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Abstract. For the functions of several real variables we establish: the
necessary and sufficient conditions for continuity, the necessary and suffi-
cient conditions for differentiability, the differentiability almost everywhere
of an indefinite double integral and of absolutely continuous functions of
two variables. The notion of an Lebesgue’s intense point of summable func-
tions of two variables is introduced. It is stated that almost every point
is an Lebesgue’s intense point at which an indefinite double integral and
absolutely continuous functions of two variables have a finite strong gradi-
ent. The notions of the continuity and the limit in the wide are introduced
and their connection with the continuity and the existence of the limit is
established.

îâäæñéâ. éî�ã�èæ ê�éáãæèæ ùãè�áæï òñêóùæâ�æïåãæï á�áàâêæèæ�: ñûõãâðë�æï

�ñùæèâ�âèæ á� ï�çé�îæïæ ìæîë�â�æ, áæòâîâêùæîâ��áë�æï �ñùæèâ�âèæ á� ï�çé�îæïæ

ìæîë�â�æ, à�êñï�ä�ãîâèæ ëîé�àæ æêðâàî�èæï á� ëîæ ùãè�áæï ��ïëèñðñî�á ñû-

õãâðæ òñêóùææï åæåóéæï õãâèà�ê áæòâîâêùæîâ��áë��. öâéë�â�ñèæ� èâ�âàæï æêðâê-

ïñîæ ûâîðæèæï ùêâ�� ëîæ ùãè�áæï þ�éâ��áæ òñêóùææïåãæï á� á�áàâêæèæ�: åæå-

óéæï õãâè� ûâîðæèæ èâ�âàæï æêðâêïñîæ ûâîðæèæ�, èâ�âàæï æêðâêïñî ûâîðæèâ�öæ

ï�ïîñèæ úèæâîæ àî�áæâêðæ �óãå à�êñï�ä�ãîâè ëîé�à æêðâàî�èï á� ëîæ ùãè�áæï

��ïëèñðñî�á ñûõãâð òñêóùæ�ï. öâéë�â�ñèæ� ò�îåë �äîæå ñûõãâðë�æï á� ä�ãîæï

ùêâ��êæ á� á�áàâêæèæ� é�åæ ç�ãöæîæ ñûõãâðë��ïå�ê á� ä�ãîæï �îïâ�ë��ïå�ê.
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Preface

By the end of the XIX-th century we have already been familiar with the
examples of functions of two variables which are discontinuous at the given
point and continuous at the same point with respect to each of independent
variables.

By the same time it was shown that for a total differential of a function
of two variables to exist at the point x0 it is not necessarily that its partial
derivatives are continuous at that point, but their finiteness at the same
point is insufficient for the function itself to be continuous.

It is significant that each of the above-mentioned “pathological” prop-
erties of these functions can be observed only at separate points.

In the middle of the XX-th century G. P. Tolstov has proved that im-
pressive functions of two variables do exist and the sets of “pathological”
points for them are very massives.

These facts gave serious impact on the investigation of functions of
several variables for their continuity, as well as for the existence of a total
differential.

Thus two basic problems on the necessary and sufficient conditions for
functions of several variables have been outlines: for the continuity of a
function on the one hand, and for the existence of a total differential on the
other hand. Resolution of these problems will evidently allow one to solve
some other problems which form the third group of problems. This group of
problems involve the introduced here notions of the continuity in the wide
and the limit in the wide which are tightly connected with the continuity
and the existence of a limit.

The same group involves the proof that an indefinite double integral
and an absolutely continuous function of two variables possess a total diffe-
rential. These facts are realized at almost all points, that is at the points,
which are called by the author as Lebesgue’s intense points.

In the present monograph we investigate the above-mentioned problems
and those which are tightly connected with them.

The monograph consists of four chapters.
Each chapter is supplied with an abstract and introduction and divided

into sections and subsections. Theorems, propositions, formulas, etc. in
subsections have individual numbering. References inside subsections are
one-digital, and multi-digital outside subsections.
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CHAPTER I

Separately Partial Continuity from Different

Points of View and Continuity

The goal of the present chapter is to resolve the problem on the conti-
nuity at a point of a function of several variables.

For the function of several variables there arises the question whether
there is some notion or property at the point x0 with respect to a separate
independent variable such that the presence of that property at the point
x0 for the function with respect to each of independent variables is the
necessary and sufficient condition for the function to be continuous at that
point?

Introduction

1. The notion continuity of a function of one variable extends auto-
matically to the functions of several variables in two variants: the continuity
(which is sometimes called joint continuity), and continuity with respect to
every independent variable for all the remaining fixed independent variables.

Evidently, the continuity implies the continuity in each variable, and
the inverse statement, as is known, is incorrect.

In greater detail, there exists a function of two variable which is dis-
continuous at the given point and continuous at that point with respect to
every variable. Moreover, there exists a function of two variables which is
discontinuous at a separate point and continuous along (with respect to) ev-
ery straight line passing through that point. Further, there exists a function
of two variables which is discontinuous at the given point, and continuous
along every analytic curve passing through that point ([14]).

It is also known that the continuity follows from the continuity along all
singly differentiable curves which pass through the given point, and the con-
tinuity not follows from the continuity along all twice differentiable curves
([20]).

It should be noted that these functions have neither the property to be
continuous, nor even the limit at a “pathological” point.

That “pathology” for such function can be observed only at a single
point.

There naturally arises the question as to what extent may be wide the
set of such “pathological” points?

14
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G. P. Tolstov answered this question and formulated his result in the
form of the following

Theorem A ([27], 432–433). There exists the function of two vari-
ables which is discontinuous at almost every point of the unit square and at
every point of that square continuous with respect to every variable∗.

Note that this function cannot be discontinuous everywhere because it
belongs, by the Lebesgue theorem, to the first Baire class, and hence, it has
everywhere, by the Baire theorem, a dense set of points of continuity.

Detailed exposition of those and analogous facts can be found in Z. Pi-
otrowski’s review paper ([19]).

2. The present chapter is organized as follows: solution in two variants
of the above–formulated problem are given in Sections 2 and 3. Two new
notions: (a) separately strong partial continuity and (b) separately angular
partial continuity are introduced herein.

It is shown that each of those notions is equivalent to the notion of
continuity.

Here we present in short the content of the remaining sections.
§ 4. Connection between the continuity and the existence of a finite limit

for the function of one variable becomes exhausted in that the continuity
implies the existence of a finite limit and not vice versa.

For functions of several variables it became possible to establish the
necessary and sufficient conditions for the continuity, one of the conditions
is the existence of a finite limit.

§ 5. The functions of two variables take a special place in the mathemat-
ical analysis even because they are tightly connected with analytic functions
of a complex variable. In this section, for the functions of two variables we
formulate the results which have already been established for functions of
n variables.

§ 6. A total increment is, in most cases, connected with the continuity
of a corresponding function. An increment of another type can be obtained
by composing successively strong partial increments with respect to every
independent variable. The obtained in such a way expression is called by the
author an increment in the wide. Using this notion, we introduce the notion
of the continuity in the wide. The sufficient condition for the continuity in
the wide is established. In particular, the continuity implies the continuity
in the wide and not vice versa.

For functions of two variables it is stated that the continuity with re-
spect to every variable together with the continuity in the wide is equivalent
to the continuity.

§ 7. In the analysis the notion of the limit precedes the notion of the
continuity. Herein, for the continuity in the wide we have found the notion

∗This Tolstov’s function does not possess almost everywhere even the property of
continuity in the wide (see Remark 6.6.1 below).
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of the limit in the wide. It is proved that the existence of a finite limit
implies the existence of an equal limit in the wide and not vice versa.

For the functions of two variables it is proved that if there exist equal
finite separated partial limits and if a finite limit in the wide is equal to
them, then the limit is also equal to them.

§ 8. For the continuity of functions of two variables the sufficient condi-
tions is given consistings in the continuity with respect to one of variables,
uniformly with respect to the other variable and partial continuity with
respect to the same other variable.

§ 9. The necessary and sufficient conditions for the continuity of func-
tions of two variables allow us to introduce the notions of unilateral limit
and unilateral continuity of functions of two variables. The obtained re-
sults maintain, in principal, all interconnections between the notions and
the existence of a limit or continuity for functions of one variable.

