29,29)) has at the point 2° a finite strong partial derivative
with respect to the variable xs, different from xy and xy;
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And so on, the obtained in such a way function of one variable has at
the point z° a finite derivative.

It should be noted that the existence at the point z° of a finite strong
partial derivative with respect to variable z; for the function f(x(zY)), i # k,
is more weak property of the function f(x), than the existence of a finite
strong partial derivative for the function f(z) at the point 2° with respect
to the same variable ;.

Thus we have the following

Theorem 3.5.3 ([5]). Assume the function f(x1,...,x,) has at the
point 20 = (29, ...,2%) a finite partial derivative with respect to some one
variable and at the point 20 it has finite strong partial derivatives with re-
spect to each of the remaining n — 1 variables. Then the function f(x):

(a) is differentiable at the point 2°;

(b) has at the point 2° a finite angular partial derivative with respect to
the variable we have just spoken at the beginning of our theorem.

Proof. Statement (a) follows from Theorem 3.5.2, and statement (b) follows
from Theorem 2.2.1 with regard of statement (a). O

Since the continuity of the partial derivative implies the existence of
the finite strong partial derivative with respect to the same variable (see
Proposition 3.1.1), form Theorem 3.5.3 we obtain

Theorem 3.5.4. If from the partial derivatives fg’ﬁj, j=1,...,n, some

one is finite at the point £° and the remaining partial derivatives are con-
tinuous at z° functions, then statements (a) and (b) of Theorem 3.5.3 hold.

3.6. The Sufficient Conditions for Differentiability of Functions
of Two Variables

For the function of two variables ¢(z), * = (x1,z2) defined in the
neighborhood of the point 2° = (29, 29) we can determine strong partial
derivatives with respect to variables x; and xo by using respectively the
following equalities:

/ 0 . @(zlazQ) *90(141)7332)
=1 1
Pley) (27) o, - (1)
1}2*)1}%
and 0
/ 0 . 90(9'317332) - cp(xlaxQ)
=1 . 2
Plas) () i, - (2)
1}2*)1}%

Moreover (see equality 3.1.(7)),
strgrad p(z°) = (@] (), Plos] (z%)). (3)

For functions of two variables, both Theorems 3.5.2 and 3.5.3 are iden-
tical. We formulate them in the form of one
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Theorem 3.6.1 ([2], [5]). Let the function of two variables p(x),
x = (z1,22) have at the point 2° = (29,29) a finite partial derivative with
respect to one of the variables and at the point z° a finite strong partial
derivative with respect to the other wvariable. Then the function ¢(x) is
differentiable at the point 2°, and therefore @(x) has at the point z° finite
an angular partial derivative with respect to that variable we have just spoken

at the beginning of this theorem.
From the above theorem we immediately arrive at

Theorem 3.6.2. Let the function p(x1,22) be separately partial dif-
ferentiable at the point 2° = (29,23). Then for the existence of a total
differential dp(x®) it is sufficient that ¢(x1,x2) possess at the point 20 a

finite strong partial derivative with respect to one of the variables.

For functions of two variables Theorem 3.5.4 can be rewritten in the
form of

Theorem 3.6.3. If the function ¢(x1,22) has partial derivatives, one
of which is finite at the point 2° = (29, 22) and the other is continuous at
the point 20, then the following statements take place:

1) there exists dp(x°);

2) ¢(x1,72) has at the point 2° a finite angular partial derivative with
respect to the same variable, mentioned at the begining of to theorem.

It should be noted that statement 1) of Theorem 3.6.3 is due to K. J. Tho-
mae ([25]; [11], § 310). We formulate this theorem as follows.

Theorem 3.6.4 ([25]). If for the function o(x1,22) one of partial
derivatives is finite and the other is continuous at the point x° = (29, z9),
then (w1, 2) is differentiable at x°.

3.7. Classification of Functions by Various Gradients

The obtained in this section results on the differentiability of functions
of several variables allow us to formulate the following summarizing theo-
rem.

Theorem 3.7.1 ([5]). A class with continuous at the point z° gradi-
ents of functions is contained strictly in a class with finite at the point z°
strong gradients of functions, and the latter is contained strictly in a class of
functions with finite at the point 2° angular gradients. This class coincides
with the class of differentiable at z° functions.

8 4. Unilateral in Various Senses Partial Derivatives and
Differentials of Functions of Two Variables

For the function (x), x* = (21, x2) defined in the neighborhood U (z°)

of the point 2° = (29, 29) we introduce the functions (see equality 1.1.(1))

Yp(z1) = ¢(21, 29) and 29p(z2) = (2, x2).
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If the function ‘) (x;) has at the point ¥ a derivative (“¢(x;)) (29) called
a partial derivative at the point 2° of the function () with respect to the
variable z;, then we denote it now by 9,,1(x°). If there exist 0z, Y(z%) and
é?%w(aco), then we consider the gradient of the function ¢ (x) at the point
20 (see equality 1.1.(2))

grad(z°) = (9, ¥(2°), 0z, 1(a)).

It is quite possible that the function “¢(z;) has no derivative at the point
29, i.e., there is no dx;9(2°), but “)(z;) has Tderivative at 29, symbolically
8;2 @/)(:EO), which is called the right-hand partial derivative of the function
(x) at the point 2° with respect to the variable ;. Hence
i i/ (20 i 0
ooy e W) () o () — ()
%) = wq,l—liﬁ-)+ r; — B lqh—rg? xp —a)
The left-hand partial derivative of the function v(x) at the point 2°
with respect to the variable x;,
i N\ i)y (0 i N 0
o) =l PED TG ) —0E)

i —zd— Tp — X z;—z? Ti — X

is defined analogously.

It is obvious that for the existence of 9,,1(2") the necessary and suffi-
cient condition is the existence of equal quantities 9 ¥(2°) and 0, P(x0),
i=1,2.

In case quantities 0 ¢ (2”) and 9 ¥ (2”) exist we introduce *gradient
of the function ¢ (z) at the point 2°,

Tgrady(z°) = (0 v(a°), of ("))
Analogously, if 8;11/)(:E0) and 8;21/)@0) exist, then we introduce ~gra-
dient of the function 1 (z) at the point ° by the equality
~grad(2®) = (8;11/)@0), 8;2w(x0)).
For the relations
- grad Y(2°) = grad p(z°) = + grad $(a”)
to be valid, it is necessary and sufficient that all components be equal,
Oy 0(2%) = 0, 0(2°) = 0f (2”), i=1,2.

The above equalities are not, in general, sufficient for the existence of
an angular, or a strong gradient.

Below we will introduce unilateral strong and angular partial *deriva-
tives and prove the necessary and sufficient conditions for the existence of
a strong and an angular gradient. The conditions for the existence of an
angular gradient will at the same time be the conditions for the existence
of a total differential.
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4.1. Unilateral Strong Partial Derivatives

The notion of strong partial derivatives (see 3.1) with respect to the vari-
ables 21 and x5 at the point 2° = (20, 29) for the function ¢ (z), x = (21, x2)
makes it possible to introduce strong partial Tderivatives with respect to

x1 and x5 at the point 20 for ¥ (x):
(@ +hy, 23 +hy) —p(2), 2+ ho)

aJr 0y 1
[a;l]?/f(:c ) (h1,h2)—(0,0) hl s ( )
h1>0
0 0 0 .0
_ . +hy, 29+ he)—(x], 29+ ha)
0y _ 1 P(ah T2 1,23 9
[ml]w(x ) (hhh;)rﬂ(o’o) hy ) (2)
h1<0
0 0 0 0
. +hi,x +h2)71/)(1' +hi,x )
ot 0y _ 1 Y(ay » Lo 1 ) 3
[12]1/}(33 ) (hl,hglg(o,o) h2 ) ( )
h2>0
- , Y(af +hy, 2§+ ho) — (2} +ha, )
0 = 1 . 4
[l2]w(x ) (hl,hgl)IE(O,O) h2 ( )
h2<0

It is clear that for the existence of 8[1.7,}1/1(930) it is necessary and sufficient
that there exist equal quantities 8[; i]w(xo) and 8[; i]w(xo), and if they are
equal, we have

0[;}1&(300) = O, 0 (2°) = aﬁi]w(aco), i=1,2. (5)

Introduce now strong *gradients at the point 2 for the function 1 (x)
by the equalities

*strgrad ¢(2°) = (8[;;1]1/)@0), 8@2]1#(%0)), (6)
- strgradw(mo) = (8[;1]1/)(:E0),8[;2]1/)(:E0)), (7)

which together with the strong gradient
str grad $(a) = (9 (), O 0(a”)) ®)

are connected as follows.

Proposition 4.1.1 ([8]). For the existence of str grad(z) it is nec-
essary and sufficient that equal ~ str grad(x°) and * strgrad¢(2°) ezist,
and if they are equal, we have

~strgrad(2°) = strgrad ) (2°) = T str grad (). (9)

Theorem 4.1.1 ([8]). The existence of finites 8[;1_]1/)@0) and 8[:1_]1/)@0)
implies the finiteness of a strong symmetrical partial derivative with respect
to the variable x; at the point 2° for the function v(x1,x2), denoted by
8[(;3]1/1(330), for which we have the equality

1

O y(a®) = 3 [0 (@) + O ()], i=1.2. (10)
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Moreover, there exists the function for which the left-hand side of equal-
ity (10) is finite , and the summands in the right-hand side of the same
equality are infinite, of opposite signs.

Proof. The first part of the theorem we verify for the variable ;. Since in
the equality (see [17], Definition 3)
(@8 +hy, 25 +ho) (@] —ha, 25+ ho)

(1) 0y _ :
a[al]w(x )7(h1,hlgH)E>(0,O) 2h, ) (11)

the ratio appearing under the limit sign is an even function with respect to
h1, we can assume that h; > 0 and have

8(1) w(xO) _ - ¢($?+h1,$8+h2) _¢($?a$8+h2)+
(1] 2 (h1,ha)—(0,0) h1
- lim w(x(l) _hlvx8+h2)_w($(1)a$(2)+h2) _
2 (h1,h2)—(0,0) —hy

1
= 5 [0, 1) + 9, ¥ (a”)].

The function p(z1,22) = |21]*/? + |22|'/? in the neighborhood of the
point 2 = (0,0) is most convenient for the second part of the above theo-
rem. We have

Ofpp(a’) =

[z1

lim @(h1,h2) —p(=h1, h)
(h1,h2)—(0,0) 2h1
. P [ Y R
T (h1,h2)—(0,0) 2h1 o

+ (T (p(hlahQ) —(,O(O,hg) _
6[1’1}(‘0(30 )= h,}g%O* hi B
12—

|ha|Y2 + |ho| /2 — |ho|/?

= 1
hll—{%—f— h1 oo,
ho—0
B h1|1/2 |h1|1/2
) S L1 =—oc0. O
e P(@) =, im = hmo— || >
}12—>0 h2—>0

4.2. Unlateral Angular Partial Derivatives

Below, using equalities (1)-(4), we will introduce angular partial *de-
rivatives with respect to the variables 1 and z2 at the point z° = (29, 29)
for the function ¢ (z), = (x1,22), under the condition that each of the
following limits exists and does not depend on the constants, indicated

there:

0 0 (0 0
8§1w(z°): lim Y(x) +hy, x5 +ho) — (27, 25+ ha)

h1—0+ h1
|ha|<a-hy

, a>0, (1)
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(@Y +hy, 29+he) — (29 +hq, 29)

8;2 (mo):hlglg)+ . , b>0, (2)
ha>behy 2

_ (@ +hy, 23 +hao) —(29, 29+ ha)

0 Y(a")= hhn% L2 ; L2 , ¢>0, (3)
\hgi;chl !

0 P(af +ha, 29+ ho) = (af +hy, 29)

05, ¥(x")= hli%, 3 , d>0. (4)
h2§2*d\h1\ ?

The existence of equal quantities 0 ¢ (z°) and 8;1_ 1 (20) is the necessary

and sufficient condition for the existence of 9z, (x°) (see 2.5).
We introduce also angular Tgradients at the point z° for the function
(x) by the equalities (if there exist their components)

Tanggrad ¢ (2”) = (0 ¥(2), 05, ¥(2?)), (5)
~anggrad v(z°) = (95,9(2°), 05, ¥(a")). (6)
Thus for the angular gradient (see equality 2.5.(4)) we obtain

Proposition 4.2.1 ([8]). For the ezistence of ang grad ("), it is nec-
essary and sufficient that the quantities T anggrady(2®) and
~anggrady(z°) be equal, and if they are such we have

~ang grad ¢(z°) = ang grad ¢(z°) = T ang grad (). (7)

By Theorem 2.5.1 we obtain

Proposition 4.2.2 ([8]). For the existence of the total differential
dip(20), it is necessary and sufficient that the given by equalities (5) and (6)
angular * gradients are finite and equal.

4.3. Unilateral Differentials

Since the finiteness of ang grad 1)(z°) is the necessary and sufficient con-
dition for the existence of the total differential di)(z°) (see Theorem 2.5.1),
using angular *gradients we can introduce the following

Definition 4.3.1 ([8]). The function (z) is called Tdifferentiable at
the point 2° if * ang grad+(2°) is finite, and the Tdifferential, symbolically
dtip(x0), for 1 (z) at 20 is defined by the equality

dTp(2°) = 0{11&(300) dxy + 0{21&(300) dxs. (1)

The ~differential under the finite ~ anggrad(x°) is defined analo-
gously by the equality

d=(a°) = 05 (2°) dwy + 05 1p(a°) da. (2)

Thus we have
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Proposition 4.3.1 ([8]). For the existence of the total differential
di(z), it is necessary and sufficient that T differentials d=1(x°) and
dtp(z%) be equal, and if they are such we have

d=1p(2%) = dyp(z”) = dTp(a”). (3)

Remark 4.3.1 ([8]). The finiteness of the T str grad ¢)(z") implies fimite-
ness of the T anggrad(z°) and hence the existence of the * differential
d*(z%). Similar fact can be applied to the ~ strgrad(z?).

§ 5. Conditions for the C-Differentiability

It is well-known (see, for e.g. [1]) that the fundamental theorem of
complex analysis concerning C-differentiability of a complex-valued function
w = F(z) of a complex variable z = x + iy consists of two parts and their
fulfilment at the point zg = x¢ +iyg is the necessary and sufficient condition
for the existence of a finite derivative F’(zp).

In the first part of this theorem the function F(z), being the function
of two real variables (x,y), is required to be differentiable at the point
z0 = (x0,Y0) (see 2.5).

The second part of the same theorem requires the fulfilment of the
Cauchy—Riemenn condition

Fl(2) + iF)(29) = 0. (C-R)

5.1. The Necessary and Sufficient Condition for the
C-Differentiability

We have already obtained the necessary and sufficient conditions of
differentiability of real-values functions of two real variables (see Theo-
rem 2.5.3). Here we present the theorem whose statement somewhat differs
from that suggested in [2] and [5].

Theorem 5.1.1. For the complex-valued function w = F(z) of the
complex variable z = x + iy to have a finite derivative F'(zg) at the point
zo = o + 1Yo, it is necessary and sufficient that the equality

D5 F(Zo) + ’L'Dg F(Zo) =0 (1)

or what is the same thing, the equalities
D3 u(z0) = Dy v(20), (2)
Dj u(z0) = —Dz v(20), (3)

where F(z) = u(z) + tw(2), be fulfilled.

Corollary 5.1.1. For the function F(z) to be holomorphic in the open
set G C C, it is necessary and sufficient that the equality (1) or, which is
the same, equalities (2) and (3) be fulfilled at all points zp € G.
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5.2. Sufficient Conditions for the C-Differentiability

The sufficient conditions for differentiability of functions of two real
variables are also available (see Theorem 3.6.2). Therefore the following
theorem is valid.

Theorem 5.2.1. If the condition (C-R) is fulfilled for the function
F(2) and either F[’x] (20), or F[’y] (z0) is finite, then there exists at zy the
finite derivative F'(z) and equality 5.1.(1) holds.

From Theorem 3.6.3 we obtain

Theorem 5.2.2. If the function F(z) satisfies the condition (C-R) and
any one of its partial derivatives F(z) and Fy(z) is continuous at the point
20, then there exists the finite derivative F'(zp), and equality 5.1.(1) holds.

Obviously, the sufficient conditions of the existence of the finite deriva-
tive F’(z9), mentioned in Theorems 5.2.1 and 5.2.2 can be rephrased in the
form of sufficient conditions for the function F(z) to be holomorphic both
in the open set G C C and at the given point.

Remark 5.2.1. Since the continuity at the point zg = xg + iyg of the
complex-values function ®(z) = A(z) + iB(z) is equivalent to the simulta-
neous continuity at the point zo = zg + iyo of real functions A(z) = A(x,y)
and B(z) = B(z,y) at the point (xo,yo), the problem on the continuity
at zg of the function ®(z) and, for e.g., of the partial derivative ®/(z) =
Al (z) +iB.(z), can be solved by means of earlier stated theorems for the
continuity of real-valued functions of two real variables.



CHAPTER III

Twice Differentiability, Bettazzi Derivative
and Mixed Partial Derivatives

Introduction

The material of the present chapter is organized as follows.

§ 1. The results obtained in the previous chapter allow us to formulate
the necessary and sufficient conditions for the existence of a total differential
of arbitrary order. First of all, this will be realized with respect to twice
differentiability. The sufficient conditions for functions of two variables to
have a total differential of second order are established.

§ 2. The notion of a derivative introduced by Bettazzi in 1884 and for
certain reasons called afterwards a strong derivative, is tightly connected
with functions of two variables. The connection of Bettazzi derivative with
the existence of a total differential as well as with a mixed partial derivative
of second order is indicated.

§ 3. This section presents a survey of the results on the interconnec-
tion between mixed partial derivatives of second order. First, the classical
Young’s theorem and Tolstov’s two theorems are formulated. The sufficient
conditions for the equality of mixed partial derivatives of second order due
to Chelidze, are given.

§ 1. The Conditions of Twice Differentiability

1.1. The Necessary and Sufficient Condition of Twice
Differentiability

Let the function f(z), * = (x1,...,%,) defined in the neighborhood
U(z) of the point 2° = (29, ...,22) have a total differential df (x) at every
point z € U(2?).

If the function df (x) of the variable z € U(2?) is differentiable at the
point 20, then the function f is, as is known, called twice differentiable at
the point 2°.

1. The necessary and sufficient condition is available for the exis-
tence of the total differential df (x), € U(2") which consists in the finite-
ness of anggrad f(z), or what is the same, in the finiteness of the sum

Z=1 fék (z)dwy.
Here we have the following

87
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Theorem 1.1.1 ([2]). For the function f(x) to be twice differentiable
at the point x°, it is necessary and sufficient that (f5 (@))z, (20) be finite
foralli=1,....nandj=1,...,n.

If a matrix with elements (f ()3, (29) is called of the second order an-

gular gradient of the function f at the point 2°, symbolically ang grad@y(aco),
then Theorem 1.1.1 can be reformulated in the form of

Theorem 1.1.2 ([2], [5]). For the function f to be twice differentiable
at the point x°, it is necessary and sufficient that a finite ang grad ®) f(z9)
exist.

Using Theorem 2.3.1 from Chapter II, we obtain

Theorem 1.1.3. For the function f to be twice differentiable at the
point x°, it is necessary and sufficient that Dgingf(acO) be finite for all
i=1,....nand j=1,...,n.

2. It is known that the finiteness of a strong gradient of the function F'
at the point z° is the sufficient condition for the differentiability of F' at .
This means that for the differentiability at the point z° of the differential
df (z) it is sufficient that (f% (x)){xj](zo) be finite for all « = 1,...,n and
j=1,...,n.

If the matrix with elements (f7 (ac))f%] (2°) is denoted by str grad 2)f (2°),
then we will have

Proposition 1.1.1. For the function f to be twice differentiable at the
point x°, it is sufficient that str grad @ f(20) be finite.

Next, the function F' is called twice continuously differentiable at the
point 20 if the differential df (z) has continuous partial derivatives at x°.

Thus we have the following proposition in which by grad ? f (z) is de-
noted the matrix with elements (f; (2));,(z),i=1,....,nand j=1,...,n.

Proposition 1.1.2. For the function f to be twice continuously differ-
entiable at the point ¥, it is necessary and sufficient that grad (Q)f(:n) be
continuous at x°.

1.2. The Sufficient Conditions of Twice Differentiability of
Functions of Two Variables

By Theorem 1.1.2, the function of two variable p(z), © = (z1,z2) is
twice differentiable at the point 2° = (29, 29) if and only if ang grad () p(2°)
is finite.

For twice differentiability of p(x) at the point z¥ it is sufficient that the
str grad (2 p(2°) be finite or the grad ?p(z) be continuous at z°.

Here we will give another sufficient conditions of twice differentiability.
Recall that the function ¢(z) is called twice differentiable at the point z°, if
angular partial derivatives % (z) and @7 (z) are finite in the neighborhood
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U(z") and differentiable at the point 2°. This, by virtue of Theorem 2.5.1
from Chapter II, means that for the function ¢(z) to be twice differentiable
at the point 2V, it is necessary and sufficient that the gradients

ang grad ¢, (2”) = ((¢5,), (%), (¢, )5, (2%)) (1)
and
ang grad o5, (2”) = ((¢%,)%, (%), (¢5,)5,(2%)) (2)
be finite.
Now let us prove the following

Theorem 1.2.1 ([2]). Let one component in each of the quantities
(8%1@($),8§2651(p($)) and (821822()0(‘%)785:2\290(‘%)) (3)

be continuous at the point x° and the other component be finite at 2. Then
the function o(x) is twice differentiable at the point x°, and*

62165290(I0) = 8@2821@(.%0). (4)
Proof. Since one component in the pair
(02,0, ¢(x), 03,02, ¢(x)) ()

is continuous and the other is finite at the point z°, the angular partial
derivative 0z, p(x) is the function, differentiable at the point z° (see Theo-
rem 3.6.4 of Chapter II).

Analogously we can prove that the function d;,¢(x) is differentiable at
the point z°.

Thus the function () is twice differentiable at the point z°.

Further, according to Young’s theorem (see Theorem 3.3.2 below), from
the twice differentiability of the function () at the point 2° we obtain the
equality 0, Oy, o(z%) = Oz, 0z, ©(2°), which with regard for Theorem 1.1.1,
results in equality (4). O

§ 2. Properties of Bettazzi Derivative of Functions of Two
Variables

2.1. The Notion of Bettazzi Derivative

The notion of a derivative at the point z° = (29,29) for a function

of two variables ¢(z1,22) has been introduced by Bettazzi in terms of the
limit )
im A[ao]@(hvk) (1)
(h,k)—(0,0) hk ’
where

= (a4 h1,29 + hy) — (27,25 + ha) — p(af + ha,29) + @(7,29). (2)

*That is, the mixed angular partial derivatives are equal.
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The expression Ap,o1¢(h, k) can be interpreted as a function ®(I) of a
closed segment I C R? with principal vertices at the points (z9,29) and
(29 + h1, 23 + ha). Under such interpretation, the limit

(1)
im
(h,k)—(0,0) |hk]

was called a strong derivative at the point 2% of the function of segment
®(I), symbolically @’ ().

The author of the present work considers it rightful to call limit (1) the
Bettazzi derivative of the function op(x1,2) at the point 2%, in honour of
its author Bettazzi (1884).

In the sequel, the above symbols will be retained, and the Bettazzi
derivative will be denoted by ¢ (2°). Consequently,

A[on]@(m k)

(@%) = lim 4
Pola) = o T Ik (4)

3)

2.2. Properties of Bettazzi Derivative

1. It should be here noted that the function may have finite Bettazzi
derivative and have no partial derivatives at some point. Such is, for e.g.,
the function w(x1,x2) = a(x1) + B(x2), where finite functions « and (8 are
assumed to have no derivatives. We have A[on]w(h, k) = 0 at every point
20 = (29, 29). Therefore w’,(z%) = 0 for all z°.

If the functions A(x1) and p(wz) have finite derivatives M(2¥) and
w'(29), then the function (1, z2) = M(21) - u(x2) has at the point (29, 29)
a finite Bettazzi derivative, and

Yi(af,25) = N (a9) - p(a3). (1)
In particular, this yields
(21 - 22 (2, 25) = 1 (2)

at every point (29, z9).

Proposition 2.2.1. Let the function ¢(x1,22) at the point x° =
(29, 29) have a finite Bettazzi derivative ¢'(29,29). Then we have the fol-
lowing statements:

1) the function (z1,x2) is continuous in the wide at the point (9, x9);

2) A[on]ga(h, k), being the function of two variables (h, k), is continuous
at the point (0,0).

Proof. First, from the finiteness of ¢’ (2°) follows the equality

. 2 o
(h,k1)1—>1n(0,0) A[xo]cp(ha k) - 07 (3)

which means statement 1).
Second, we have the relations

A[%CO]QO(O, 0) = A[%CO](P(h, 0) = A[Qlo]gﬁ(o, k) =0. (4)
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Taking into account that A[on](p(o, 0) = 0, equality (3) means that the
function A[on]cp(h, k) is continuous at the point (0,0). Thus our proposition
is proved. [

2. The existence of a total differential and derivability by Bettazzi are
connected as follows.

Theorem 2.2.1 ([2]). If there exist finite ¢/ (29, 29), e, (29,29) and
(29, 29), then there exists the total differential dp(x9,x3).

Moreover, the ezistence of the finite ¢'(z9,23) does not follow from
the finiteness of strgrad p(xV,29) and, all the more, from the existence of
dp(a?,23).

Proof. The left-hand side of the equality

T AL R
 (k—(0.0)  |h]+[K] hk

0,0
(2, 25)
is finite, and

|| + |k| ‘ 1 1
—_ =4 — h, k 0,0).
Therefore equality 2.5.(12) from Chapter II is fulfilled. Hence by Theo-
rem 2.5.4 of Chapter I1, dp(z9, 29) exists.
Further, the function g(x1,z2) defined by equality 2.4.(9) has finite
str grad(0,0) (see equality 3.2.(4) in Chapter II).
Moreover,
A[2(070)]g(h, k) = hksin(hk)™?

and hence ¢’ (0,0) does not exist. O

3. The theorem below deals with the representation of a function,
having a finite Bettazzi derivative.

Theorem 2.2.2 ([2]). Let the function ¢(x1,x2) have at the point
20 = (29,29) a finite Bettazzi derivative . (x°). Then there exists the
continuous at the point z° function g(x1,x2) possessing the following two
properties:

(p(xth) = g(Ith) + go(aU?, $2) + @(Il, $g) - (p(x?7x8)7 (5)
g(2%) = ¢ (a°). (6)
In addition, if the function p(x1,x2) is separately partial continuous at
the point 2°, then the function p(x1,2) is continuous at the point x°.

Proof. In equality 2.1.(2) we put o1 = 20 + hy, 2o = 29 + k and write it as

(,0(1‘1,1‘2) = g(mlva) + 30(1'(1)’ 1'2) + @(Zla 1'(2)) - (p(l‘cl),l‘g), (7)

where the function g(x1,z3) is defined by the equality

g(z1,22) = A[on]cp(:cl — 29, 29 — 29). (8)
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The function g(x1,2) is continuous at the point z°, by statement (2)
of Proposition 2.2.1.
To define g’ (x°), we have to find A[on]g(h, k). We have

A o1g(h, k) =g(x] + h, a5 + k) —g(a, 25 + k) —g(af + h, 25)+g(}, 9).
But by equality (4),
g(2%, a3 + k) = g(a? + h,25) = g(a7,25) = 0.
Therefore
Afyoyg(h, k) = g(ad + h, 25 + k).
From Equality (8) we now find that
The last two equalities yield
Afyoyg(h, k) = Afyoyip(h, B).