§ 1. Preliminaries

1.1. Basic Notions

1. For the point x = (x1, . . . , xn) from the n-dimensional real Eu-
clidean space Rn by ‖x‖ we denote any of the three equivalent norms

‖x‖1 = max
1≤i≤n

|xi|, (1)

‖x‖2 =
n∑

i=1

|xi|, (2)

‖x‖3 =
( n∑

i=1

x2
i

)1/2

, (3)

which are connected by the well-known relations

‖x‖1 ≤ ‖x‖2 ≤ n‖x‖1, (4)

‖x‖1 ≤ ‖x‖3 ≤
√
n‖x‖1, (5)

‖x‖2 ≤ n‖x‖3. (6)

By U(x0, δ), δ > 0 we denote a δ-neighborhood of the point x0 =
(x0

1, . . . , x
0
n) ∈ Rn, i.e., U(x0, δ) = {x ∈ Rn : ‖x − x0‖ < δ}. U0(x0, δ)

denotes a punctured δ-neighborhood of the point x0 (without center x0),
i.e., U0(x0, δ) = U(x0, δ) \ {x0} = {x ∈ R

n : 0 < ‖x− x0‖ < δ}.
The symbols U(x0) and U0(x0) denote, in general, a neighborhood and

punctured neighborhood of the point x0.
In what follows, it will be, unless otherwise stated, assumed that values

of functions are real and finite.
Let the function u = ϕ(x), x = (x1, . . . , xn), be defined in U0(x0). A

finite number A is said to be a limit at the point x0 of the function ϕ(x),
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symbolically

lim
x→x0

ϕ(x) = A or lim
x1→x0

1
............
xn→x0

n

ϕ(x1, . . . , xn) = A, (7)

if for every number ε > 0 there exists the number δ = δ(x0, ε, ϕ) > 0 such
that for all points x ∈ U0(x0, δ) the inequality

∣∣ϕ(x) −A
∣∣ < ε, x ∈ U0(x0, δ) (8)

holds.
For the given in U(x0) function f(x) a total increment, or briefly, an

increment at the point x0 is called the difference

∆x0f(x) = f(x) − f(x0), x ∈ U(x0). (9)

The function f(x) is called continuous at the point x0 if the value f(x0)
is finite and

lim
x→x0

∆x0f(x) = 0. (10)

This equality means that for every ε > 0 there exists a number δ =
δ(x0, ε, f) > 0 such that

∣∣f(x) − f(x0)
∣∣ < ε, x ∈ U(x0, δ). (11)

In this case the point x0 is called the point of continuity of the function
f(x) and according to (7) we write

lim
x→x0

f(x) = f(x0). (12)

2. Let the function ψ(x) be defined on the set E ⊂ Rn and let the
set e be the subset of E, e ⊂ E. The cases are available when the function
ψ(x) on the subset e or, what comes to the same thing, along the subset
e has better property than on E. Therefore it is advisable to consider the
function ψ|e defined only on e which is called a restriction of the function
ψ on e. Hence (ψ|e)(x) = ψ(x) for all x ∈ e. In that case they say that the
function ψ is an extension of the function ψ|e from e to E.

1.2. General Theorem on the Continuity and Existence of a
Finite Limit

1. We have the following

Theorem 1.2.1. The function f(x) is continuous at the point x0 or
has at x0 a finite limit A, if and only if there is a neighborhood U(x0, δ)
representable by a union of a finite number of sets Mk for which the restric-
tion f |Mk along Mk is continuous at x0, or has the limit A, k = 1, . . . , p,
p = p(x0, f) < +∞.

Proof. For the continuity or for the existence of a finite limit A the number p
is equal to 1. Conversely, let the restrictions f |Mk along Mk be continuous
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at the point x0, k = 1, . . . , p. Therefore for every ε > 0 there exists δk > 0
such that

∣∣(f |Mk

)
(x) − f(x0)

∣∣ < ε for x ∈ U(x0, δk) ∩Mk.

Obviously, the number δ = min
1≤k≤p

δk is positive (due to the finiteness of

the number p), and hence
∣∣(f |Mk

)
(x) − f(x0)

∣∣ < ε

for

x ∈ U(x0, δ)
⋂( p⋃

k=1

Mk

)
= U(x0, δ)

⋂(
U(x0, δ)

)
= U(x0, δ).

Thus |f(x) − f(x0)| < ε for x ∈ U(x0, δ), and the continuity of the
function f(x) at the point x0 is obvious.

The case for the finite limit A is considered analogously. �

2. In the sequel we shall need the following easily verifiable

Proposition 1.2.1. Let the function of n variables f(x1, . . . , xn) be
defined in the neighborhood U(x0) of the point x0 = (x1, . . . , x

0
n) ∈ Rn.

We take any finite numbers x0
n+1, . . . , x

0
m and consider the point x 0 =

(x0
1, . . . , x

0
n, x

0
n+1, . . . , x

0
m). In the neighborhood U(x 0) of the point x 0 ∈

Rn+m we define the function F by the equality

F (x1, . . . , xn, xn+1, . . . , xm) = f(x1, . . . , xn).

Then:
1) the continuity of the function f(x1, . . . , xn) at the point x0 implies

the same for the function F (x1, . . . , xn, xn+1, . . . , xm) at the point x 0;
2) if f(x1, . . . , xn) has a finite limit A at the point x0, then A is the

limit at the point x 0 for the function F (x1, . . . , xn, xn+1, . . . , xm) as well.

1.3. Separated Partial Limits and the Notion of Separately
Partial Continuity

Along with the points x = (x1, . . . , xn) ∈ Rn and x0 = (x0
1, . . . , x

0
n) ∈

Rn we introduce the following notation ([5]):

x(x0
i ) =

(
x1, . . . , xi−1, x

0
i , xi+1, . . . , xn), (1)

x0(xj) =
(
x0

1, . . . , x
0
i−1, xj , x

0
i+1, . . . , x

0
n), (2)

which will allow us to write long expressions in a short form.
Let the function f(x) be defined in the neighborhood U(x0) of the point

x0. The function of one xi variable f(x0(xi)) is called the i-th partial func-
tion at the point x0 of the function f(x), or the i-th coordinate function
of f(x) at x0, which sometimes is denoted symbolically as if(xi). Conse-
quently, we have the function of one xi variable

if(xi) = f(x0(xi)). (3)
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1. The limit

lim
xi→x0

i

if(xi) = lim
xi→x0

i

f(x0(xi)), (4)

either finite or infinite of fixed sign, is called the i-th partial limit, or the
limit with respect to xi variable at x0 for the function f(x).

The relations
if(x0

i ) = f(x0) = f
(
x0(x0

i )
)

(5)

are obvious.

Definition 1.3.1 ([6]). We say that the function f(x1, . . . , xn) pos-
sesses separated partial limits (perhaps not equal) at the point x0 if limit
(4) exists for all i = 1, . . . , n.

The absence of the limit at the point x0 for the function f(x) is obvious
if limit (4) does not exist at least for one value i. But the existence of
all separated partial limits (4) and even their equality does not imply the
existence of limit for the function f(x) at the point x0 (see, for e.g., the
function ψ(x1, x2) from 7.3).

2. Besides the notion of the continuity at the point x0 which is some-
times called joint continuity at that point, there exists the notion of a sep-
arately partial continuity at the given point.

If the partial function if(xi) = f(x0(xi)) is continuous at the point
x0

i , then the function f(x) is called partial continuous at the point x0 with
respect to the variable xi.

In this case the value f(x0) is finite and according to (5) we have

lim
xi→x0

i

if(xi) = f(x0) = lim
xi→x0

i

f
(
x0(xi)

)
. (6)

Equality (6) means that for every ε > 0 there exists the number δi =
δi(x

0
i , ε, f) > 0 such that the inequality

∣∣if(xi) − f(x0)
∣∣ < ε (7)

is fulfilled for all xi ∈ (x0
i − δi, x

0
i + δi).

If we apply the notion of a partial increment at the point x0 for the
function f(x) with respect to the variable xk,

∆x0
k
f(x) = f

(
x0(xk)

)
− f(x0), (8)

which, due to the function kf(xk), takes the form

∆x0
k
f(x) = kf(xk) − f(x0), (9)

then we can write (6) and (7) respectively as

lim
xi→x0

i

∆x0
i
f(x) = 0 (10)

and ∣∣∆x0
i
f(x)

∣∣ < ε, xi ∈
(
x0

i − δi, x
0
i + δi

)
. (11)
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If the function f(x) at the point x0 is partial continuous with respect
to every variable, i.e., if equality (6) is fulfilled for all i = 1, . . . , n, then the
function f(x) is called separately partial continuous at the point x0.

Obviously, the separately partial continuity of the function ψ(x) at the
point x0 implies the existence of finite separated partial limits of ψ(x) at
x0, equal to ψ(x0).

It is easily seen that every continuous at x0 function is separately partial
continuous at the point x0.

Indeed, the continuity of the function f(x1, . . . , xn) at the point x0 =
(x0

1, . . . , x
0
n) is equivalent to equality 1.1.(12). Of all natural numbers 1, . . . , n

we take any i and suppose in equality 1.1.(12) that xj is equal to x0
j for all

j 6= i. As a result we get (6). Hence f(x) with respect to xi is continuous
at x0. Thus we have established the desired result due to the arbitrariness
of i.

The converse statement is invalid: the separately partial continuity does
not imply the continuity. In detail this problem has been considered by
Z. Piotrowski in [19]. Among such facts Tolstov’s Theorem A in Introduc-
tion is of special attention [27].

§ 2. The Continuity is Equivalent to a Separately Strong Partial
Continuity

For the function of several variables we introduce the notion of the
continuity with respect to individual independent variable whose fulfilment
with respect to all independent variables ensures continuity, and vice versa.

To this end, for the function f(x), x = (x1, . . . , xn) defined in the neigh-
borhood U(x0) of the point x0 = (x0

1, . . . , x
0
n) we introduce some definitions

using the symbols of 1.3(1) and 1.3(2).

2.1. Separately Strong Partial Continuity

Definition 2.1.1 ([6]). The difference

∆[x0
k
]f(x) = f(x) − f

(
x(x0

k)
)

(1)

is called a strong partial increment at the point x0 of the function f(x) with
respect to the variable xk.

Definition 2.1.2 ([4], [6]). The function f(x) is called a strongly
partial continuous with respect to the variable xk at the point x0, if the
equality

lim
x→x0

∆[x0
k
]f(x) = 0 (2)

is fulfilled.