By the assumption, ¢ (2°) is finite. So, there exists the finite g/(z"), and
equality (6) holds.
The second part of the theorem follows from equality (5). O

From Theorems 2.2.1 and 2.2.2 we arrive at

Theorem 2.2.3 ([2]). If the function @(x1,x2) has at the point 2° =
(29, 29) finite ¢’ (x°), then the following two statements are valid:

1) separately partial continuity of the function ¢(x1,x2) at the point 2°
implies continuity of the function ¢(x1,x2) at the point 2°;

2) separately partial differentiability of the function p(x1,x2) at the
point x° implies its differentiability at the point x°.

49, Interconnection between the Bettazzi derivative and mixed partial
derivative consists in the following.

Theorem 2.2.4 ([2]). Let the function ¢(x1,x2) in the neighborhood
U(z®) of the point 2° = (29,29) have at least one finite mized derivative.
Then for ¢’ (z°) to exist, it is necessary and sufficient that this mized partial
derivative have limit at the point x°. If this limit exists, then ¢, (x°) is equal
to it.

Proof. For clarity, we suppose that in U(x") there exists finite
O, O (21, x2). We introduce the function u(z2) = (29 +h, v2)—p(x?, 22)
which by the Lagrange formula takes the form u(z2) = he! (29 + 61k, x2),
where 0 < 61 < 1. Moreover, the difference p(x3 + k) — p(23) is equal both
to A[on]cp(h, k) and to k - u' (2 + O2k) = hk0,, 8xlga(:£(1) + 61h, 2 + O2k),
0 < 65 < 1. Hence

Aoy p(hs k) = hkda, 0r, p(a) + O1h, 35 + Oak), 9)

which implies the statement of the theorem. [J
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Corollary 2.2.1. Let the function p(x1,x2) have in the neighborhood
of the point 2° = (29, 23) the both finite mized partial derivatives. If they
have limits at the point x°, then there exists ¢',(z°), and the both limits are

equal to it.

§ 3. On Mixed Partial Derivatives of Second Order
3.1. Preliminaries

Let the function f(x) be defined in the §-neighborhood U (2, §) of the
point 20 = (29,...,2%) € R". Suppose that the function f has at every
point x € U(x°,9) a finite partial derivative with respect to the variable z;,
symbolically f; , or O, f(z). Obviously, f; is finite function in U (29, 6),
and it is quite possible that it has partial derivative with respect to z; at
the point z € U(2?,§), symbolically w2, (), or 03,0, f(x). 1t is called a
second order partial derivative at the point x of the function f with respect
first to x; and then to x;, or briefly, of a second order partial derivative at
the point x with respect to variables x;, x;.

If j = i, then it is called a second order partial derivative of the function
f with respect to x; at the point x, symbolically f%,, or 0 f(x) (here

If j # i, then it is called a second order mixed partial derivative of the
function f at the point  with respect to variables* z;, z;.

They say that the function f at the point x has partial derivative of
arbitrary order with respect to xy, if for arbitrary values p = 1,2,... the
p-th order partial derivatives of the function f at the point x with respect
to x, are finite, symbolically 9% f(x), or gz: ().

Possibly, the function f at the point z € U(z?, ) has the second order
mixed partial derivative with respect to variables x;, x; (first to z; and then
to @;), symbolically f; . (z), or 9,0, f(z).

The basic problem for mixed partial derivatives of second order involves
the question: what properties of the function f at the point x guarantee
the fulfilment of the equality

al‘q,al‘jf(x) = axja:cif(x)? (1)

The property expressed by equality (1) is sometimes called either sym-
metry of mixed partial derivatives of second order of the function f at the
point z, or permutability of a sequence in which we take partial derivatives
with respect to the variables x; and x;.

Various examples show that there exist functions, at some points z for
which inequality

hold.

*As is seen, a sequence of partial derivatives is fixed symbolically by the sign
“comma” between variables.
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Here we consider two examples: first, when one hand-side of relation
(2) exists and the other does not; second, both hand-sides of relation (2)
are finite and different (The second example has another properties as well;
see Corollaries 3.1.1 and 3.1.2, and also Remark 3.3.1 below).

Example 3.1.1. Consider the function p(z1,22) = a(x1) + G(x2),
where a(x1) has a finite derivative for all z1, and the finite function §(z2)
has derivative nowhere. Then 0, 8zlga(m1,:c2) = Oz, o/(z1) = 0 for all
(r1,22), and the set for the existence of a mixed partial derivative
Oz, O, o(z1,2z2) is empty, since a set for the existence of a partial deriv-
ative 0, p(z1,72) = (' (2) is empty.

The following example is well know.

Example 3.1.2. Let us prove that for the function

93% - 93% 2 2
laran) = {7 g O 0 3)
0 for 1 =0= a9
the inequality
D, 0, 1(0,0) # D, B, (0, 0) (4)

holds.

Note at once that 1(x1,0) = ¢ (0,22) = 1(0,0) = 0.

To find the left-hand side of inequality (4), we have first to find a partial
derivative of the function 1 (x1,22) with respect to 1 at the point (0, z2),
symbolically 0, (0, z2). The latter is the function of w2, and we have to
find its derivative at the point z3 = 0, i.e., (9, 9(0,22))'(0).

Analogously, the right-hand side of inequality (4) is (0, %(21,0))'(0).

We start with the finding of the left-hand side of inequality (4) by using
the just mentioned sequence. We have

axl w(oa $2) - 1111210 w(ml’ 1'1'23 : :)/}(Oa 1'2) .

Here 1 # 0, and hence the quantities ¥(x1,x2) are specified by the upper
line of equality (3), due to 2% + 2% > 0.
Moreover, (0, z2) = 0. Hence for x2 # 0 we have

2 2 2
. Z1,x2 . {1 —T —x
0z ¥(0,22) = lim M = lim 25 - 12 22 =19 22 = —2I9.
1 z1—0 X1 z1—0 TiTs x5

However, if x5 = 0, then 0, (0,0) is the derivative of the function
¥(x1,0) = 0 at the point 1 = 0. Thus

—x9 for a9 #0

. 5
0 for z9 =0 (5)

6x1w(07$2) = {

Next, 9, 0: 1(0,0) means the derivative d%axlw(o, x9) at 9 = 0, and
when calculating it we assume that zo # 0 under the corresponding limiting
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sign. Therefore, taking into account (5), we have

8932 8931 '1/1(0, 0) = lim 8x1w(07x2) — 6;81 w(()) O) =

z1—0 X9 — O
— tim =279 i (1) = -1
z5—0 X9 z5—0
and hence
0;820;811#(0,0) =—1. (6)

Analogously we obtain the equalities

x1p for x1 #0
aﬂ? ;0 7
21/)(1'1 ) {O fOI' T, = 0 ( )
and
0;810;821#(0,0) =1. (8)

Consequently, inequality (4) is established.

Corollary 3.1.1. For the function (21, x2) defined by equality (3) the
grady(z1, z2) is continuous everywhere. In particular, there exists every-
where the total differential dip(x1,x2).

Proof. The continuity of the function grad ¢)(x1, z2) at all the points (z1, 22)
# (0,0) follows from the equalities

va(w] — 25 + daiaf)

w;:l (331,1’2) = (.ﬁ% ¥+ x%)g for LL‘% + LL‘% > 07 (9)
4 A 42,2
v (z1,22) = nn =5 - 4eiry) g, x3 + a3 > 0. (10)

(27 + 23)?

Taking into account the equality ¢’ ) (0,0) = 0, we obtain the continuity
of the partial derivative v’ ) (z1,22) at the point (0,0) from the following
estimates:

W (o1, a)| < 201+ 28+ 2070 + 2070)
S (¢F + 23)?
w2 [(2F + 23)° + 2] + @3]
(27 + 23)?

o Jwal[(af + 23)% + (aF + 23)°]

N (27 + 23)?

Thus

<

<

=2|zz] — 0 as x2 — 0.

1/)' (1‘1,1‘2) = 1/), (070) =0, (11)

lim ’ ’
(z1,22)—(0,0) *1 1
which means that the partial derivative v’ ) (z1,x2) is continuous at the
point (0, 0).
The continuity of the partial derivative 1%2 (x1,z2) at the point (0,0)
can be proved analogously.
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The existence of the total differential di)(x1,z2) at all points (1, x2)
follows from the continuity everywhere of the function grad ¢ (z1,22). O

Corollary 3.1.2. The function ¥(x1,22) defined by equality (3) pos-
sesses the following properties:

1) it is not twice differentiable at the point (0,0), i.e., it has no total
differential of second order at the point (0,0);

2) at every point (x1,x2) # (0,0) it has total differential of arbitrary
order;

3) at all points (x1,22) # (0,0) the equality

5%3@11#(3017302) :axlaﬂizw($1’$2)a ($1,$2) 7& (0’0) (12)
holds.

Proof. 1) Were the function ¢ (z1, 22) twice differentiable at the point (0, 0),
the equality 0,0, 1(0,0) = 0z, 0x,1(0,0) would hold, by Young’s theorem
(see Theorem 3.3.2 below). But this contradicts inequality (4).

2) The function ¥(z1,z2) has at the points (x1,x2) # (0,0) total dif-
ferential of arbitrary order because its partial derivatives of any orders are
continuous at the points (x1,z2) # (0,0) (see equalities (9) and (10)).

3) As far as the function ¢ (z1,x2) has total differential of arbitrary
order, in particular of second order, at all points (z1,22) # (0,0), equality
(12) holds at the points (z1,22) # (0,0), by the same Young’s theorem. [J

3.2. Inequality of Mixed Partial Derivatives

As we see, the function ¢(x1,x2) defined by equality 3.1.(3) has ev-
erywhere the continuous gradient and satisfies inequality 3.1.(2) at a single
point (0, 0).

There naturally arises the problem: for the function having everywhere
continuous gradient, how rich may be a set of those points at which inequal-
ity 3.1.(2) is fulfilled?

In connection with this problem we have Tolstov’s two statements in
which by K is denoted the unit square {(z1,22) € R?: 0 < z; <1, 0 <
i) § 1}

Theorem 3.2.1 ([29], Proposition II). There exists the function
F(x1,x2) with the continuous in K gradient and possessing everywhere in
K the both mized partial derivatives for which the inequality

8x18x2F(:c1,x2) %812893117(1'1,1'2) (1)

is fulfilled at almost all points (x1,x2) € K.
Theorem 3.2.2 ([29], Proposition I). For every positive number
n < % there exists the function U(x1,x2) with the continuous in K gradient

and possessing in K the both mized partial derivatives. Moreover, there
exists a measurable set Q C K of plane measure n?, such that at every point
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(x1,22) € Q the inequality
8310;82‘11(301,302) 75 65528@1\1/(I1,I2) (2)

holds, while the mized partial derivatives outside the set () coincide*.

3.3. The Sufficient Conditions for Equality of Mixed Partial
Derivatives of Functions of Two Variables

1. Theorem 3.3.1 ([27]). If the function F(x,y) has everywhere in
the domain G finite partial derivatives 0%1 F, 0y 0y, F, 0,0, F and 0%2 F,
then almost everywhere in G the equality

0x20x1F:0x18%F (1)
holds.

Remark 3.3.1. Under the conditions of Theorem 3.3.1 one cannot,
in general, state that equality (1) is fulfilled everywhere in G. This can be
illustrated by an example of the function ¥ (z1, z2) given by equality 3.1.(3).

Indeed, equalities 3.1.(9) and 3.1.(10) show that all partial derivatives
of second order are finite at every point (z1,x2) # (0,0), and mixed partial
derivatives coincide at such points. First, mixed partial derivatives are
finite at the point (0, 0), by equalities 3.1.(6) and 3.1.(8). Second, 851 ¥(0,0)
means the derivative (0, 1(21,0))"(0). Therefore the condition z; # 0 must
be fulfilled in 9, 1 (x1,0), but this by virtue of equality 3.1.(9) implies that
0z, ¥(x1,0) = 0. Hence 92 4(0,0) = (0)'(0) = 0.

Just in the similar way we obtain the equality 8521/1(0, 0) =0.

Consequently, the function ¥ (x1,x2) satisfies the conditions of Theo-
rem 3.3.1 at every point (z1,72) € R2. Despite this fact, inequality 3.1.(4),
as is seen, holds.

The above-formulated Tolstov’s theorem is, in fact, a generalization of
the classical “local” Young’s theorem on the validity of inverting the order
of taking partial derivatives at those points, at which partial derivatives F,
and F; have total differentials.

Here is the Young’s theorem.

Theorem 3.3.2 ([30], pp. 141-2; [11], p. 427). Let the function
f(z1,22) have finite partial derivatives Or, f(z1,22) and 0x2f(ac1, x2) in the
neighborhood of the point 2° = (29, 29), and let these partial derivatives be

the functions, differentiable at the point x°. Then the equality
812 axl f(xo) = axl ax2 f(l'o)a (2)

*This statement somewhat differs from that proposed by the author. It is said in
[29] that the plane measure of the set Q is positive. But upon proving this theorem it is
stated that the plane measure of the set @ is equal to (% 2 and outside the set Q the

mixed partial derivatives coincide, where 3 < A < 4 (see [29], p. 33).
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holds.

This Young’s theorem can be formulated in short as follows: the twice
differentiable at the point z° function f leads to equality (2).

Remark 3.3.2. Tolstov’s Theorem 3.3.1 does not follow from Young’s
Theorem 3.3.2. Indeed, the function F(x1,2z2) from Tolstov’s Theorem B
(see Introduction in Chapter II) satisfies equality (1) almost everywhere in
the square @, by Theorem 3.3.1. Moreover, suppositions of Theorem 3.3.2
are not fulfilled at the points of the set £ C Q.

2. Here we indicate two more theorems on the equality of mixed par-
tial derivatives.

Let the function of two variables ®(x,y) be defined in the domain G C
R?, and suppose that ®(x,y) in G has finite partial derivatives p(z,y) =
(2, y) and q(z,y) = @, (v, y).