Under equality (2) we mean that for every ε > 0 there exists the number
δk = δk(x0, ε, f) > 0 such that

∣∣∆[x0
k
]f(x)

∣∣ < ε, x ∈ U(x0, δk). (3)
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Proposition 2.1.1. The strong partial continuity with respect to the
variable xk at the point x0 of the function f(x) implies the partial continuity
of f(x) at x0 with respect to the same variable xk, and not vice versa.

Proof. The fulfilment of equality (2) implies that the function λ(x1, . . . , xn)=
∆[x0

k
]f(x1, . . . , xn) of variables x1, . . . , xn, defined in U(x0) has zero limit at

the point x0 = (x0
1, . . . , x

0
n). In particular, the function λ(x1, . . . , xn) will

have zero limit at x0 along the Oxk axis, i.e., for partial values xj = x0
j ,

j 6= k. Hence f(x0(xk)) − f(x0) → 0 as xk → x0
k. Thus we have obtained

equality 1.3.(10) for i = k.
The impossibility of the converse statement is illustrated by an example

of the function

ϕ(x1, x2) =

{
0 for x1 · x2 = 0

1 for x1 · x2 6= 0
. (4)

Obviously, this function is separately partial continuous at the origin
O = (0, 0).

It can be easily verified that the function ϕ(x1, x2) does not satisfy
condition (2) at the point O for k = 1, 2. This follows from the equality

ϕ(x1, x2) − ϕ(0, x2) =

{
1 for x2 6= 0

0 for x2 = 0
, (5)

ϕ(x1, x2) − ϕ(x1, 0) =

{
1 for x1 6= 0

0 for x1 = 0
. (6)

Thus the function ϕ(x1, x2) is separately partial continuous at the point
O and does not possess the property of the strong partial continuity with
respect to each of variables at O. �

Regarding Definition 2.1.2 we make the following remarks.

Remark 2.1.1. Every function of one variable a(x1) can be considered
as function of variables x1, . . . , xn, assuming A(x1, . . . , xn) = a(x1), n> 1.
Therefore the strong partial continuity at the point (x0

1, . . . , x
0
n) of the func-

tion A(x1, . . . , xn) with respect to the variable x1 means the continuity of
the function a(x1) at x0

1.

Thus the notion of the strong partial continuity with respect to indi-
vidual variable is a convenient generalization of the notion of the continuity
of functions of one variable.

Remark 2.1.2. The fulfilment of equality (2) implies the same equality
for all functions of type f +ω, where ω is arbitrary finite in U(x0) function,
independent from the variable xk.

Definition 2.1.3 ([4], [6]). The function f(x) is separately strong
partial continuous at the point x0, if f(x) with respect to every variable
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is strongly partial continuous at x0, i.e., equality (2) is fulfilled for all k =
1, . . . , n.

Remark 2.1.3. Equality (2) for partial values xj = x0
j for j 6= k implies

the equality

lim
xk→x0

k

[
f(x0(xk)) − f(x0)

]
= 0, k = 1, . . . , n, (7)

which shows that the function f(x) possessing the finite limit A at the point
x0 will satisfy equality (7) only in the case A = f(x0).

2.2. The First Basic Theorem on the Continuity

Theorem 2.2.1 ([4]). For the continuity of the function f(x) at the
point x0, it is necessary and sufficient that it possess separately strong partial
continuity at x0.

Proof. To establish the necessity of the condition of our theorem, we take
arbitrary number k from the numbers 1, . . . , n and write following obvious
equality

f(x) − f
(
x(x0

k)
)

=
[
f(x) − f(x0)

]
+

[
f(x0) − f(x(x0

k))
]
. (1)

Since the function f(x) is continuous at the point x0, the expressions
in square brackets are arbitrarily small when the point x is close enough
to the point x0. This is equivalent to equality 2.1.(2) for natural number
k, which is taken arbitrarily. Hence the function f(x) is separately strong
partial continuous at the point x0.

To establish the sufficiency of the condition of our theorem, we start
with the fact that the function f(x) with respect to the variable x1 is
strongly partial continuous at the point x0. Thus equality 2.1.(2) holds
for k = 1, or what is the same thing, we have the equality

lim
x→x0

[
f(x) − f(x0

1, x2, . . . , xn)
]

= 0. (2)1

Similarly, the strong partial continuity of the function f(x) at the point
x0 with respect to the variable x2 is equivalent to the equality

lim
x→x0

[
f(x) − f(x1, x

0
2, x3, . . . , xn)

]
= 0,

which in a particular case x1 = x0
1 takes the form

lim
x→x0

[
f(x0

1, x2, . . . , xn) − f(x0
1, x

0
2, x3, . . . , xn)

]
= 0. (2)2

This process, according to strong partial continuity of the function f(x)
with respect to the variable xn at the point x0, ends with the equality

lim
x→x0

[
f(x1, . . . , xn−1, xn) − f(x1, . . . , xn−1, x

0
n)

]
= 0,
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which for partial values xj = x0
j for j = 1, . . . , n− 1, takes the form

lim
x→x0

[
f(x0

1, . . . , x
0
n−1, xn) − f(x0)

]
= 0. (2)n

From equalities (2)1–(2)n we easily find that

lim
x→x0

[
f(x) − f(x0)

]
= 0,

which by the finiteness of f(x0) is equivalent to the equality

lim
x→x0

f(x) = f(x0). �

Remark 2.2.1. The importance in Theorem 2.2.1 is that the equality
2.1.(2) must be fulfilled for all values k = 1, . . . , n. If equality 2.1.(2) is
fulfilled only n−1 values, then the function may turn out to be discontinuous
at the point x0. This can be illustrated by an example of the following
function:

µ(x1, x2) =

{
1 for x2 6= 0

0 for x2 = 0
. (3)

Obviously, the function µ(x1, x2) is discontinuous at all points belonging
to the Ox1-axis.

Besides, the function µ(x1, x2) is strongly partial continuous with re-
spect to the variable x1 at every point (x0

1, 0).
Indeed, by equality 2.1.(2) we have

∆[x0
1
]µ(x1, x2) = µ(x1, x2) − µ(x0

1, x2). (4)

This difference is equal to 1− 1 = 0 for x2 6= 0 and to 0− 0 = 0 for x2 = 0.
Hence for arbitrary point (x1, x2) we have the equality

∆[x0
1
]µ(x1, x2) = 0. (5)

Consequently, the function µ(x1, x2) is strongly partial continuous at
every point (x0

1, 0) with respect to the variable x1.
The function µ(x1, x2) does not possess the property of the strong par-

tial continuity with respect to the variable x2 at the points (x0
1, 0). This

follows from the fact that for all points (x1, x2) with x2 6= 0 the equality
µ(x1, x2) − µ(x1, 0) = 1 − 0 = 1 holds. Hence µ(x1, x2) does not satisfy
equality 2.1.(2) at the points (x0

1, 0) for k = 2.

2.3. Statements Following From the First Basic Theorem

From identity 2.2.(1) we get the following

Theorem 2.3.1 ([4], [6]). For the continuity of the function f(x) at
the point x0 = (x0

1, . . . , x
0
n), the following two conditions are necessary and

sufficient:
1) the function f(x) with respect to some one variable, say to xk, is

strongly partial continuous at the point x0;
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2) the function f(x(x0
k)) depending on the rest n − 1 variables is con-

tinuous at the point x0.

Along with the symbols 1.3.(1) and 1.3.(2) we introduce one more sym-
bol. If in x = (x1, . . . , xn) we make change xk = x0

k and xj = x0
j for j 6= k,

then the obtained point will be denoted by the symbol

x(x0
k, x

0
j ). (1)

If now we apply Theorem 2.3.1 to the function f(x(x0
k)) from the same

theorem, we will obtain the following result.

Theorem 2.3.2 ([6]). For the function f(x1, . . . , xn) of n variables to
be continuous at the point x0 = (x0

1, . . . , x
0
n), the following joint conditions

are necessary and sufficient:
(ik) the function f(x1, . . . , xn) is strongly partial continuous at the point

x0 with respect to some variable xk;
(ikl) the function f(x(x0

k)) of n− 1 variables is strongly partial contin-
uous at x0 with respect to some variable xℓ with ℓ 6= k;

(ikls) the function f(x(x0
k, x

0
ℓ )) of n − 2 variables is strongly partial

continuous at the point x0 with respect to some variable xs for s 6= k and
s 6= ℓ.

The obtained in such away function of only one variable is continuous
at the point x0.

In the sequel, the use will be made of the following

Proposition 2.3.1 ([6]). The strong partial continuity of the function
f(x1, . . . , xn) at the point x0 = (x0

1, . . . , x
0
n) with respect to some variable

xℓ implies the strong partial continuity of the function f(x(x0
k)) at the point

x0 with respect to the same variable xℓ, no matter whatever k 6= ℓ is.

Proof. The existence of a finite limit for the function Φ(x) at the point x0

along some set E implies existence of the same limit for Φ(x) at x0 along
every subset M ⊂ E with the limiting point x0. Therefore the strong partial
continuity of the function f(x) at the point x0 with respect to the variable
xℓ implies the same for the function f(x(x0

k)) at the point x0 with respect
to xℓ with ℓ 6= k.

In greater detail, in equality 2.1.(2) written for x0
ℓ we replace the point

x by a partial point x(x0
k). As a result, we obtain the equality

lim
x→x0

[
f(x(x0

k)) − f(x(x0
k, x

0
ℓ ))

]
= 0. (2)

This means that the function f(x(x0
k)) is strongly partial continuous at the

point x0 with respect to the variable xℓ. �

On the base of Proposition 2.3.1, from Theorem 2.3.2 we obtain the
following sufficient conditions for the continuity.
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Theorem 2.3.3 ([6]). If the function f(x1, . . . , xn) with respect to
some one variable is partial continuous at the point x0 = (x0

1, . . . , x
0
n) and,

besides, strongly partial continuous at x0 with respect to every of the re-
maining n − 1 variables, then the function f(x1, . . . , xn) is continuous at
the point x0, and hence f(x1, . . . , xn) is strongly partial continuous at x0

with respect to the same variable, mentioned at the begining of the theorem
(by Theorem 2.2.1).

§ 3. The Continuity is Equivalent to a Separately Angular
Partial Continuity

For the function of several variables we again introduce a new notion
of continuity with respect to a individual independent variable, whose ful-
filment with respect to all variables is equivalent to the continuity.

In the previous Section 2, the variable point x = (x1, . . . , xn) tends to
the fixed point x0 = (x0

1, . . . , x
0
n) without some condition on that tending.

This fact was accompanied with the word “strongly”.
Now the tending will be considered under certain conditions. We begin

our investigation with the introduction of notions which will be needed in
the sequel.

3.1. Separately Angular Partial Continuity

Let a finite function f(x) be defined in the neighborhood U(x0) of the
point x0 = (x0

1, . . . , x
0
n), x = (x1, . . . , xn) ∈ U(x0).

Definition 3.1.1. The expression

∆c
x̂0

k
f(x) = f(x) − f(x(xk)) for |xj − x0

j | ≤ cj |xk − x0
k|, j 6= k (1)

depending on the variables x1, . . . , xn, is called an angular partial incre-
ment of the function f(x) at the point x0 with respect to the variable xk,
corresponding to the collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive
constants.

Definition 3.1.2 ([2], [4]). The angular partial continuity of the
function f(x) at the point x0 with respect to the variable xk means the
fulfilment of the equality

lim
xk→x0

k

∆c
x̂0

k
f(x) = 0 (2)

for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants∗.

Obviously, in this case we likewise have remarks analogous to Remark
2.1.1 and 2.1.2.

∗From equality (1) we can see that: (1) the angular partial continuity with respect
to the given variable is defined by n − 1 arbitrary positive constants; (2) from xk → x0

k

it follows that xj → x0

j for all j 6= k.
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It is also evident that the strong partial continuity of the function f(x)
at the point x0 with respect to the variable xk implies its angular partial
continuity with respect to the same xk at x0.

Definition 3.1.3 ([2], [4]). The function f(x) is separately angu-
lar partial continuous at the point x0, if with respect to every variable
the function f(x) possesses the property of angular partial continuity at
the point x0, i.e., if for all k = 1, . . . , n and for every collection c =
(c1, . . . , ck−1, ck+1, . . . , cn) of positive constants, equality (2) holds.

3.2. The Second Basic Theorem on the Continuity

Theorem 3.2.1 ([2], [4]). For the continuity of the function f(x) at
the point x0, the necessary and sufficient condition is its separately angular
partial continuity at x0.

Proof. The necessity of the condition follows from the fact that the continu-
ity of the function f(x) at the point x0 implies the strong partial continuity
of the function f(x) at x0 with respect to every variable, by Theorem 2.2.1.
In its turn, this implies the angular partial continuity of the function f(x) at
x0 with respect to every variable. Hence we have separately angular partial
continuity of the function f(x) at the point x0.

Let us now prove the sufficiency of the condition of the above theorem.
Let the function f(x) be separately angular partial continuous at the point
x0. Hence equality 3.1.(2) holds for every variable xk(k = 1, . . . , n) and for
arbitrary collection of positive constants. In particular, equality 3.1.(2) will
take place for every xk(k = 1, . . . , n) and for cj = 1, j 6= k.

We represent the space R
n as a union of pyramids P1, . . . , Pn with

common vertices at the point x0. Every pyramid Pk is defined by a system
of inequalities |xj − x0

j | ≤ |xk − x0
k| for all j 6= k. The pyramid here is

understood as two-sheeted, i.e., extending infinitely to both sides from the
vertex x0.

To establish the continuity of the function f(x) at the point x0, it
is necessary and sufficient to prove that, by virtue of Theorem 1.2.1, the
equality

lim
x→x0

x∈Pk

f(x) = f(x0) (1)

is valid for every k = 1, . . . , n.
Without loss of generality, it will be sufficient to prove equality (1) for

the case k = 1, so our subsequent reasoning is connected with that case.
Thus it will be assumed that the point x = (x1, . . . , xn) tends from the
neighborhood U(x0) to the point x0 = (x0

1, . . . , x
0
n) under the condition

x ∈ P1.
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Since the function f(x) possesses the property of angular partial conti-
nuity at the point x0 with respect to the variable x1, we have the equality

lim
x→x0

x∈P1

[
f(x) − f

(
x(x0

1)
)]

= 0. (2)1

The point x(x0
1) = (x0

1, x2, . . . , xn) belongs to some pyramid∗ from
P2, . . . , Pn. Suppose that the point x(x0

1) belongs to ∆i1 with i1 6= 1. Along
with equality (2)1 and the fact that the function f(x) is angular partial
continuous with respect to the variable xi1 at the point x0, we have the
equality

lim
x→x0

x(x0
1)∈Pi1

[
f
(
x(x0

1)
)
− f

(
x(x0

1, x
0
i1 )

)]
= 0, (2)i1

where x(x0
1, x

0
i1 ) denotes that point (x0

1, . . .) from Pi1 , whose i1-th coordinate

is x0
i1

(see notation 2.3.(1)).

Now the point x(x0
1, x

0
i1

) belongs to some Pi2 with i2 6= 1 and i2 6= i1.
Continuing this process, as a result we obtain a point whose all coordinates
are fixed, except one.

This variable coordinate is xin−1
. Thus the point belongs to the pyramid

Pin−1
, and it can be written as x0(xin−1

) (see notation 1.3.(2)). As a result,
we have the equality

lim
x→x0

x0(xin−1
)∈Pin−1

[
f
(
x0(xin−1

)
− f(x0)

]
= 0. (2)in−1

Consequently, starting from the point x = (x1, . . . , xn) ∈ P1 belonging
to U(x0), we took by one point from every pyramid Pm and finally arrived
at the point x0, m = 2, . . . , n. In such a way we have taken into account the
behavior of the function f(x) in U(x0) with respect to every independent
variable.

Comparing equalities (2)1, (2)i1–(2)in−1
, we obtain equality (1) for

k=1. �

3.3. The Third Theorem on the Continuity

In proving the sufficiency of the condition of Theorem 3.2.1, we have
revealed the fact that which was formulated in the form of the following

Theorem 3.3.1. For the function f(x), x = (x1, . . . , xn) to be contin-
uous at the point x0 = (x0

1, . . . , x
0
n), it is necessary and sufficient that

lim
xk→x0

k

|xj−x0
j |≤|xk−x0

k|

j 6=k

[
f(x) − f

(
x(x0

k)
)]

= 0 (1)

∗In case n = 2 we have the points x = (x1, x2), x0 = (x0

1
, x2), and the point

x(x0

1
) = (x0

1
, x2) belongs to the pyramid P2, which in this case represents the angle

{(x1, x2) : |x2 − x0

2
| ≥ |x1 − x0

1
|}. More precisely, the point x(x0

1
) belongs to the straight

line x1 = x0

1
. In case n = 3, the point x(x0

1
) = (x0

1
, x2, x3) belongs to P2, or to P3.
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for every k = 1, . . . , n.

3.4. The Summarizing Theorem on the Continuity

On the base of Theorems 2.2.1, 3.2.1 and 3.3.1 we obtain the following
summarizing theorem.

Theorem 3.4.1 ([4]). Separately strong partial continuity of the func-
tion f(x), x = (x1, . . . , xn), at the point x0 = (x0

1, . . . , x
0
n) and separately

angular partial continuity of the same function f(x) at the point x0 are
equivalent, and each of them is equivalent to the continuity of the function
f(x) at the point x0, which in its turn is equivalent to the fulfilment of
equality 3.3.(1) for every k = 1, . . . , n.

Remark 3.4.1. The content of Sections 2 and 3 shows that to the notion
of the continuity of the function of one variable there correspond separately
strong partial continuity and separately angular partial continuity.

Remark 3.4.2. If the equality

lim
xk→x0

k

|xj−x0
j |=|xk−x0

k|

j 6=k

[
f(x) − f

(
x(x0

k)
)]

= 0,

does not hold at least for one value k from 1, . . . , n, then the function f(x)
is not continuous at the point x0.