The following two theorems are valid.

Theorem 3.3.3 ([26]). Let the functions p(z,y) and q(z,y) be con-
tinuous in G, and let one of them, say p(x,y), satisfy the conditions:
A) for some summable function o(x) the inequality

plz,y+k)—plz,y
@y B P00 < oo 3)
is fulfilled;
B) almost everywhere in G there exists the finite partial derivative
Py (@, y).

Then almost everywhere in G there exists the finite partial derivative
q.(x,y), and for almost all point (x,y) € G the equality

4 (z,y) = py(,y) (4)
is valid.

Theorem 3.3.4 ([26]). If in the neighborhood of the point M(xo,yo)
there exists the finite partial derivative py(z,y) which is continuous with
respect to the variable x at the point M, then there exists the finite q.,(xo, yo),
and the equality

Py (20, y0) = 45 (2, y) (5)
is valid.



CHAPTER IV

On Double Indefinite Integral and Absolutely
Continuous Functions of Two Variables

In the present chapter we prove the finiteness of a strong gradient, in
particular, the existence of a total differential, almost everywhere both for
an indefinite double integral and for an absolutely continuous function of
two variables.

For the function of two variables, summable on a rectangle, we introduce
the notion of an Lebesgue’s intense points and prove that almost each point
is an Lebesgue’s intense point for every summable function.

The strong gradient at the Lebesgue’s intense points is finite, in partic-
ular, the total differential exists both for an indefinite double integral and
for an absolutely continuous function of two variables.

For an indefinite integral with a parameter we prove the theorem which
contains C. de la Vallée Poussin’s theorem on differentiation of an integral
with respect to the parameter and Lebesgue’s theorem on differentiation of
an indefinite integral.

The problem on double differentiability of an indefinite double integral
is investigated and the sufficient conditions for an Lebesgue’s intense point
are established.

§ 1. Differentiability of an Indefinite Double Integral

1.1. Partial and Mixed Partial Derivatives of an Indefinite
Integral

Let the function of two variables f(x,y) be summable on the rectangle
Q={(z,y) eR?:a<x<b c<y<d} Consider for the function f the
indefinite double integral

F(x,y):]/yf(t,r)dtdr. (1)

The finite at every point (z,y) € Q function F(z,y) we can, by Fubini’s

theorem, write as
z oy
Fa) = [ [renar)a, @

99
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re = [ ( [ o) ar @

If we apply Lebesgue’s theorem to equality (2), then a set of those s,
for which

Fl(z,y) = / f(t.7) dr, (4)

will depend on the parameter y. G. P. Tolstov studied this situation in
detail and proved the following

Theorem 1.1.1 ([29], § 7; [28], p. 90). For every function f € L(Q)
there exist measurable sets e1 C [a,b] with |e1] =b —a and ez C [c,d] with
lea| = d — ¢ such that defined by equality (1) the function F(x,y) has the
following properties:

1) at every point (z,y) with x € e; and ¢ < y < d there exists finite
Fi(e.y) and

F(a,y) = / f(z,7)dr: (5)

2) at every point (x,y) with a < x < b and y € eq there exists finite
F,(z,y) and

Fi(z,y) = / F(t,y) d; (6)

3) there exists a measurable set E C Q with |E| = |Q)| such that at every
point (x,y) € E hold the equalities

with finite terms™.

From statements 1) and 2) of Theorem 1.1.1 it follows that the functions
of two variables F, and Fé are finite almost everywhere on the (). Namely,
the function F is finite on the set & = {(z,y) € Q@ : z € e, c <y < d}
with |€1] = @], and the function F} is finite on the set & = {(z,y) € Q :
a<z<b, y€ e} with |E] = Q).

Proposition 1.1.1. The functions F, and F, are summable on the Q.

Proof. Since f € L(Q),

b d
[ [isentaear = 1

is finite.

*We have introduced the symbols F;/, = 0y 9z F and F;/, = 0z dy F.
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The estimates
Yy d
Bl < [ 1@ nldr < [ 1fGr)ldr
C C

obtained from equality (5), show that

b
/Mﬁ%waSHﬂ

whence
b d

[ [ 1Eldrdy < @ o 17) < +oc.
Hence F; € L(Q). Analogously, Fy € L(Q). The embeddings F,’, €
L(Q) and F}/, € L(Q) follow from equalities (7). OJ

1.2. Differentiability of an Indefinite Double Integral

If the function ¢(x) is summable on the [a, b], and

M@=/¢mm, (1)

then according to Lebesgue’s theorem (1903), there exists the measurable
set e C [a,b] with |e| = b — a such that the equality ®'(z) = ¢(x), or what
is the same, the equality

x+h

jin 5 [ e(t)dt = o(z) 2)

h—0 h
x

is fulfilled for all z € e.

All Lebesgue’s points of the function ¢ on the [a, b] belong to the set e.
In particular, all points of continuity of the function ¢ on the [a,b] belong
to the set e, if ¢(z) has such a point on the [a, b].

The following problems are quite natural.

I. Does the indefinite double integral

F(x,y)j]f(t,r)dth, (3)

corresponding to the summable on the rectangle Q@ = {(z,y) € R? : a <
x < b, ¢ <y < d} function f, have or have no a total differential almost
everywhere?

II. If F(x,y) has a total differential, then at what points and how the
set of such points is connected with the function f?
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The answer to Problem I will be given here, and Problem II will be
considered in Section 4.
We proceed to formulating and proving the following

Lemma 1.2.1 ([3]). For every function f € L(Q) there exists the
measurable set E C Q with |E| = |Q| such that at every point (x,y) € E
the equalities

. w+hy+k
}1113%) 7 / flt,7)dtdr =0, 4)
[k|<cl|h| x Y
. a+hy+k
%E% p / ft,7)dtdr =0 (5)
Ihl<tlk] %y

are fulfilled, no matter how the constants ¢ >0 and l > 0 are.

Proof. Without restriction of generality, we can assume that h > 0 and
k > 0. For every constant ¢ > 0 under k < ch we have

z+hy+k z+h y+ch

‘%/ /f(t,r)dtdr g%/ /|f(t,7-)|dtd7-=
z Yy )

x
x+hy+ch

=ch(ﬁ/ /|f(t,r)|dtdr). (6)

z Y

By virtue of the Lebesgue’s theorem ([21], p. 118), there exists the
measurable set F; C @ with |E1| = |Q|, such that the expression in the
brackets appearing in (6) has a finite limit at every point (z,y) € E1, equal
to |f(z,y)|. Therefore equality (4) is fulfilled at the points (x,y) € F;.

Equality (5) is likewise fulfilled at every point (z,y) of a specific set
E, C Q with |Ea| = Q).

It is now clear that equalities (4) and (5) together can be fulfilled at
every point (z,y) € E, where E = E1 N Es, |E| =|Q|. O

Theorem 1.2.1 ([3]). Indefinite integral (3) has a total differential at
almost all points (x,y) € Q for every function f € L(Q).

Proof. To prove this theorem, it is necessary and sufficient to prove that the
quantities Dz F'(x,y) and D F(x,y) are finite at almost all points (z,y) € Q,
by Theorem 2.5.3 of Chapter II.

Let us, for example, prove D;F(z,y) is finite at almost all (x,y) € Q.
To this end, we consider the expression

Yy
Hotby e N=PovtD [ i -
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z+hytk Y
:%/ /f(t,'r)dth—/f(:c,T)dT:
z+h Y t z+h y+k
z%/(/[f(t,r)—f(ac,r)]dr)dt—i— //ftrdtdr—

x [

= Ih(xay) + Jh,k(za y)

By Lemma 1.2.1, there exists the measurable set E C Q with |E| =

such that at every point (z,y) € E the equality
li =0.
h{)% Jh,k(xay) 0

|kI<|hl|

is fulfilled.
Now we show that the equality

103

(7)
QI

(8)

9)

is fulfilled at almost all points (z,y) € . Towards this end, we make use

of the sets e; and es and also the sets £ and &y from Theorem 1.1.1.

On the set & we have the equality 1.1.(5). Hence the equality

lim Flz+hy) -
h—0 h

/f:chT (z,y) € &

is fulfilled. It is clear that under h — 0 the difference

(:chhy F(z,y) /f:ETdT*

z+h Y T
AT -
| T |
:E//f(t,’r)dthfﬁ//f(:E,T)dT:
7h(7ftrd7—/fxrdr)dt
:% 7h</y [f(t.7) = f(x,7)] dT) dt = I(z,y)

tends to zero.

(10)

It is now clear that equalities (8) and (9) are fulfilled simultaneously at
the points (z,y) € E*, where E* = EN¢&; and |E*| = |Q|. By equality
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(7), all this means that at the points (z,y) € E* the quantity Dz F(x,y) is
finite, and at these points

Yy
D:iF(z,y) = / [t ), (z,y) € B, B =|Ql. (11)

The finiteness of the quantity D;F(x,y) at the points (z,y) € E** =
E N &, |E**| =|Q)] is established analogously, and

@
DyF(z,y) = /f(tvy) dt, (z,y) € ™, [E™|=|Ql. (12)
a
Obviously, at the points (z,y) of the set M = E* N E**, | M| = |Q)|,
DF(z,y) = (D:F(w.y), Dy F(z,y)) (13)
is finite (see equality 2.3.(4) in Chapter II), and
dF(z,y) = D3 F(x,y)dx + DyF (z,y)dy (14)

(see equality 2.5.(11) in Chapter II). O
From here, we obtain the following

Theorem 1.2.2. The indefinite double integral

U(x,y) 7/yw(t,7) dtdr (15)

for every R-integrable on the Q function ¥ has the total differential almost
everywhere on the Q.

Theorem 1.2.3 ([4], [5]). At every point (zo,y0) € Q of differentia-
bility of the indefinite integral (3) with f € L(Q) we have

:Co+hy0+k7
lim —— t,7)dtdr = 0. 16
e J e (16)
- To Yo

In particular, equality (16) is fulfilled at almost all points (xo,yo) € Q.

Proof. At the point (zg,y0) € @ of differentiability of the function F(z,y),
D;F(x0,y0) and DgF(zo,yo) are finite. In particular, F)(zo,yo) and
F!(x0,yo) are finite. Hence the equality

Yy
lim F(xzo+h,yo+k)—F(x0,yo+k)—F(xo+h, yo)+ F (w0, yo)

pp DER

is fulfilled by Theorem 2.5.4 from Chapter II.
If for the defined by (3) function F(x,y) we calculate the numerator of
the equality (17), then we will get equality (16).

0. (17)
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The fulfilment of equality (16) almost everywhere on the @ for every
function f € L(Q) follows from Theorem 1.2.1. O

Theorem 1.2.4 ([5]). Let indefinite integral (3) for f € L(Q) have
in the neighborhood of the point (zo,y0) € Q finite I, (z,y), F,(z,y) and
F)' (z,y). Then for the function F(x,y) to be differentiable at the point
(z0,Y0), it is necessary and sufficient that

hk
lim ———F” = 1. 1
ZLmS |h| + || (o +01h,yo +02k) =0, 0< 61, 0 < (18)
If in addition, F, (z,y) = f(z,y) in the neighborhood of the point
(z0,Y0), then for the differentiability of the function F(x,y) at (xo,yo) it is
necessary and sufficient that

hk
lim —— = 1. 1
Z:II% |h|+|k|f($0+91h,y0+92k') 0, 0<6by, O:< ( 9)

Proof. Substituting the function ¢ by F', the assumption of Theorem 2.5.4
from Chapter II is fulfilled. Therefore equality (17) is the necessary and
sufficient condition for the function F(z,y) to be differentiable at the point
(70, Yo). But the numerator in (17) can be written as Fy/, (xo + 0h, yo + 0k),
by equality 2.2.(9) from Chapter III. O

§ 2. Differentiability of an Absolutely Continuous Function of
Two Variables

We intend to prove the theorem for absolutely continuous functions of
two variables, which will be analogous to the classical Lebesgue’s theorem
(1903).

2.1. The Notion of an Absolutely Continuous Function of a
Two-Dimensional Segment

In the sequel, under a segment will be meant a closed non-degenerated
two-dimensional segment, or an empty set.

Let on the rectangle Q = {(z,y) € R?: a <2 <b, ¢ <y < d} there
is a real-valued function of segment ®. This means that to every segment
I=A{(t,7)eQ:x1 <t<ux9,y1 <7 <y} CQ there corresponds the
unique real number ®(I), and for an empty set & we assume that (&) = 0.

A function of the segment ® is said to be continuous on the @, if for
an arbitrarily small number ¢ > 0 there exists a number § = d(g, ®) > 0,
such that for every segment I C @ with the property |I| < ¢ the inequality
|®(I)| < ¢ is fulfilled. This fact is written as

lim @(1) =0. (1)
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Two segments I; C @Q and I; C @ are said to be non-overlapping
(without common inner point) if I{ N IS = &, where by E° is denoted the
interior of the set £ C R2.

A function of the segment ® is said to be additive on @, if for every finite
system of pairwise non-overlapping (having pairwise no common interior
points) segments I; C @, ..., I, C Q the equality

cI>(LpJIk) =Y (k) (2)

p
k=1 =1

is fulfilled.

Definition 2.1.1. A function of the segment ® is called an absolutely
continuous function on the rectangle @, if to every number € > 0 there
corresponds the number 1 = n(e, ®) > 0, such that for every finite system
of pairwise non-overlapping segments Iy C @, ..., I, C @ with the property
[I1] + - - - + |Ip| < n the inequality

Do)l <e (3)
k=1

is fulfilled.

Obviously, an absolutely continuous function of a segment on the @ is
continuous on the Q.