§ 4. The Nonexistence of the Limit and the Continuity

4.1. The Nonexistence of the Limit

Theorem 2.3.1 states, in particular, that the continuity of the function
f(x), x = (x1, . . . , xn) at the point x0 = (x0

1, . . . , x
0
n) follows from the

following two facts:
1) the function f(x) with respect to some one variable xj is strongly

partial continuous at the point x0;
2) the function of the remaining n− 1 variables f(x(x0

j )) is continuous

at the point x0.
There naturally arises the question: Does the function f(x),

x = (x1, . . . , xn), n > 1, possess the limit at the point x0 = (x0
1, . . . , x

0
n), if

condition 1) is fulfilled, and instead of condition 2) the condition that
21) the function f(x(x0

j )) has the limit at the point x0, is fulfilled?
The answer is negative. This can be illustrated by an example of the

function µ(x1, x2) given by equality 2.2.(3), which is strong partial contin-
uous with respect to the variable x1 at all points (x0

1, 0).
Hence condition 1) is fulfilled for j = 1 at every point (x0

1, 0). Moreover,
the function µ(x1, x2) has no limit at all points (x0

1, 0). In fact, the function
µ(x1, x2) at the points (x0

1, 0) has numbers 0 and 1 as partial limits with
respect to variables x1 and x2, respectively. Hence the function µ(x1, x2)
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has at all points (x0
1, 0) the finite separated partial limits, different from

each other.
This implies that the function µ(x1, x2) has no limit at all points (x0

1, 0).
All the above-said can be summarized in the form of the following

Proposition 4.1.1 ([6]). The strong partial continuity of the function
f(x1, . . . , xn), n > 1, with respect to some one variable xj at the point x0 =
(x0

1, . . . , x
0
n) and the existence of the finite limit for the function f(x(x0

j ))

with respect to the remaining n− 1 variables collectively at the point x0, do
not guarantee the existence of the limit for the function f(x1, . . . , xn) at the
point x0.

Remark 4.1.1. In connection with Proposition 4.1.1, it should be noted
that the necessary and sufficient conditions for the existence of a finite limit
will be given in subsection 7.3.

4.2. The Continuity Under the Finite Limit

There arises the question: if the finite limit does exist, what kind of
additional conditions are necessary and sufficient for the function of several
variables to be continuous?

Theorem 4.2.1 ([6]). For the function f(x), x = (x1, . . . , xn) to be
continuous at the point x0 = (x0

1, . . . , x
0
n), the following two conditions are

necessary and sufficient:
1) the function f(x) at the point x0 is partial continuous with respect

to some one variable (see equality 1.3.(6));
2) the function f(x) has finite limit at the point x0.

Corollary 4.2.1 ([6]). For the continuity of the function f(x) at the
point x0, the following two conditions are necessary and sufficient:

1) the function f(x) at the point x0 has either the property of a strong
partial continuity, or that of an angular partial continuity with respect to
some one variable;

2) the function f(x) has a finite limit at the point x0.

§ 5. Results on the Continuity of Functions of Two Variables

It seems to us advisable to collect all the results on the continuity of
functions of two variables which have been stated for functions of n variables.
This is convenient owing to the fact that the two-dimensional case is more
transparent from the geometrical viewpoint.

Thus let a finite function of two variables ϕ(x1, x2) be defined in the
neighborhood U(x0) of the point x0 = (x0

1, x
0
2).
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5.1. Separately Strong Partial Continuity, and Continuity

The strong partial continuity of the function ϕ(x1, x2) at the point
x0 = (x0

1, x
0
2) with respect to the variable x1 means the fulfilment of the

equality
lim

x1→x0
1

x2→x0
2

[
ϕ(x1, x2) − ϕ(x0

1, x2)
]

= 0 (1)

and the strong partial continuity of the same function with respect to the
variable x2 means the fulfilment of the equality

lim
x1→x0

1

x2→x0
2

[
ϕ(x1, x2) − ϕ(x1, x

0
2)

]
= 0. (2)

The function ϕ(x1, x2) is separately strong partial continuous at the
point x0, if equalities (1) and (2) are fulfilled.

For that case, the first basic Theorem 3.2.1 on the continuity reads as
follows:

Theorem 5.1.1 ([2]). For the function ϕ(x1, x2) to be continuous at
the point x0, i.e., for the equality

lim
x1→x0

1

x2→x0
2

ϕ(x1, x2) = ϕ(x0
1, x

0
2) (3)

to be fulfilled, it is necessary and sufficient that the function ϕ(x1, x2) be
separately strong partial continuous at the point x0.

Theorems 2.3.1 and 2.3.2 are especially simple for the case n = 2, where
they coincide and take the form of

Theorem 5.1.2 ([2], [4]). For the function ϕ(x1, x2) to be continuous
at the point x0, it is necessary and sufficient that ϕ(x1, x2) be strongly partial
continuous at x0 with respect to one of the variables, and partial continuous
at the point x0 with respect to the other variable. That is, it is necessary
and sufficient that either equality (1) and the equality

lim
x2→x0

2

ϕ(x0
1, x2) = ϕ(x0

1, x
0
2) (4)

or equality (2) and the equality

lim
x1→x0

1

ϕ(x1, x
0
2) = ϕ(x0

1, x
0
2) (5)

be satisfied pairwise.

This theorem results in the following

Corollary 5.1.1 ([4]). Let the function ϕ(x1, x2) be separately partial
continuous at the point x0, i.e., let equalities (4) and (5) be fulfilled. Then
for the function ϕ(x1, x2) to be continuous at the point x0 it is necessary and
sufficient that ϕ(x1, x2) to have at the point x0 the property of the strong
partial continuity with respect to one of the variables.
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Corollary 5.1.1 and Theorem 5.1.1 lead to

Corollary 5.1.2 ([4]). If the function ϕ(x1, x2) at the point x0 pos-
sesses the properties of strong partial continuity with respect to one of the
variables and partial continuity with respect to to the other variable, then
the function ϕ(x1, x2) possesses the property of the strong partial continuity
at the point x0 with respect to that latter variable.

For n = 2, Theorem 4.2.1 takes the form of

Theorem 5.1.3 ([6]). For the continuity of the function ϕ(x1, x2)
at the point x0 = (x0

1, x
0
2), the following two conditions are necessary and

sufficient:
1) the function ϕ(x1, x2) has finite limit at the point x0;
2) either equality (4), or equality (5) is fulfilled.

5.2. Separately Angular Partial Continuity, and Continuity

The angular partial continuity of the function ϕ(x1, x2) at the point
x0 = (x0

1, x
0
2) with respect to the variable x1 means that the equality∗

lim
x1→x0

1

|x2→x0
2|≤c2|x1−x0

1|

[
ϕ(x1, x2) − ϕ(x0

1, x2)
]

= 0 (1)

is fulfilled for every constant c2 > 0.
The angular partial continuity of the function ϕ(x1, x2) at the point x0

with respect to the variable x2 means that the equality

lim
x2→x0

2

|x1−x0
1|≤c1|x2−x0

2|

[
ϕ(x1, x2) − ϕ(x1, x

0
2)

]
= 0 (2)

is fulfilled for every constant c1 > 0.
The separately angular partial continuity of the function ϕ(x1, x2) at

the point x0 means that the function ϕ(x1, x2) has at the point x0 the
properties of angular partial continuity both with respect to x1 and to x2.

For n = 2, the second basic Theorem 3.2.1 on the continuity takes the
form of

Theorem 5.2.1. ([2]). For the function ϕ(x1, x2) to be continuous at
the point x0, it is necessary and sufficient that this function be separately
angular partial continuous at the point x0.

The following theorem is also valid.

Theorem 5.2.2 ([2], Corollary 1.1). For the function ϕ(x1, x2) to be
continuous at the point x0, it is necessary and sufficient that the following

∗The relation x2 → x0

2
in equality (1) follows from the relations x1 → x0

1
and

|x2 − x0

2
| ≤ c2|x1 − x0

1
|. Similarly in (2).
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two equalities

lim
x1→x0

1

|x2−x0
2|≤c|x1−x0

1|

[
ϕ(x1, x2) − ϕ(x0

1, x2)
]

= 0 (3)

and

lim
x2→x0

2

|x2−x0
2|≥c|x1−x0

1|

[
ϕ(x1, x2) − ϕ(x1, x

0
2)

]
= 0 (4)

be fulfilled at least for one constant c > 0.

The third Theorem 3.3.1 on the continuity has the form of

Theorem 5.2.3. For the continuity of the function ϕ(x1, x2) at the
point x0, the following two equalities

lim
x1→x0

1

|x2−x0
2|≤|x1−x0

1|

[
ϕ(x1, x2) − ϕ(x0

1, x2)
]

= 0 (5)

and

lim
x2→x0

2

|x1−x0
1|≤|x2−x0

2|

[
ϕ(x1, x2) − ϕ(x1, x

0
2)

]
= 0 (6)

are necessary and sufficient.

Remark 5.2.1. The fulfilment of equality (3) separately for one of the
constant c > 0, in particular of equality (5), is not equivalent to angular
partial continuity of the function ϕ(x1, x2) at the point x0 with respect to
the variable x1.

Similar situation takes place for the variable x2.

Remark 5.2.2. The sufficient condition for the continuity of the function
of two variables, when it is continuous with respect to each of variables, can
be found Theorem 2.2.3 of Chapter III.

§ 6. Continuity in the Wide and Its Application

6.1. Increment in the Wide

Let the function f(x), x = (x1, . . . , xn) be defined in the neighborhood
U(x0) of the point x0 = (x0

1, . . . , x
0
n).

Construction of the increment

∆x0f(x) = f(x) − f(x0) (1)

for the function f(x) at the point x0 (see equality 1.1.(9)) shows that the in-
crements xj−x0

j , j = 1, . . . , n are attached simultaneously to all coordinates

x0
j of the point x0.