2.2. The Connection Between Functions of a Point and of a
Two-Dimensional Segment

With every function ¢(x,y) of a point defined on the @), we can connect
the function of the segment ®(I), I C Q. This can be done as follows.
Taking arbitrary segment I = {(z,y) € Q@ :x1 <x <29, 11 <y <1y} C Q,
we compare the number ®(I) by the rule

O(I) = p(x2,92) — w(21,92) — (w2, 91) + (w1, Y1) (1)

Note that such an comparison is not perfect. The matter is that the
right-hand side of equality (1) remains invariable when replacing the func-
tion ¢(z, y) by the function ¢ (z,y) = p(z,y) + a(x)+ B(y), where a(z) and
B(y) are arbitrary finite functions on the [a, b] and [c, d], respectively.

This fact shows that for the definition an absolutely continuous on the
Q@ function p(z,y) of a point, there is no need to be satisfied with the
absolute continuity on the @ of the corresponding function of the segment
®(I). This defect can be corrected as follows.

Definition 2.2.1 ([24], p. 246). A function p(z,y) of a point defined
on the @ is said to be absolutely continuous on the @, if the corresponding
function of the segment ®(I) defined by equality (1) is absolutely continuous
on the @, and the functions ¢(z,c) and ¢(a,y) are absolutely continuous
on [a,b] and [c, d], respectively.
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Hence equality (1) provides us with the function of the segment by
means of the function of a point.

The converse is also possible, i.e. to get the function of a point through
the function of a segment. Indeed, let there be a function of the segment
U(I), I C Q. We take any point (z,y) € Q, where a < x < b, ¢ < y < d.
Suppose

P(x,y) = V(I ,y) for I, = {(t,T) €Q:a<t<u, c<7§y},
P(x,e) =0 for a <z < b, (2)
Y(a,y) =0 for c <y <d,

The defined in such a way function ¥ (z,y) satisfies equality (1) with
the left-hand side W(I), I C Q.

Obviously, the absolutely continuous on the @ function p(z,y) is uni-
formly continuous, in particular, continuous on the Q.

2.3. Representation of an Absolutely Continuous Function of a
Point and Summability of Its Partial Derivatives

To every absolutely continuous on the @ function ®(z,y), there corre-
sponds a triple of functions ¢ € L(Q), g € L([a,b]), h € L([c,d]) such that
the equality ([24], p. 246)

D(z,y) :/x/yap(t,r) dth+]g(t) dt-i—/yh(r) dr + ®(a,c) (1)

a c

holds, and vice versa.

Applying statement (1) from Theorem 1.1.1 to the double integral from
equality (1) and Lebesgue’s theorem (1903) to the first ordinary integral,
we establish the existence of a measurable set e} C [a,b] with |ej| =b — a,
such that the function ®/ (x,y) is finite at every point (z,y) with = € e}
and ¢ <y <d, and

Yy
q»;(x,y):/so(x,r)dwg(x), ree, c<y<d 2)

c

Analogously, applying statement (2) from Theorem 1.1.1 to the double
integral and Lebesgue’s theorem to the second ordinary integral, we estab-
lish the existence of a measurable set e} C [c,d] with |ef| = d — ¢, such
that the function @ (z,y) is finite at every point (z,y) with a <z <b and
y € e3, and

x

<I>;,<z,y>:/sa<t,y>dt+h<y>, a<o<h yeel 3)

a
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Finally, there exists the measurable set E* C @ with |E*| = |Q|, such
that at every point (x,y) € E* we have

) (x,y) = ¢(z,y) = @) ,(z,y), (4)

with finite terms.
The following proposition is obvious.

Proposition 2.3.1. For the absolutely continuous on the Q function
®(z,y), defined by equality (1), the functions @, &, and @) = @} .,
defined by equalities (2)—(4), belong to the space L(Q).

2.4. Differentiability of an Absolutely Continuous Function of
Two Variables

Every absolutely continuous on the @ function ®(x,y) admits a repre-
sentation of type 2.3.(1). For an indefinite double integral in the right-hand
side of equality 2.3.(1) we prove, by using Theorem 1.2.1 that a total dif-
ferential exists almost everywhere on the @. The remaining two functions
of one variable are absolutely continuous and therefore have almost every-
where a total differential*. All this can be summarized in the form of the
following

Theorem 2.4.1 ([2]). Every absolutely continuous on the Q func-
tion ®(x,y) has a total differential almost everywhere on the Q. Its partial
and mized partial derivatives, given on the corresponding sets by equalities
2.3.(3)-2.3.(4), are summable on the Q functions.

Remark 2.4.1. Theorems 1.2.1 and 2.4.1 are the analogues of the clas-
sical Lebesgue’s theorem for functions of two variables. One more analogue
of that Lebesgue’s theorem will be given in Section 5, in the form of equal-

ity (4).

Remark 2.4.2. The function ¢(z,y) defined on the rectangle Q =
[a,b] x [c,d] is said to be separately absolutely continuous on the @, if ¢
is absolutely continuous on [a,b] for every fixed y € [c,d] and absolutely
continuous on [¢, d] for every fixed z € [a, b].

Tolstov ([28], p. 50) constructed an example of a separately absolutely
continuous function in the form of a repeated integral, which is discontinuous
almost everywhere on the Q).

*Assume F(z,y) = a(z) for (z,y) € Q. Then we have the relations
F(zo + h,yo + k) — F(x0,y0) — &/ (zo)h _ afzo +h) — a(zo) — ' (z0)h

|h] + [K| B |h] + [k| B
o(h)

R

— 0, as (h,k) — (0,0).
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8 3. The Finiteness of a Strong Gradient of an Indefinite
Integral and of an Absolutely Continuous Function

3.1. Separately Strong Differentiability of an Indefinite Integral

As is already known (see Ch.II, 3.3), the property of the function to
have a total differential at the given point is weaker than the property to
have a finite strong gradient at the same point.

It is also stated that an indefinite double integral has a total differential
almost everywhere (see Theorem 1.2.1).

Proceeding from these two statements, there naturally arises a question:
whether an indefinite double integral has a finite almost everywhere strong
gradient?

The answer is positive: the indefinite double integral is almost ev-
erywhere separately strong partial differentiable one (see Ch. II, Defini-
tion 3.1.4).

Theorem 3.1.1 ([2]). Let the function f(x,y) be summable on the rec-
tangle Q = {(z,y) € R?: a <2 <b, ¢ <y < d}. Then the corresponding
indefinite integral

F(z,y)jif(t,T)dth (1)

possesses the following properties:
1) for almost every xo € [a,b] and for every yo € [c,d] the F},,(xo,yo)
is finite, and
Yo

F[/x](fﬂo,yo) :/f(xoaT)dT; (2)
2) for every xo € [a,b] and for almost every yo € [c,d] the fi,(x0,yo) is
finite, and

Zo

F[ly](fﬂo,yo)Z/f(t,yo)dt; (3)

a

3) at almost every point (xo,yo) € Q the strgrad F(zo, yo) is finite.
In proving this theorem we use the following Tolstov’s lemma.

Lemma 3.1.1 ([28] Lemma 15 and Remark on page 89). For
(z,y) € Q, let

x

wawz/ﬁmww, (4)

a
where it is assumed that:
A) for almost every fized x € [a,b] the function (x,y) with respect to
y 1s continuous on the [c,d];
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B) there exists the summable on the [a,b] function M(x), such that the
inequality

(@, y)| < M(x) (5)

is fulfilled for almost every x € [a,b] and for all y € [c,d].
Then for every arbitrarily small number n > 0 there exists a perfect set
E C [a,b] with |E| > b—a —mn, such that the equality

lim [0z + h,y) ~ (z,y)] = $(z.y) ()

is fulfilled uniformly with respect to (x,y), where x € E and ¢ <y < d.
On the base of that lemma we prove

Lemma 3.1.2 ([2]). Under the conditions of Lemma 3.1.1, there exists
a measurable set e C [a,b] with |e| = b — a, such that at every point (zo,yo)
with g € e and yo € [c,d] the CIDEQE] (z0,y0) is finite, and

®(41(20, Y0) = ¢(20, Yo). (7)

Proof. Tt follows from Lemma 3.1.1 that for almost every fixed z € [a, b] the
equality

lim - [(z + h,y) — B(r,9)] = ¢(zy) (®)

is fulfilled uniformly with respect to y € [e,d]. This means that for almost
every fixed such z and for any arbitrarily small number € > 0 there exists
ho = ho(e, z) > 0, such that

q)(m + h’a y) — q)(l‘,y)
h

forc<y<dand 0<h < hp.

Let e denote a set of all 2’s from [a, b], for each of which equality (8) and
condition A) from Lemma 3.1.1 are fulfilled simultaneously. The equality
le] = b — a is obvious.

Let us take an arbitrary point (zg,yo) with o € e and ¢ < yo < d.
Since the function of one variable ¢(xo,y) is continuous at the point yo,
for the same ¢ there exists the number § = d(e, x,y0) > 0, such that the
condition |y — yo| < ¢ implies

—p(z,y)| <e 9)

|<P(9307y) - Sﬁ(ffovyo)} <e&. (10)
From estimates (9) and (10) follows the equality

1
}Lli% 7 [®(x0 + h,y) — B(x0,y)] = (0, 0), (11)
YEYo

which is equivalent to (7). O
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Proof of Theorem 3.1.1. We write the function F(z,y) defined by equality
(1) as
T

F(Iay) = /@(tvy) dt, (12)

a

where
@(tvy) = /f(ta T) dr. (13)

By virtue of Fubini’s theorem, from the assumption f € L(Q) follows
d
that for almost all ¢ from the [a,b] the integral [ f(¢,7)dr is finite. Thus

the function ¢(¢,y) for such ¢ is continuous with respect to y on the [c, d].
Hence for almost all ¢ from the [a, b] the function ¢(¢,y) is continuous with
respect to y on the [c, d].

Consequently, condition A) of Lemma 3.1.1 is fulfilled.

The fulfilment of condition B) follows, by Fubini’s theorem, from the
relations

y d
le(t,y)| S/‘f(t,r)‘dTS/|f(t,7‘)‘dt5/\/l(t)GL([c,d]).

Thus the conditions of Lemma 3.1.1 are fulfilled. Therefore we have
equality (7) in which the function ® is replaced by F' and the value ¢(xq, yo)

by Ly/?f(aco, T)dr.

So, statement 1) of Theorem 3.1.1 takes place at every point (xq, o)
with zg € e and ¢ < o < d.

Statement 2) of Theorem 3.1.1 is established analogously, and statement
3) of the same theorem is the consequence of statements 1) and 2). O

Remark 3.1.1. The extension of Theorem 3.1.1 to the n-dimensional
case has been obtained in [9].

3.2. Corollaries from the Finiteness of a Strong Gradient of an
Indefinite Integral

On the base of Theorem 3.1.1 we obtain the following

Theorem 3.2.1 ([2]). For every summable on the rectangle Q =
{(r,y) € R? : a < o < bye <y < d} function f(z,y) the following
statements are valid:

1) there exists a measurable set ey C [a,b] with |e1] = b — a, such that

Yo
at every point (zo,yo) with xo € e1 and yo € [c,d] the integral [ f(xo,T)dT
C
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is finite, and

zo+h Yy 0
i & [ [ serdear = [ oo, ar (1)
Y—Yo To c c

2) there exists a measurable set eq C [c,d] with |es] = d — ¢, such that
g

at every point (xo,yo) with xo € [a,b] and yo € ea the integral [ f(t,yo)dt
a

is finite, and

1 yo+k x To
i & [ [ seraar = [ g0 dr (2)
T—T0 Yo a a

3) equalities (1) and (2) are fulfilled simultaneously at the points
(z0,10) € E, where E = 1 X €3, |E| = |Q|.

To formulate this and the subsequent theorems in short, we introduce
the following measurable sets:

A) Ev= |J m(), |E1] =1QI, 3)
To€el
where the measurable set e; C [a,b] with |e;] = b — a is adopted from

statement 1) of Theorem 3.2.1, and the vertical closed interval m(zg) is
defined by the equality

m(zo) = {(0,y) : e <y < d} (4)

B) Ey = U n(yo), | E2| = QI (5)
Yoc€ez

where the measurable set es C [e,d] with |e2] = d — ¢ is adopted from

statement 2) of Theorem 3.2.1, and the horizontal closed interval n(yp) is
defined by the equality
n(yo) = {(z,y0) : a < < b} (6)
Now Theorem 3.2.1 can be rephrased as follows.
Theorem 3.2.2 ([2], Remark 6.2). For every function f € L(Q),
equalities (1) and (2) take place at the points (zo,yo) € F1 and (zo,yo) € Ea,

respectively. Equalities (1) and (2) are fulfilled simultaneously at the points
(x0,y0) € E3, where E3 = E1 N Esy, |Es| = Q).

Theorem 3.2.3 ([2]). For every function f € L(Q) the following
statements take place:
1) at the points (xo,yo) € E1 the equality

zo+h yo+k
/ Ft7) dtdr =0 (7

Zo Yo

~—

li —
(h,k)lin(o,o) h



On the Continuity and Differentiability 113

holds;
2) at the points (xo,yo) € Eo the equality
zo+h yoJrk
li - t dtdr =0 8
(hb)—(0.0) / fle.7) dtdr ®)
Zo Yo

is valid;

3) equalities (7) and (8) are fulfilled simultaneously at the points
(z0,%0) € B3, where B3 = E1 N By, |E3| = [Q|;

4) at the points (zo,y0) € E3 the equality

bk zo+h yo+k

+

1 _— t dtdr =0 9

o dim L / f(t,7) dt dr (9)
o Yo

holds.

Proof. In the left-hand side of equality (1), the integral on the segment [c, y]
represent as a sum of integrals on the segments [c, yo] and [yo, yo + k.

To the first double integral with the coefficient A~! we apply equality
1.2.(2) and the limit in this case will be equal to the right-hand side of
equality (1). This means that equality (7) is fulfilled.

Equality (8) can be proved in a similar way.

Statement 3) follows from statements 1) and 2), and equality (9) is
obtained from equalities (7) and (8). O

Remark 3.2.1 ([2]). If S(z,y) € L(Q) is the Saks’ function ([10], p. 96;
[21], p. 133), then the expression

. a+hy+k
%/ /S(t,'r)dth (10)
¢y

has the strong upper limit +o00 at every point (z,y) € Q. At the same time,
Theorem 3.2.3 shows that tending off expression (10) to +oco is subordinate
to equalities (7) and (8) at the points (zg,y0) € E1 N Ey, i.e.,
zo+h yo+k
1

%/ /S(t,T)dth:O(

Zo Yo

1
max(h,k;))' (11)

3.3. The Finiteness of a Strong Gradient of an Absolutely
Continuous Function

Since a derivative of an arbitrary function of one variable can be in-
terpreted as a strong partial derivative (see 3.1 of Chapter II), equalities
2.3.(1)-2.3.(4) and Theorem 3.1.1 allow us to formulate the following result.
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Theorem 3.3.1 ([2]). To every absolutely continuous on the rectangle
Q function ®(x,y) there corresponds a triple of functions ¢ € L(Q), g €
L(Ja,b]) and h € L([c,d]), such that the following statements take place:
1) for almost every xo € [a,b] and for every yo € [c,d] there exists the
finite @fz] (zo,%0), and
Yo

By (z0,0) = [ ¢l ) dy + g(ao); (1)

C

2) for every xg € [a,b] and for almost every yo € [c,d] there exists the
finite <I>fy] (zo,%0), and

Zo

&, (20, 0) = / (@, y0) dz + h(yo); 2)

a
3) at almost every point (o, yo) € Q the str grad ®(xo, yo), ®7 , (70, Yo)
and @y, (x0,y0) are finite, and

q)g,y(xmyo) = (0, Y0) = <I>Z7x(:vo,y0). (3)

§ 4. Lebesgue’s Intense Points and Finiteness at These Points of
a Strong Gradient of an Indefinite Integral

To the Lebesgue’s theorem on a regular derivative for an indefinite
double integral ([21], p. 118) there corresponds the notion of the Lebesgue’s
point in the weak sense, or more exactly, we call the point (zg,yo) € @ the
Lebesgue’s point in the weak of the function f € L(Q), Q = {(z,y) € R? :
a<z<bec<y<d}if

1
T ‘f(xay) - f(l‘o,yo)‘dl’dy - 0; Ic J(l’o,yo) (*)
| /1/

no matter how regularity contracting to the point (zg, yo) € @ the standard*
system J(xg, yo) of rectangles or disks, containing the point (xq,yo)-

A set of such points is sometimes denoted by L(f). It is well known
that |L(f)| = |Q] (see, for e.g., [21], p. 118; [10], p. 39; [15], p. 343; [23],
p. 12; [18]).

On the base of Jessen—Marcinkiewicz—Zygmund theorem ([12], [21],
p. 148), relation (%) remains valid for the standard non-regular system
{I(x0,y0)} under the condition that the function f belongs to a narrow
(compared with L(Q)) class LIn™ L.

Consequently, in the first case the function f € L(Q) is arbitrary, and
contracting to the point (zg,yo) € @ the standard system J(zo,yo) is reg-
ular. In the second case, the standard system J(xg,yo) is arbitrary, and on
the function f we impose the condition f € Lln™ L.

*A system of rectangles is standard one if the sides of each of rectangle are parallel
to the coordinate axes.
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Just this the author meant by saying “the Lebesgue’s point in the weak”.

4.1. Lebesgue’s Intense Points of Summable Functions of Two
Variables*

Definition 4.1.1 ([2]). Let the function f(z,y) belong to the space
L?(Q) for some p > 1.

The point (zg,y0) € Q is called jointly Lebesgue’s intense point (of p-th
degree) of the function f, symbolically (zo,y0) € int L%  (f), if the following
two conditions are fulfilled:

zo+h Yotk

Yo
1 P
3 h dy — dy| dx = 1
(h)—(0,0) / / fz,y)dy /f(xo,y) y| dx =0, (1)
xo c c
yo+k xo+h o
. 1 / / 4 / p pd . o)
1 Z _ o
(h,k)lgjtoyo) k f(x,y) x f(x,yo) x Yy
Yo a a

When equality (1) is fulfilled, then the point (xo, yo) is called Lebesgue’s
intense point with respect to the variable = (of p-th degree) of the function
f, symbolically (zg,yo) € int LE(f).

When equality (2) is fulfilled, then the point (xq, yo) is called Lebesgue’s
intense point with respect to the variable y (of p-th degree) of the function
[, symbolically (zo,yo) € int LE(f).

Theorem 4.1.1 ([2]). Let the function f(x,y) belong to the space
LP(Q) for some p > 1. Then the following statements take place:

1) there exists a measurable set e C [a,b] with |e]| = b—a, such that the
set of all points (zo,yo) with xo € e} and yo € [c,d] forms the set int LE(f),
[int LE(f)| = QI

2) there exists a measurable set e C [c,d] with |e3| = d—c, such that the
set of all points (w0, yo) with xo € [a,b] and yo € e3 forms the set int LP(f),
[int LY(f) = [Q]-

3) the set of all points (xo,yo) with xo € €5 and yo € €5 forms the set
int Ly, (f), [t L, (f)] = |Q].

Proof. 1) By Fubini’s theorem, there exists the measurable set Ey C [a, b]
with |Ey| = b — a, such that for every zg € Ey the integral
d

/ £ (z0,9)]| dy 3)

C

is finite.

*In [2], there occurs “in the strong sense”.
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Let (Qn(y))52; be a set of all polynomials with rational coeflicients.
To the function |f(z,y) — Qn(y)|P? € L(Q) we apply statement 1) of Theo-
rem 3.2.1. According to that statement, there exists the measurable set
E, C [a,b] with |E,| = b— a, such that at every point (z¢, yo) with zo € E,,
and yo € [c, d] the equality

1 zo+h yo+k Yo

. p p

A [ e - @uw) dedy = [ |0y - Qulw)l” dy
zo c c

holds.
Introduce the set E* = (] E,. We have |E*| = b — a and the equality
n=1

zo+h yo+k

l/ / |F(2,y) = Qu(y)|” dady =

I
(h,k)go,o) h

- / £ (20,9) — Qu(w)|” dy (4)

is fulfilled for (xo,yo) with z, € E*, yog € [¢,d] and n = 1,2, ...

For every point zg € Ey with finite integral (3) and for every num-
ber € > 0 there exists the polynomial Q,(y), m = m(zg,e) with rational
coefficients, such that

d
[ 15609 - Quiw|dy <
Hence
Yo
[ 15600 = Qui)ldy << 6

for all yo € [c, d].
Consider now the set ef = E* N Ey, |ej| = b — a. Let zo € e} and
Yo € [c,d]. We have

Yyo+k Yo Yyo+k

/f(x,y)dy/f(wo,y)dy‘é [ 1560 = Guiw)] v+

c

Yo+k

Yo
+/ £ (20,9) — Quuly)| dy + / 1Qu )| dy = i + fo+ f.

Yo
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Next,
zo+h yo+k Yo » 1/p
(/ /f(fc,y)dy—/f(xo,y)dy d:c) <
Toth 1/p oth 1/p
< ( / (f1+f2+f3)pdac> < ( / ffdac) + P (fa+ f3).
Thus
zo+h Yotk Yo » 1/p
G /| [ sewa- [ famale) <
o-t+h 1/p
< <% / f{’dx) + f2 + f3.
But
yo+k »
= [ 1f@w - »dy) <
’ yo+k
(yo+k—c)"" / | f(z,y " dy,
Yo 1/p
f2=/|f(fco,y) W) dy<(yo—c) 7 (/If 0,y m(y)\pdy) 7

For all yo € [e,d], the last integral is less than the number ¢, if values

of k are sufficiently small.
Therefore taking into account (4) and (5), we have

zo+h yo+k Yo

1 P

7 / ‘ / f(x,y)dyf/f(xo,y)dy dx <
xo c c

<2[(yo+k—c)P "+ (yo— )Pt + kP <6e(d— )P

Thus we have established statement 1). Statement 2) is established
analogously. Statement 3) is the consequence of the previous two state-

ments. [
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4.2. The Finiteness of a Strong Gradient of an Indefinite
Integral at Lebesgue’s Intense Points

Taking into account Theorems 3.1.1 and 3.2.1, from Theorem 4.1.1 for
the case p = 1 we obtain the following

Theorem 4.2.1 ([2]). Let the function f(x,y) € L(Q). Then the
corresponding indefinite integral

F(z,y)jif(t,T)dth (1)

possesses the following properties:
1) at every point (xo,yo) € int L, (f) the F[’z] (o0, yo0) is finite and

Yo

F[/x](fﬂo,yo):/f(lﬂoﬁ)dﬂ (2)

or what is the same,

;c0+hyo+k
%%E/ /ftTdtdrf/fxo, T (3)

2) at every point (xo,yo) € int Ly(f) the FY, (xo,y0) is finite and

xo
F[/y] (IOa yO) = /f(tayO) dta (4)
or what is the same,
1 Yo+k xo+h To
i o [ [ ferdar = [ i) ar (5)
k=0 ey Y

3) at every point (xo,yo) € int Ly ,(f) the strgrad F(xo, yo) is finite, in
particular, there exists dF (xo,yo).

Definition 4.2.1. One-dimensional segment
m*(z0) = {(z0,y) : zo € €], c <y <d}, (6)

where e} is adopted from statement 1) of Theorem 4.1.1, is called a vertical
Lebesgue’s segment of the function f(z,y) € L(Q), corresponding to .
In just the same way, one-dimensional segment

n*(yo) = {(z,90) : a <z <b, yo € €3}, (7)

is called a horizontal Lebesgue’s segment of the function f(z,y) € L(Q),
corresponding to yo.
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If we introduce measurable sets
E; = |J m*(x0), E;= |J n"(w), E;=EjnE;, (8)
To€e] Yo€es

then Theorem 4.1.1 can be formulated as follows.

Theorem 4.2.2. For every function f(z,y) € LP(Q) with p > 1 the
following statements are valid:

1) int LE(f) = BT, |EY| = |QI;

2) int L(f) = E3, |E5| = |Q;

3) int Lf (f) = B3, |E5| = Q.

It is clear that int L% (f) consists of vertical, while int L (f) of horizontal
Lebesgue’s segments.

Further, Theorem 4.1.1 shows that for every function f(z,y) € L(Q)
almost all vertical segments from () are the vertical Lebesgue’s segments.

Just the same can be said about the horizontal Lebesgue’s segments.
Now Theorem 3.2.3 can be strengthened as follows.

Theorem 4.2.3 ([2]). For every function f(x,y) € LP(Q) with p > 1
the following statements are valid:
1) at every point (xo,yo) € int LE(f) the equality

1 zo+h Yotk )
li - il de — 0 ;
(hvk)lin(o,O) h / ‘ / flz,y)dy| dx )
o Yo
holds;
2) at every point (zo,yo) € int Lg(f) we have
Yotk zoth )
o B du) dy =0; 10
(h,k)l—>m(0,0) k ‘ / f(z,y)dz| dy , (10)
Yo zo

3) at every point (w0, yo) € int LY  (f) equalities (9) and (10) are fulfilled
simultaneously.

Proof. The way of proving equality 4.1.(1) indicates that equality 4.1.(1)
remains valid, if we substitute ¢ by an arbitrary value ¢; from [c,d], in
particular, by yo. The same can be said about equality 4.1.(2). As a result
we obtain equalities (9) and (10). O

§ 5. The Differentiability of An Indefinite Integral with a
Parameter

1. The rule of derivation under the integral sign has been introduced
for the first time by Leibniz, when the integrand and its partial derivative
with respect to parameter are simultaneously continuous on a rectangle.
This rule is known as Leibniz’s rule for an integral.
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It is of interest that there exists the function v (z,y) with the property

b b
d 0
@/ﬁwwmm¢/&ﬂwwma

although both integrals exist in the sense of Riemann.
C. de la Vallée Poussin (1916) generalized Leibniz’s rule to the L-integral
(Lebesgue integral) as follows.

Theorem 5.1 ([31], p. 110). Let the function f(x,y) be summable
with respect to x on the segment [a,b] for every fixred y € [c,d]. Consider a
finite on the segment [c,d] function, the definite integral with a parameter

Y,
b
Mw:/ﬂ%MM,yeh@ (1)

Assume that the following conditions are fulfilled:

1) the function f(x,y) is absolutely continuous with respect to the vari-
able y on the [c,d] for every x € [a,b];

2) the partial derivative f;(z,y) with respect to the variable y is the
summable function on the rectangle Q = {(z,y) ER?*:a<x<b, c<y< d}.

Then for almost all y € [c,d] the equality

b

wwnz/gwwmm %)

a

holds.

2. Here we extend the statement of Theorem 5.1 under the same as-
sumptions 1) and 2). This extension in the form of equality (4) involves
generalization of the classical Lebesgue’s theorem.

Theorem™ 5.2. Let assumptions 1) and 2) of Theorem 5.1 be fulfilled.
Then a finite on [a,b] X [c,d] function, an indefinite integral with a param-
eter vy,

Haw:/?@wﬁ 3)

possesses the following properties:
1) for almost all xy € [a,b] and for all yo € [c,d] the equality
P[/;c] (z0,90) = f(z0,90) (4)
with finite terms holds;

* This result is published by the author for the first time.
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2) for all xo € [a,b] and for almost all yo € [a,b] the equality

xo 5
Py (@o, %o) Z/a—yf(t,yo)dt (5)

with finite terms is fulfilled;
3) at almost all points (xg,y0) € @ the strgrad P(zo,yo) is finite, in
particular, there exists the total differential dP(xq,yo).