We shall now construct an expression of another structure, which will
be called an increment in the wide sense.
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It is clear that the expression, defined by equality 2.1.(1), depends on
the variables x1, . . . , xn:

∆[x0
k
]f(x) = f(x) − f

(
x(x0

k)
)
. (2)

We introduce an auxiliary function

λ(x1, . . . , xn) = ∆[x0
k
]f(x) (3)

and write equality (2) for the function λ(x1, . . . , xn) at the point x0 with
respect to some variable xj with j 6= k. As a result we obtain the new
function

µ(x1, . . . , xn) = ∆[x0
j
]λ(x), (4)

which again depends on x1, . . . , xn variables.
For the function µ(x1, . . . , xn) we likewise write equality (2) at the point

x0 for some variable xℓ, where ℓ 6= k and ℓ 6= j. This procedure will be
continued until all x1, . . . , xn variables are exhausted. Final result is called
an increment in the wide of the function f(x) at the point x0 and denoted
by ∆n

[x0]f(x).

An important property of the above procedure is that the final result
does not depend on the order of forming strong partial increments at the
point x0 by formula (2) for the required functions. Therefore the following
definition is correct.

Definition 6.1.1 ([4], [7]). An increment in the wide at the point x0

for the given in U(x0) finite function f(x), x = (x1, . . . , xn), is called the
expression

∆n
[x0]f(x) =

(
∆[x0

1
] ◦ ∆[x0

2
] ◦ · · · ◦ ∆[x0

n]

)
(f)(x), (5)

where

∆[x0
j
]F (x) = F (x) − F

(
x(x0

j )
)
. (6)

Hence to get ∆n
[x0]f(x) we have to take in the equality (6) instead of

F and j the f and j = n, ∆[x0
n]f and j = n − 1, and so on, and finally

∆[x0
2
] ◦ · · · ◦ ∆[x0

n]f and j = 1.

The case n = 2 we distinguish separately. If a finite function of two
variables ϕ(x1, x2) is defined in the neighborhood of the point x0 = (x0

1, x
0
2),

then the strong partial increment at the point x0 with respect to the variable
x1 for ϕ(x1, x2) is

∆[x0
1
]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x0

1, x2) (7)

and the strong partial increment with respect to x2 is equal to

∆[x0
2
]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x1, x

0
2). (8)

Hence the increment in the wide at the point x0 for ϕ(x1, x2) is equal to

∆2
[x0]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x0

1, x2) − ϕ(x1, x
0
2) + ϕ(x0

1, x
0
2). (9)
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It should be noted that expression (9) takes place in the definition of
the function of bounded variation (see, e.g., [11], § 254).

6.2. The Continuity in the Wide

Definition 6.2.1 ([4], [7]). The given in U(x0) finite function f(x) is
said to be continuous in the wide at the point x0, if

lim
x→x0

∆n
[x0]f(x) = 0. (1)

In what follows, it is expedient to write the continuity in the wide for the
function of two variables, in the form of two equivalent equalities.

The function ϕ(x1, x2), finite in the neighborhood of the point x0 =
(x0

1, x
0
2) is said to be continuous in the wide at the point x0, if

lim
x1→x0

1

x2→x0
2

[
ϕ(x1, x2) − ϕ(x0

1, x2) − ϕ(x1, x
0
2) + ϕ(x0

1, x
0
2)

]
= 0 (2)

or what is the same thing, if

lim
x1→x0

1

x2→x0
2

[
ϕ(x0

1, x2) + ϕ(x1, x
0
2) − ϕ(x1, x2)

]
= ϕ(x0

1, x
0
2). (3)

6.3. The Increment in the Wide for the Sum

If in the neighborhood U(x0) of the point x0 = (x0
1, . . . , x

0
n) there are

finite functions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), then the equality

∆n
[x0]

m∑

j=1

fj(x) =
m∑

j=1

∆n
[x0]fj(x), x = (x1, . . . , xn) ∈ U(x0). (1)

holds.

6.4. The Increment in the Wide for the Special Sum

Consider finite functions of special type:

ψk : R
n−1 → R, k = 1, . . . , n, (1)

each of which depends on n− 1 variables. Consider the summary function

ψ(x) = ψ1(x2, x3, . . . , xn) + ψ2(x1, x3, . . . , xn)+

+ · · · + ψn(x1, x2, . . . , xn−1) (2)

depending on x = (x1, . . . , xn).
From equality 6.1.(2) it follows that

∆[x0
k
]ψk(x) = 0, k = 1, . . . , n. (3)

Taking into account the fact that succession order in equality 6.1.(5)
does not play an important role, from equalities (3) we obtain

∆n
[x0]ψk(x) = 0, k = 1, . . . , n. (4)
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Now, equalities 6.3.(1) and (4) yield

∆n
[x0]ψ(x) = 0. (5)

Consequently, every finite in U(x0) function ψ(x) of type (2) is contin-
uous in the wide at every point x0 = (x0

1, . . . , x
0
n), even for discontinuous in

the ordinary sense at x0 functions ψk(x), k = 1, . . . , n.

6.5. The Sufficient Condition for the Continuity in the Wide∗

Theorem 6.5.1 ([4], [7]). If the function f(x) is strongly partial
continuous with respect to some one variable at the point x0, then f(x) is
continuous in the wide at the point x0, and not vice versa.

Proof. Suppose that the function f(x) is strongly partial continuous at the
point x0 with respect to the variable xj . Then the equality

lim
x→x0

[
f(x) − f

(
x(x0

j )
)]

= 0 (1)

holds.
Since ∆n

[x0]f(x) does not depend on the order of making up strong

partial increments, to construct the right-hand side of equality 6.1.(5) we
shall start with that of ∆[x0

j
]f(x). Our next step is to construct a strong

partial increment for the function ∆[x0
j
]f(x) at the point x0 with respect to

some variable xℓ with ℓ 6= j. Having realized all this, we have

∆[x0
ℓ
]

(
∆[x0

j
]f

)
(x) = ∆[x0

j
]f(x) −

(
∆[x0

j
]f(x)

)
xℓ=x0

ℓ

=

=
[
f(x) − f

(
x(x0

j )
)]

−
[
f(x) − f

(
x(x0

j )
)]

xℓ=x0
ℓ

=

=
[
f(x) − f

(
x(x0

j )
)]

−
[
f
(
x(x0

ℓ )
)
− f

(
x(x0

j , x
0
ℓ )

)]
.

By equality (1), the both differences in the square brackets tend to zero
as x→ x0.

As a result of finite number of steps, we obtain equality 6.2.(1), i.e., the
function f(x) will turn to be continuous in the wide at the point x0.

By means of formula 6.4.(5) we find that the converse statement is in-
valid. Indeed, for arbitrary finite functions α(x1) and β(x2), not necessarily
continuous, we have

∆2
[x0]ω(x1, x2) = 0, (2)

where x0 = (x0
1, x

0
2) is arbitrary point from R2, and

ω(x1, x2) = α(x1) + β(x2). (3)

Hence the function ω(x1, x2) is continuous in the wide at every point
from R2. �

Theorems 2.2.1 and 6.5.1 lead to

∗Another sufficient condition for the continuity in the wide for functions of two
variables will be given in Chapter III (see Proposition 2.2.1 of Chapter III).
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Corollary 6.5.1 ([4], [7]). If the function f(x) is continuous at the
point x0, then it is continuous in the wide at the same point x0. The con-
verse statement is invalid.

Remark 6.5.1. The function ω(x1, x2), defined by equality (3), is con-
tinuous at the point x0 = (x0

1, x
0
2), iff α(x1) is continuous at x0

1, and β(x2)
is continuous at x0

2.

This follows from Theorem 5.1.1 and from the fact that

ω(x1, x2) − ω(x0
1, x2) = α(x1) − α(x0

1), (4)

ω(x1, x2) − ω(x1, x
0
2) = β(x2) − β(x0

2). (5)

Remark 6.5.2. The function µ(x1, x2), defined by equality 2.2.(3), is
continuous in the wide at every point from R2.

Indeed, the continuity in the wide of the function µ(x1, x2) at the point
(x0

1, 0) follows from Theorem 6.5.1, with regard for the fact that the function
µ(x1, x2) at these points is strongly partial continuous with respect to the
variable x1. The function µ(x1, x2) at the remaining points from R2 is
continuous and therefore is continuous in the wide, by Corollary 6.5.1.

Remark 6.5.3. The statement of Theorem 6.5.1 can be easily realized
for functions of two variables.

Indeed, if the function ϕ(x1, x2) at the point x0 = (x0
1, x

0
2) is strongly

partial continuous with respect to the variable x1, then we write the right-
hand side of equality 6.1.(9) in the form

[
ϕ(x1, x2) − ϕ(x0

1, x2)
]
−

[
ϕ(x1, x

0
2) − ϕ(x0

1, x
0
2)

]
,

which tends to zero as (x1, x2) → (x0
1, x

0
2).

However, if the function ϕ(x1, x2) at the point x0 is strongly partial
continuous with respect to the variable x2, then we write the right-hand
side of the same equality in the form

[
ϕ(x1, x2) − ϕ(x1, x

0
2)

]
−

[
ϕ(x0

1, x2) − ϕ(x0
1, x

0
2)

]
,

which also tends to zero as (x1, x2) → x0.