Proof. 1) Taking into account condition 1) of Theorem 5.1, we have the
following relations:

:Co-‘rh
P h, k) — P(xo, k 1
(o + h,yo + k) (zo, g0 +k) 1 /f(t,yo—i—k:)dtz
h h
1 :Co-‘rh 1 :Co-‘rh
= 7 [f(tayO‘i’k)*f(tayO)] dt + + f(t,yo)dt:
h h
1 zo+h Yotk 1 zo+h
=— / / fr(t,m)dr )dt + — / ft,yo)dt =
h h
xo Yo xo0

= Ap,k(20,Y0) + Br(zo, Yo)-
By assumption 2) of Theorem 5.1, we have f. € L(Q). Therefore

zo+h yo+k
Apk(w0,%0) = T / fi(t,T)dtdr. (6)
Zo Yo

The right-hand side of equality (6) tends to zero for almost all 2y € [a, b]
and for all yo € [c,d], as (h, k) — (0,0) (see Theorem 3.2.3).

Moreover, the finiteness of integral (1) for all y € [c,d] implies the
finiteness of the indefinite integral with a parameter (see equality (3))

/fty P(z,y) (7)

for all (z,y) € Q. Assumptions 1) and 2) of Theorem 5.1 result in the

equality i o i
/f(t,y) dt://f;(t,f) dth+/f(t,c) dt (8)

for all (x,y) € Q By statement 1) from Tolstov’s Theorem 1.1.1 we have

//f (t,7) dthf/f x,7)dr = f(z,y) — f(z,c) (9)
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for all (z,y) with € e; and y € [¢,d], where |e1| = b — a.
Next, By Lebesgue’s theorem,

( / fit,0) dt)' — flw,0) (10)

for all z € e C [a,b], where |e|] = b — a, and the set e depends on the
constant c.
Now from equalities (8) and (10) it follows that

( / o dt); ~ f(a,y) (11)

for all (x,y) with x € eNe; and y € [¢,d].
This means that expression By (xo,yo) for almost all 2 € [a,b] and for
all yo € [c,d] tends to f(zg,yo), as h — 0. Thus statement 1) is established.
2) Now

xo+h
P(xg + h,yo + k) — P(xo + h, 1
ot b2 M= Poo o) 2 [ [+ ) — feun)] i =
a
1 zot+h  yo+k 1 yo+k zo
== / (/f;(t,r)dr)dtZE / /f;(t,r)dth—i—
a Yo Yo a
1 yo+k xzo+h
sp [ fte) s = Cutwo, o) + Dialan. o)
Yo Zo

By statement 2) of Theorem 1.1.1, the equality

o
lim Cy.(wo, yo) = /fi(t,yo)dt

holds for all 2y € [a,b] and for almost all yg € [c, d] (analogous arguments
have been presented for Bj(zg, 4o))-
Further, the equality
(h7k%:m(0,0) D (w0, y0) =0
for all 2o € [a, b] and for almost all yy € [c, d] is analogous to that established
above for Ap (2o, yo)-

Consequently, statement 2) holds.

3) The finiteness of the strgrad P(xg,yo) for almost all (zg,y0) € Q
follows from statements 1) and 2). Further, the existence of the total differ-
ential dP(xo,yo) at the same points (zg,yo) € @ follows from the finiteness
of the strgrad P(xo,yo)-
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Finally, if in equality (3) we put = b, then equality (5) for zp = b
will take the form of equality (2) because the derivative of the function
of one variable is its strong partial derivative with respect to the same
variable, since this function can be considered as a function of two variables,
constant with respect to the introduced second variable. Thus equality (5)
is a generalization of equality (2).

Lebesgue’s theorem can be obtained analogously from equality (4), if
the function f in equality (3) will be assumed to be independent of the
variable y. [J

§ 6. The Finiteness and the Continuity of Strong Partial
Derivatives of an Indefinite Integral

6.1. Points of Finiteness of Strong Partial Derivatives of an
Indefinite Integral

Using Definition 8.1 from Chapter I, we proceed to formulating and
proving the following

Lemma 6.1.1 ([2]). Let the function f(z,y) € L(Q) be measurable
with respect toy on [c,d] for every x € [a, b] and partial continuous at xo with
respect to x, uniformly with respect to y on [c1,d1], where ¢ < ¢ < dy < d.
Then the following statements take place:

1) there exists a number § = §(xo) > 0 such that for all x’s with |z —
xo| < d the integral

dy
/f(ac,r) dr (1)

is finite. Hence the integral
y
[anar 2)

is likewise finite for |x — x| < & and 1 <y < dy;
2) the finite function of two variables

Yy
w(:c,y)=/f(:c,r)dr, @ a0l <6, e <y<d 3)

is continuous at all points (xg,yo) with c1 < yo < dj.

Proof. 1) By equality 8.(1) of Chapter I, there exists a number § =§(z¢) > 0
such that under |x — 29| < 0 and 7 € [¢1,d;] the relations —1 < f(z,7) —
f(zo,7) < 1 are fulfilled, and hence

flo,7) =1 < f(z,7) < f(x0,7) + 1. (4)
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dy
Since f € L(Q), the integral [ f(z,7)dr is finite for almost all z € [a, b],
c1
in particular, for almost all 2’s with |z — x¢| < 6. If such = suppose in (4),
d1
then the integral [ f(zo,7)dr will be finite. This in its turn, with regard

C1
tight-hand of estimates (4), guarantees that integral (1) is finite for all a’s
with |z — zg| < 0. This, in particular, imply that integral (2) is finite for
|z —zo| < 0 and ¢; <y < dy.
2) If we take any number & > 0, then for ¢* = ¢/(d; — ¢1) there exists
§* = 6*(e, o) > 0 such that

flao,7) —* < fz,7) < f(x0o,7) + " under |z — x| <6, 7 € [c1,d],
(5)
by equality 8.(1) from Chapter I.
To show that the function v (z,y) is continuous at all points (xg,yo)
with ¢; < yo < dy, we use Theorem 5.1.2 from Chapter I. We have

Yotk
Y(zo + hyyo + k) — P(zo, yo + k) = / [f(xo +h,T) = f(xo,7)] dr, (6)

C1

Yotk
(o, 4o + k) — $(z0,90) = / F(o,7) dr. (7)

Yo

Since for some 71 = 71 (yo) > 0 the points yo + k belong to the segment
[c1,d1] under |k| < m1 and ¢1 < yo < d1, an absolute value of the integral
in equality (6) is less, by virtue of (5), than £*(dy — ¢1) = € under |h| < §*
and |k| < 1.

An absolute value of the integral in equality (7) is less, by an absolutely

t
continuity of the integral [ f(zo,7)dr, than e under |k| < 72, where 7y =
c1

772($0,E) >0. 0

Remark 6.1.1. In what follows, under the symbol F' will be meant the
function defined by equality 4.2.(1), where Q = {(z,y) € R? : a<x<b, ¢ <
y < d}.

Theorem 6.1.1 ([2]). Let the function f(z,y) € L(Q) be measurable
with respect to y on [c,d] for every x € [a,b] and partial continuous with
respect to x at the point xg, uniformly with respect to y on [c1,d1], where
c<c <di <d. Then the function F[’x] (z0,y) is finite under c1 <y < d,

and
y

F['z](:no,y) = /f(:L'o,T) dr, ¢1 <y <dj. ()

Cc1
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Proof. Because of the fact that integral (2) is finite, the integral in equality
(8) is likewise finite, and we obtain (8) from the following equality:

Y
Floo+ by +k) = Flao,y + %) —/f(xo T)dr =

h
1 rothutk y+k
= / / [f(t,T) - f(xo,T)] dtdr + / f(zo,7)dr. O
xo c1 ;

The theorem below is proved analogously.

Theorem 6.1.2 ([2]). Let the function f(z,y) € L(Q) be measurable
with respect to x on [a,b] for every y € [c,d] and partial continuous with
respect to y at the point yo, uniformly with respect to x on [a1, b1], where
a <ay <by <b. Then the function F[’y] (x,y0) is finite under a; < x < by,
and

F[ly] (Z’yo) = /f(tayO) dt, a3 <z <b. (9)
ai

From the last two theorems we arrive at

Theorem 6.1.3 ([2]). Let the function f(z,y) € L(Q) be partial con-
tinuous with respect to x at the point xo, uniformly with respect to y € [c, d]
and partial continuous with respect to y at the point yo, uniformly with re-
spect to x € [a,b]. Besides, we assume that the function f is measurable
with respect to each variable, when the other variable is given arbitrary fixed
value.

Then finite are:

y
1) Fiy(xo,y) = /f(on,T) dr for c <y < d; (10)
2) F['y] (x,y0) = /f(t,yo)dt fora <z <b; (11)

3) strgrad F(zo,v0) at (w0,y0) € Q,in particular®, there exists
dF(xo,yo)-

6.2. Points of Continuity of Strong Partial Derivatives of an
Indefinite Integral

Theorem 6.2.1 ([2]). Let the function f(z,y) € L(Q) be continuous
on the rectangle r1 = a1, b1] X [¢,d], where a < a1 < by <b. Then F[’x] (z,9)

* By the symbol E° is denoted the interior of the set E.
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is continuous on the 19, and
y
F[’x](ac,y) = /f(x,r) dr, (z,y) €. (1)

Proof. In Theorem 8.1 of Chapter I, in the capacity of QQ we take r;. Now in
Theorem 6.1.1 in the capacity of xy we can take arbitrary point of an open
interval (ai,b1). Therefore equality (1) follows from equality 6.1.(8). The
continuity of F[’x} (z,y) on the r{ follows from statement 2) of Lemma 6.1.1,

upon substituting z¢ and yg by x € (a1,b1) and y € (¢, d), respectively. O
The theorem below is proved analogously.
Theorem 6.2.2 ([2]). Let the function f(x,y) € L(Q) be continuous
on the rectangle ro = [a,b] X [c1,d1], where ¢ < ¢y < dy < d. Then F['y] (x,y)
is continuous on the 13, and

Fyo) = [ Ftdt, @) e, (2)

The following theorem is obtained from Theorems 6.2.1 and 6.2.2.

Theorem 6.2.3 ([2]). Let the function f(x,y) € L(Q) be continuous
on the union [a1,b1] X [¢,d] U [a,b] X [c1,d1], where a < a1 < by < b and
¢ <c <dy <d. Then the functions F[’x] (z,y) and F[’y] (z,y) at interior
points (z,y) € 0 of the rectangle r = [a1,b1] X [c1,d1] are continuous and
we have the equalities

Yy x
Fe) = [ f@r)dn, o) = [fend, @oe® @)

In particular, an indefinite integral F(x,y) is continuously differentiable
on the 1.

8 7. Repeated and Mixed Partial Derivatives of an Indefinite
Integral

Theorem 7.1 ([2]). Let the function f € L(Q) be continuous on the
rectangle r(xg, §) = [xo—0,x0+0] X [c,d] C Q, where § > 0. Assume that the
partial derivative fL(x,y) is summable on the r(xg,d), which with respect to
x is assumed to be partial continuous at xo, uniformly with respect to y €
[c, d], and measurable with respect to y on [c,d] for every x € [xg—d, zo+0].
Then (F[’x])’(:co, y) is finite at all points (xo,y) with ¢ < y < d and we have

(F[Z;]);(Io,y):/f;(:coﬁ) dr. (1)
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Proof. To the function f.(z,y), (x,y) € r(xo,d) we apply statement (1) of
Lemma 6.1.1. Thus f.(xo,7) € L([c,d]).
By Theorem 6.2.1 the function F[’x} (x,y) is continuous on the r%(zq, §)

and
/ﬂ%ﬂh:%wm,@w€WMﬁ) @)

Denote the right-hand side of equality (2) by u(x,y) and we have to
prove the equality
y

u'z(ac,y)z/f;(aco,r)dr, c<y<d. (3)

c

We have

y
w(xo + h)h* w(xo,y) . /f;(:co,T) dr —

- f;(l‘o,’r)} dr =

/y{f(ﬂfoJrh,T)f(fCo,T)
h

Y

= / [fo(zo + 6h,7) — fi(zo,7)] dr,

C
where 0 < § = 0(zg, h,7) < 1. Taking now into account that the function
fi(z,7) is partial continuous with respect to = at the point zg, uniformly
with respect to 7 € [¢, d], we can conclude that the theorem is complete. O

Corollary 7.1 ([2]). Let the function f € L(Q) be continuous on the
r(xo,9) = [xo—0, 20+ 8] X [¢,d] C Q, 6 > 0, and suppose that on the r(xg,d)
there exists a bounded partial derivative fl.(x,y) which is assumed to be
partial continuous with respect to x at xo, uniformly with respect to y € [c, d]
and measurable with respect to y on [c,d] for every x € [xg — d,x9 + J].

Then equality (1) holds at all points (xg,y) with ¢ <y < d.

Taking into account Theorem 8.1 of Chapter I and statement (2) of
Lemma 6.1.1, from Corollary 7.1 we obtain the following

Theorem 7.2 ([2]). Let the function f € L(Q) and its partial deriv-
ative fl(x,y) be continuous on the Q°. Then the function (F[’l});(m,y) is

continuous on the Q°, and

(%%mw:/ﬂmﬂw,mmew. (4)

For the (F,)), is valid the following
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Theorem 7.3 ([2]). Let the function f € L(Q) be continuous on the
r1 = [a1,b1] X [¢,d], where a < a; < by <b. Then (F['x]); s continuous on
the 0 and

Proof. On the ¥, equality 6.2.(1) is valid, and we have to prove that the
function p(z,y) given by equality (2) satisfies the equality u; (z,y) = f(z,y)
at the points (z,y) € r9. This follows from the relations

y+k
o) = fim [ f@r) = Fla)
Yy

owing to the fact that the function f(z,y) is continuous on [c,d] for every
fixed x € [a1,b1]. O

Now from Theorems 7.2 and 7.3 we obtain

Theorem 7.4 ([2]). Let the functions f € L(Q) and f., be continuous
on the Q. Then (Fly))e and (Fy,,), are continuous on the Q°, and hence

x] x]
the function F[’x} is continuously differentiable on the QV.