6.6. The Continuity of the Function of Two Variables Under Its
Continuity in the Wide

From subsection 1.3 it is well-known that separately partial continuity
does not imply the continuity∗.

Moreover, as we see, the property of continuity in the wide is far from
that of the continuity.

∗Below will be given one sufficient condition for the continuity of the function, when
this function is separately partial continuous (see Theorem 2.2.3 in Chapter III).
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Let us now prove that these two properties simultaneously guarantee
the continuity, and vice versa.

Just this is the answer to the question: what useful information does
the notion of the continuity in the wide carry?

Theorem 6.6.1 ([7]). The finite function ϕ(x1, x2) defined in the
neighborhood of the point x0 = (x0

1, x
0
2) is continuous at x0, iff the function

ϕ(x1, x2) at the point x0 is both separately partial continuous and continuous
in the wide.

Proof. If the function ϕ(x1, x2) possesses both the above-mentioned prop-
erties at the point x0, then its continuity at x0 follows from the equality

ϕ(x0
1 + h, x0

2 + k) − ϕ(x0
1, x

0
2) =

=
[
ϕ(x0

1 + h, x0
2 + k) − ϕ(x0

1, x
0
2 + k) − ϕ(x0

1 + h, x0
2) + ϕ(x0

1, x
0
2)

]
+

+
[
ϕ(x0

1 + h, x0
2) − ϕ(x0

1, x
0
2)

]
+

[
ϕ(x0

1, x
0
2 + k) − ϕ(x0

1, x
0
2)

]
. (1)

It is then obvious that the continuous at the point x0 function ϕ(x1, x2)
possesses both properties, mentioned in Theorem 6.6.1. �

The following corollaries of that theorem are worth mentioning.

Corollary 6.6.1. Let the function ϕ(x1, x2) be separately partial con-
tinuous at the point x0 = (x0

1, x
0
2). Then for the continuity of the function

ϕ(x1, x2) at the point x0, it is necessary and sufficient that this function be
continuous in the wide at x0.

Corollary 6.6.2. Let the function ϕ(x1, x2) be continuous in the wide
at the point x0 = (x0

1, x
0
2). Then for the continuity of the function ϕ(x1, x2)

at the point x0, it is necessary and sufficient that this function be separately
partial continuous at x0.

Remark 6.6.1. Discontinuous at the given point functions of two vari-
ables, mentioned in subsection 1.3 are not continuous in the wide at that
point. G. Tolstov’s functions from Theorem A fail to have the property of
the continuity in the wide at the points of discontinuity, i.e., at almost all
points (see Introduction in Chapter I).

§ 7. The Limit in the Wide and Its Application

7.1. The Notion of the Limit in the Wide

In the analysis, the notion of the continuity is introduced on the base
of the notion of the limit. For the notion of the continuity in the wide we
can refer preceding notion of the limit in the wide.

It is obvious that the increment in the wide defined by equality 6.1.(5)
for f(x) at the point x0 involves the f(x0).
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Now we replace the f(x0) in ∆n
[x0]f(x) by finite B and the obtained

expression write symbolically as

∆n
[x0]f(x)

∣∣
f(x0)=B

. (1)

Introduce the following

Definition 7.1.1 [([7]). The finite B is said to be the limit in the wide
for the function f(x) at the point x0, if the equality

lim
x→x0

(
∆n

[x0]f(x)
∣∣
f(x0)=B

)
= 0 (2)

holds.

The following proposition is obvious.

Proposition 7.1.1. The function f(x) continuous in the wide at the
point x0 has the limit in the wide at x0, which is equal to f(x0).

Definition 6.2.1 can now be rephrases in the form of

Definition 7.1.2 ([7]). The function f(x) is continuous in the wide at
the point x0, if the f(x0) is finite and f(x0) is the limit in the wide for the
function f(x) at the point x0.

On the base of equality 6.1.(9), the finite B will be the limit in the wide
for the function ϕ(x1, x2) at the point x0 = (x0

1, x
0
2), if

lim
x1→x0

1

x2→x0
2

[
ϕ(x1, x2) − ϕ(x0

1, x2) − ϕ(x1, x
0
2) +B

]
= 0. (3)

Generally number L, finite or infinite of fixed sign, will be the limit in
the wide for the function ϕ(x1, x2) at the point (x0

1, x
0
2), if

lim
x1→x0

1

x2→x0
2

[
ϕ(x0

1, x2) + ϕ(x1, x
0
2) − ϕ(x1, x2)

]
= L. (4)

Proposition 7.1.2 ([7]). If the function f(x) has a finite limit in the
wide at the point x0, then this limit is unique.

In order to show this, it is necessary write equality (2) for finite B and
B1 and then consider their difference.

7.2. The Existence of the Limit in the Wide

Theorem 7.2.1 ([7]). If the function f(x) has finite limit B at the
point x0, then B is likewise the limit in the wide for the function f(x) at
the point x0.

Proof. If the function f(x) is continuous at the point x0, then f(x) is
continuous in the wide at x0, by Corollary 6.5.1. Therefore the finite f(x0)
is the limit in the wide for f(x) at x0, by Definition 7.1.2.
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Suppose now that the function f(x), possessing at the point x0 the
finite limit B, is discontinuous at x0.

If we introduce a new function f∗(x) = f(x) for x 6= x0 and f∗(x0) = B,
then f∗(x) is continuous at x0, and inequality f∗(x) 6= f(x) is fulfilled only
for x = x0. Thus

∆n
[x0]f(x) − ∆n

[x0]f
∗(x) = f(x0) − f∗(x0) = f(x0) −B,

whence

∆n
[x0]f(x)

∣∣
f(x0)=B

− ∆n
[x0]f

∗(x) = B −B = 0. (1)

But according to Corollary 7.5.1, we have

lim
x→x0

∆n
[x0]f

∗(x) = 0. (2)

Equality 7.1.(2) is obtained now from equalities (1) and (2). �

Proposition 7.2.1 ([7]). The existence of the finite limit in the wide
for the function µ(x1, . . . , xn), n > 1, at the point x0 does not imply the
existence the limit for µ(x1, . . . , xn) at x0, neither finite, nor infinite.

Proof. The function µ(x1, x2) given by equality 2.2.(3) is continuous in
the wide at every point from R2, in particular at the points (x0

1, 0), by
Remark 6.5.1. Therefore the function µ(x1, x2) at the points (x0

1, 0) has
the limit in the wide equal to µ(x0

1, 0) = 0, by Proposition 7.1.1. On the
other hand, the function µ(x1, x2) has no limit at the points (x0

1, 0), as is
mentioned in subsection 4.1. �

7.3. The Necessary and Sufficient Conditions for the Existence a
Finite Limit for Functions of Two Variables

As is known, the existence of the finite limit does not follows from
existence of equal finites separated partial limits. This can be illustrated,
for example, by means of the function ψ(x1, x2) = x1·x2

x2
1
+x2

for (x1, x2) 6= (0, 0)

and ψ(0, 0) = 0. This function is separately partial continuous at the origin
O = (0, 0). In particular, ψ(x1, x2) has zero separated partial limits at
the point O. The absence of the limit for ψ(x1, x2) at O follows from the
equality ψ(r cos θ, r sin θ) = 1

2 sin 2θ.
Besides, the existence of the finite limit does not follows from the exis-

tence of the finite limit in the wide (see Proposition 7.2.1).
Remarkable is that the both properties together implies the existence

of the finite limit, and vice versa.
Thus we have shown what informational load carries the notion of the

limit in the wide.

Theorem 7.3.1 ([7]). The finite number A will be the limit for the
function ϕ(x1, x2) at the point x0 = (x0

1, x
0
2), iff the function ϕ(x1, x2) has

simultaneosly at the point x0 separated partial limits and the limit in the
wide which are equal to A.
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Proof. If A is the limit at the point x0 for the function ϕ(x1, x2), then A for
ϕ(x1, x2) is both the limit in the wide (see Theorem 7.2.1) and, obviously,
separated partial limits.

The converse follows from the equality, which will be obtained by sub-
stituting ϕ(x0

1, x
0
2) by A in equality 6.6.(1). �

Remark 7.3.1. The function ψ(x1, x2) from subsection 7.3, devoid of
the limit at the point O = (0, 0), has no zero limit in the wide at the point
O, by Theorem 7.3.1. Majority functions mentioned in subsection 1.3 of
Piotrowski’s work ([19]) possess analogous property.

§ 8. Partial Continuity with Respect to One of the Variables,
Uniformly with Respect to the Other Variable

We have already got acquainted with the necessary and sufficient con-
ditions for the continuity of functions of two variables (see § 5 and subsec-
tion 6.6). In this section we give somewhat different sufficient condition for
the continuity of functions of two variables. The facts stated here will be
applied to the questions of Chapter IV (see § 6, § 7 and § 9).

Let the finite function of two variables ϕ(x, y) be defined on the rectan-
gle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}, and let the point (x0, y0) ∈ Q.

Definition 8.1 ([2]). The function ϕ(x, y) is called partial continuous
with respect to x at the point x0, uniformly with respect to y on the [c1, d1],
c ≤ c1 < d1 ≤ d, if the equality

lim
x→x0

[
ϕ(x, y) − ϕ(x0, y)

]
= 0 (1)

takes place uniformly with respect to the variable y ∈ [c1, d1].