Obviously, there take place analogues of Theorems 7.1-7.3 about the
functions (F[’y]); and (F[’y]);c The analogue of Theorem 7.4 is the form of

Theorem 7.5 ([2]). Let the functions f € L(Q) and f, be continuous

on the Q°. Then (F},))e and (Fy,));, are continuous on the Q°, and hence

F[’y] is the function which is continuously differentiable on the QC.

From Theorems 7.4 and 7.5 we have

Theorem 7.6 ([2]). Let the function f € L(Q) have continuous on
the Q° partial derivatives f. and fy- Then the functions F[’x} and F['y] are

continuously differentiable on the Q° and hence an indefinite integral F(x,y)
is twice continuously differentiable on the Q°.

§ 8. Twice Differentiability of an Indefinite Integral
8.1. Twice Differentiability on the Q° of an Indefinite Integral

Theorem 8.1.1 ([2]). Let the function f € L(Q) be differentiable on
the Q°, and let integrals

/df;(xﬁ) dr, /bf{,(t,y) dt (1)

be finite for all © € (a,b) and y € (c,d), respectively. Then the functions
F[’x} and F[’y] are differentiable on the Q°. Hence the indefinite integral F is

twice differentiable on the Q.
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Proof. By Theorem 6.2.3, the functions
y
Fey) = [ fa)dr = b(ay)
c

and .
F['y](ac,y):/f(t,y)th\I/(ac,y)

are continuous on the Q°.
Obviously,

dr.

Dot hytk) - Bleyth) 7kf(fc+h,r) i)
h - h

Since the function f is differentiable at every point (z,y) € Q°,

fe+py+a) = flz,y) =pfo(2,y) + af,(z,y) + (Ip| + la]) - a,
where the function «, defined in the neighborhood of the point (x,y) has
zero limit at (z,y) and it is assumed to be equal to zero at (z,y). Therefore

y+k

y+k
S(z+hy+k)—@(x,y+k) ||
:/f;(:c,T)dTJr—/adT.

h h

c
For every number ¢ > 0 there exists a rectangle, containing the point
(x,y), on which |a| < e. Hence there exists finite

y
B = [ fier)dr (= Vo). ®)
Next,
Oz +h,y+ k) — Dz +h U
y
n U pa ) - g 1T
:E/ r 7Th] L7 dT—f—E/f(.f,T)dT:
y y
b y+k b y+k y+k
:E/f;(l’,T)dT+%/OLdT+%/f(£L',T)dT,
y y y
where we get
O (z,y) = f(z,y), (z,y) € Q" (3)

Thus the function @% is continuous on the Q°.
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Consequently, the function ® = F['z ] is differentiable on the Q°, by
Theorem 2.5.1, or Theorem 3.5.3 of Chapter II.
The differentiability on the Q° of the function ¥ = F[’y ] for which the

function ¥4 = f is continuous on the Q° and the function
x
Wiy (a) = [ filt) d (4)

is finite on the Q°, is proved analogously.
Hence the function F’y is differentiable on the Q°.

Consequently, an indefinite double integral F' is twice differentiable on
the Q°. O

8.2. Almost Everywhere Twice Differentiability of an Indefinite
Integral

Theorem 8.2.1 ([2]). Let the function f(z,y) € L(Q) with respect to x
be absolutely continuous on the [a,b] for every y € [c,d], and let fl € L(Q).
Then F[’x} is continuous on the Q°, the equality

F[Iz](xay) = /f(l’,’r) dT? (x,y) € QO (1)

holds, and the following statements take place:
1) for almost all zo € (a,b) and for all yo € (c,d),

Yo

(FLa)} o o) = [ fitao.7)r @)

c

is finite;
2) for almost all (z0,y0) € QY,
(F[Ix]){y] (0, ¥0) = f(Z0,%0) (3)
is finite;

3) strgrad F['x] is finite almost everywhere on the Q°;
4) F[’x], in particular, F. is differentiable almost everywhere on the Q°.

Proof. First we will prove equality (1) and then establish that F['z ) is con-

tinuous on the @Q°. Towards this end, we write the function F in terms
of

x

Fla,y) = / B(t,y)dt.

a
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where
y y ¢ y
q)(t,y):/f(t,T)dT://ft’(t,r)dth—i—/f(to,T)dT

and tg is chosen in (a,b) in such a way that f(to,7) € L([c,d]). It becomes
clear that the function ® is continuous and the equality F.(z,y) = ®(z,y)
is valid on the Q°. The continuity of F. on the Q° implies continuity of F[’x]

on the QU (see equality 3.1.(6) in Chapter II), and the equalities

Fly(5,9) = Fi(z,y) = ®(z,y) = / f(a,7) dr.

Hence equality (1) is proved.
Now common value of equality (1) we denote by ¥ (z,y), for which we

have: .
].) "Ll)fx](l'o,yo) = ;111m w(mo + 7y) B w(Zan) _

—0 h
Y—Yo
zo+h Yy
= lim — 'z, T) dt dz.
S B A
Y—Yo o c

But this limit is equal to the integral from equality (2) for almost all
xo € (a,b) and for all yg € (¢, d), by equality 3.2.(1).
Thus statement 1) is established.

2) wfy](wo,yo) — ]llm w(%yo + k) - w(xayO) —

—0 k
T—TQ
1 Yo+k
T—To Yo

Let the point g € (a,b) be such that f(xzg,7) € L([c,d]) (almost every
point is such), and we write

1 yo+k 1 yo+k ) yo+k x
z / f(I,T)dT:E / f(xo,r)dr—i—E / /ft’(t,r)dth.
Yo Yo Yo To

Applying to the last equality the Lebesgue’s theorem and equality 3.2.(8),
we obtain statement 2).

3) The finiteness of the strgradF[’z] (z,y) for almost all (z,y) € Q°
follows from statements 1) and 2).

4) The differentiability of the function F[’x] almost everywhere on the

QO follows from statement 3) withregardof Theorem 3.4.1 of Chapter II. O]

Just in the same way we can prove
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Theorem 8.2.2 ([2]). Let the function f(x,y) € L(Q) with respect toy
be absolutely continuous on the [c,d] for every x € [a,b], and let f, € L(Q).
Then F[’y] is continuous on the Q°, equality

F[Iy](xay):/f(xay)dt’ (Iay)EQO (4)

is valid, and the following statements take place:
1) for all xo € (a,b) and for almost all yo € (¢, d),

xo

(F[Iy])[y](xmyo) = /f;(t,yo)dt (5)
is finite;
2) for almost all (z0,y0) € QY,
() (0, 90) = f (0, 30) (6)
is finite;

3) str grad Fé] is finite almost everywhere on the Q°;
4) F['y], in particular, Fy is differentiable almost everywhere on the Q°.

Remark 8.2.1. Under the above-indicated assumptions, equalities (3)
and (6) are the strengthenings of relations 1.1.(7).

Theorems 8.2.1 and 8.2.2 yield (see Remark 2.4.2)

Theorem 8.2.3 ([2]). Let the function f € L(Q) be separately ab-
solutely continuous on Q, and let f; € L(Q), f, € L(Q). Then for the
indefinite integral F of f equalities (1) and (4) with continuous on the Q°
terms are valid, and the following statements take place:

1) strgrad F['z] and str grad F['y] are finite almost everywhere on the Q°;

2) F[’x] and F[’y] are differentiable almost everywhere on the Q°;

3) F is twice differentiable almost everywhere on the Q°;
4) for almost all (zo,y0) € Q° we have

(F[;-])Ey] (w0, 50) = f (w0, 90) = (F[;])Em] (20, Y0)- (7)

All the statements of Theorem 8.2.2 can be obtained under somewhat
different assumption (the same can be said regarding Theorem 8.2.1).

Theorem 8.2.4 ([2]). If the function f € L(Q) with respect to y is
absolutely continuous on the [c,d] for every x € [a,b], and for some constant
c=c(f) > 0 the relation

//\f(t,v+k>—f<t,f>|dtdrgc~|k:| (8)
Q

is fulfilled, then all the statements of Theorem 8.2.2 are also fulfilled.
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Proof. 1t is sufficient to prove that the partial derivative f;, existing almost
everywhere on the @, is summable on the . To this end, we put in (8)
k =1/n and have

// t T+ f(t,T)‘dthgc, 9)

whence, by virtue of Fatou’s lemma (see, for e.g., [21], p. 29), we obtain

//\f (t,7) |dtd7*//n1£‘§o"‘f (t7+ 1) ft,7)|dtdr <

< h_m//n‘f t,r—i—%)—f(t,r)‘dtdrgc. O

n—00

Thus f;, € L(Q) and the theorem is complete. [J

Remark 8.2.2. To illustrate Theorem 8.2.2, let us consider a function
of one variable ¢(z) € L([a,b]). Then ¢(z) is absolutely continuous with
respect to y on an arbitrary [c, d] for every z € [a,b], ¢ = 0 on the @, and
the corresponding indefinite double integral

x

®(z,y) =]/yw(t) dt = (y—C)/w(t) dt.

a

From this we obtain that
xr

¥y () = [ olt)dr

a
T

I
(Py)) () (0, Y0) = (/gp(t)dt) (o) = (o) for almost all z¢ and for all yq,

a
Zo

( Ey]){y](IanO) :0:/@;(t) dt for all (l‘o,yo)7

a

str grad CIDEy] (0,90) = (p(x0),0) for almost all zy and for all yo.

8 9. On the Sufficient Conditions of the Lebesgue’s Intense Point

Theorem 9.1. Under the assumptions of Theorem 6.2.1, every point
(x,y) € 15 belongs to the set int LP(f).
Proof. For every point (x,y) € r{ we have
y+k Yy

Fiz+hy+ k) — Fl(x,y) = /f(z,T)dT*/f(:E,T)dT, (1)
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whence
xz+h y+k Yy
1 P
E/‘/f(l’,’]’)d’]’/f(l‘,’r)d’r dt =
1 x+h
-1 / |FL(a+ hyy + k) — Fl(a,y)["dt. (2)

x

Because of the continuity of F, on the 7, we can make the right-hand
side of equality (2) arbitrarily small for sufficiently small h and k. Hence
equality 4.1.(1) is fulfilled for zyp = = and yo = y. Thus the point (z,y)
belongs to the set intL2(f). O

The following theorem is proved analogously.

Theorem 9.2. Under the assumptions of Theorem 6.2.2, every point
(z,y) € r5 belongs to the set int LY(f).

Next, we have the following

Theorem 9.3. Under the assumptions of Theorem 6.2.3, every point
(z,y) € r° belongs to the set int LY  (f).

Proof. By virtue of Theorems 9.1 and 9.2, every point (z,y) € r° belongs
to the sets intLZ(f) and intZE(f). Hence the point (z,y) € r° belongs to
the set intL%  (f). O

Theorem 9.3 yields

Theorem 9.4. Let the function f be continuous on the Q. Then each
point from the every neighborhood U(M) C Q° of the arbitrary point M €
Q°, belongs to the set int Ly (f) forallp > 1.

From this theorem we can easily get

Theorem 9.5. Let the function f belong to the space LP(Q) for some
p > 1 and is continuous on the some rectangle R = [a, B8] x [y,0] C Q. Then
for the values a = « and ¢ =~y the equalities 4.1.(1) and 4.1.(2) are fulfilled
at every point (xg,y0) € U(N) from the each neighborhood U(N) C R° of
the arbitrary point N € R°. Thus every point (xo,y0) € U(N) belongs to
the set int L, ,(f|R), where by f|R is denoted restriction of the function f
on R, i.e., we consider f only on R (see 1.1 of Chapter I).

Corollary 9.1. Let an indefinite integral I, corresponding to the func-
tion f € LP(Q) for some p > 1, possess a continuous at the point (xo,yo) €
Q" partial derivative F! for which the equality F.(x,y) = fcyf(ac,r) dr is
assumed to be fulfilled at every point (x,y) from some neighborhood of the
point (xo,y0). Then the point (xo,yo) belongs to the set int LP(f).
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Proof.  Under this assumptions, equalities (1), (2) and 4.1.(1) are
fulfilled. O
Now from Corollary 9.1 we obtain

Corollary 9.2. Let the function f € LP(Q) with p > 1 be measurable
with respect to y on the [c,d] for every x € [a,b] and continuous with respect
to x at xg, uniformly with respect to y € [c,d]. If the continuous at the point
(0, yo) integral

y
/f(ac,r)dr, |x —xo| <0, c<yo<d

from equality 6.1.(3) coincides with F.(x,y) in some neighborhood of the
point (zo,Yo), then (zo,yo) € int LE(f).
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|1, lzll2, [[«]]s — 16 dz, f () — 62
U(a,6), U%a,68) — 16 Dz, f(zo) — 65
Ao f(z) — 17 Df(xo) — 65
2(29), 2%(z,) - 18 7l @) -~ 73
(i), f(2°(xi)) - 18 str grad f(zo )
Al‘%f(x) - 19 djzy) f(20) —
k]f( ) — axjw(xo) a Y(xo) — 81
(:ck, ]) 24 gradw(x ), gradw( 0) —81
Ao f(x) — 25 (), 9, ] (x0) — 82
fz(2?)) - 27 strgrad (29), strgradw( 0) - 82
fla(a,xl)) — 24 a{;j]w(x ) - 83
Afoy f () - 33 O (a0), 05 p(a0) - 83, 84
[10]90(30) 33 *ang gradw(xo) ang grad(a0) —
zo]f(35)|f (z0)=B — 38 dtp(a°), d=p(a) ~
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"D(IOJI( ad® (a0
go(xo—( strgrad'” f(z") — 88
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DaF(z0) - 72 85 grad® f(z) - 88
D;F(z) — 72, 85 0710T20(2°), 0720710(2°) — 89
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grad f(xzg) — 53 (Fl3)% (o, yo) — 126, 127
fa(x0) — 60 (F{p)y (w0, o) — 128
ang grad f(2°) - 61 (F, ])Em (z0,%0), ( [Iz])'[y] (z0,90) — 130
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