Similarly, the function ϕ(x, y) is partial continuous with respect to y at
the point y0, uniformly with respect to x on the [a1, b1], a ≤ a1 < b1 ≤ b, if
the equality

lim
y→y0

[
ϕ(x, y) − ϕ(x, y0)

]
= 0 (2)

is fulfilled uniformly with respect to the variable x ∈ [a1, b1].

Proposition 8.1 ([2]). If the function ϕ(x, y) is partial continuous
with respect to x at the point x0, uniformly with respect to y on the [c1, d1],
then ϕ(x, y) is strongly partial continuous with respect to x at every point
(x0, y

∗) with c1 < y∗ < d1.

Proof. For sufficiently small k, the point y∗ + k belongs to [c1, d1], and by
equality (1) we have

lim
x→x0

k→0

[
ϕ(x, y∗ + k) − ϕ(x0, y

∗ + k)
]

= 0.

Thus equality 5.1.(1) is fulfilled. �
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Proposition 8.2 ([2]). If the function ϕ(x, y) is partial continuous
with respect to x at the point x0, uniformly with respect to y on the [c1, d1]
and the function of one variable ϕ(x0, y) is continuous at some point y∗ with
c1 < y∗ < d1, then the function ϕ(x, y) is continuous at the point (x0, y

∗).

Proof needs Proposition 8.1 and Theorem 5.1.2.

Remark 8.1. If the function ϕ(x0, y) is not continuous at the point y∗,
then the conclusion of Proposition 8.2 is invalid.

Indeed, let the function α(x) be continuous at the point x0 ∈ [a, b], and
let the finite function β(y) be discontinuous at the point y∗ ∈ (c1, d1). Then
the function g(x, y) = α(x) + β(y) is discontinuous at the point (x0, y

∗),
although

g(x, y) − g(x0, y) = α(x) + β(y) − α(x0) − β(y) = α(x) − α(x0) → 0

uniformly with respect to y from the neighborhood of the point y∗, as
x→ x0.

Theorem 8.1 ([2]). Let the function ϕ(x, y) be continuous on the
rectangle Q. Then ϕ(x, y) is:

1) partial continuous with respect to x at every point x0 ∈ [a, b], uni-
formly with respect to y on the [c, d];

2) partial continuous with respect to y at every point y0 ∈ [c, d], uni-
formly with respect to x on the [a, b].

Proof. Since the function ϕ(x, y) is continuous on the bounded closed set
Q, then ϕ(x, y) is uniformly continuous on the Q, by the classical Cantor’s
theorem. Therefore for every ε > 0 there exists the number δ = δ(ε, ϕ) > 0
such that ∣∣ϕ(x1, y1) − ϕ(x2, y2)

∣∣ < ε (3)

for (x1, y1) ∈ Q and (x2, y2) ∈ Q under |x1 − x2| < δ and |y1 − y2| < δ.
We take arbitrary points x0 ∈ [a, b] and y0 ∈ [c, d], suppose that x2 = x0

in inequality (3) and replace x1 by any point x ∈ [a, b] with the property
|x− x0| < δ. Moreover, we take arbitrary point y ∈ [c, d] and suppose that
in inequality (3) y1 = y = y2. So, inequality (3) takes the form

∣∣ϕ(x, y) − ϕ(x0, y)
∣∣ < ε, |x− x0| < δ, c ≤ y ≤ d. (4)

Hence we have established statement 1).
Analogously we obtain the inequality

∣∣ϕ(x, y) − ϕ(x, y0)
∣∣ < ε, a ≤ x ≤ b, |y − y0| < δ. (5)

Consequently, statement 2) holds. �

Corollary 8.1 ([2]). If the function ϕ(x, y) is partial continuous with
respect to x at every point x0 ∈ [a, b], uniformly with respect to y on the
[c, d], and the function ϕ(x0, y) is continuous at every point y0 ∈ [c, d], then
ϕ(x, y) is uniformly continuous on the Q.
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Proof. In the above suppositions the function ϕ(x, y) is continuous at every
point (x0, y0) ∈ Q and uniformly continuous on Q, by Cantor’s theorem. �

Corollary 8.2 ([2]). Let the function ϕ(x, y) be partial continuous with
respect to x at every point x0 ∈ [a, b], uniformly with respect to y on the
[c, d] and let the function ϕ(x0, y) be continuous at every point y0 ∈ [c, d].
Then ϕ(x, y) is partial continuous with respect to y at every point y0 ∈ [c, d],
uniformly with respect to x on the [a, b].

Proof. It is sufficient to take advantage of Corollary 8.1 and Theorem 8.1. �

Remark 8.2. The continuous on the Q function ϕ(x, y) is characterized
by inequalities (4) and (5).

Theorem 8.2 ([2]). Let the function ϕ(x, y) have bounded partial
derivative ϕ′

x(x, y) on the rectangle

r(x0, δ) =
{
(x, y) ∈ R

2 : x0 − δ < x < x0 + δ, c1 ≤ y ≤ d1

}
⊂ Q. (6)

Then ϕ(x, y) is partial continuous with respect to x at the point x0,
uniformly with respect to y on the [c1, d1].

Proof. Arbitrary point (x, y) ∈ r(x0, δ) we connect with the point (x0, y)
through the linear segment and write for it the Lagrange formula

ϕ(x, y) − ϕ(x0, y) = (x− x0)ϕ
′
x(ξ, y).

Due to the boundedness of ϕ′
x(x, y) on the r(x0, δ), there exists the

constant c > 0 such that |ϕ′
x(x, y)| < c for all points (x, y) ∈ r(x0, δ). Taking

arbitrary number ε > 0, we chose a number η > 0 with the properties η < δ
and η · c < ε.

If now x is so close to x0 that |x− x0| < η, then
∣∣ϕ(x, y) − ϕ(x0, y)

∣∣ < ε for |x− x0| < η and c1 ≤ y ≤ d1. �

§ 9. Unilateral Limit and Continuity of Functions of Two
Variables

The notions of unilateral limit and unilateral continuity for functions of
one variable are well-known.

From the right limit and the from the right continuity at the point
t0 = 0 can be called as the +limit and the +continuity at the point t0 = 0.
In the sequel, this terminology will be retained for every point t0.

Thus we can easily get the notions for the +limit [−limit], as well as
for the +continuity [−continuity] in the given point with respect to each
independent variable of functions of two variables, but they are ineffective.

Namely, let the function ϕ(x), x = (x1, x2) be defined in the neighbor-
hood U(x0), or in the punctured neighborhood U0(x0) = U(x0) \ {x0} of
the point x0 = (x0

1, x
0
2). If the function iϕ(xi), i = 1, 2, defined by equality
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2.1.(3) has at the point x0
i unilateral +limit

lim
xi→x0

i
+

iϕ(xi),

then the function ϕ(x) has at the point x0 partial +limit with respect to
the variable xi; this can be written in the form

lim
x1→x0

1
+
ϕ(x1, x

0
2) and lim

x2→x0
2
+
ϕ(x0

1, x2).

If the limit
lim

xi→x0
i
+

iϕ(xi)

is equal to iϕ(x0
i ) = ϕ(x0), then the function ϕ(x) is partial +continuous at

the point x0 with respect to the variable xi, i = 1, 2.
Analogously are defined the partial −limit and the partial −continuity

for the function ϕ(x) at the point x0 with respect to the variable xi, i = 1, 2.
The existence of partial ±limits with respect to x1 and x2 and also

their equality is, in general, insufficient for the function ϕ(x), x = (x1, x2),
to have limit at the point x0 = (x0

1, x
0
2).

Similarly, synchronous ±continuity does not, generally speaking, imply
the continuity.

As is seen, the notions of the +limit [−limit] and of the +continuity
[−continuity] for one-dimensional case are introduced in a natural manner.
This natural character is due to the natural partitioning of the neighborhood
of the point.

By analogy with the above notions we have introduced the insignificants
notions of partial +limit [partial −limit] and of partial +continuity [partial
−continuity] with respect to the given independent variable, the functions
of two variables.

A unique method of partitioning the neighborhood of the point is in-
available for two-dimensional case: two-dimensional interval can be divided
into portions by different ways. Which of these partitionings is more suitable
for the problem posed?

Using the notions of strong partial continuity and angular partial con-
tinuity (see subsections 2.1 and 3.1), we shall introduce below the notions
of unilateral limit and unilateral continuity.

9.1. Strong Unilateral Limit and Continuity

Let the function f(x), x = (x1, x2), be defined in the neighborhood
U(x0), or in the punctured neighborhood U0(x0) = U(x0) \ {x0} of the
point x0 = (x0

1, x
0
2).

Introduce the following sets:

A+
1 =

{
(x1, x2) ∈ U(x0) : x1 > x0

1

}
, A+

2 =
{
(x0

1, x2) ∈ U(x0) : x2 > x0
2

}
,

A−
1 =

{
(x1, x2) ∈ U(x0) : x1 < x0

1

}
, A−

2 =
{
(x0

1, x2) ∈ U(x0) : x2 < x0
2

}
,

A+
12 = A+

1 ∪A+
2 , A−

12 = A−
1 ∪A−

2 .
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Obviously, A+
12 ∩A−

12 = ∅ and

A+
12 ∪A−

12 = U0(x0). (1)

Hence the punctured neighborhood is represented as a union of two
nonintersecting sets, and the limit with respect to each of them will be
called respectively the strong +limit and the strong − limit, according to
the definitions given below.

1. Definition 9.1.1 ([8]). We say that the function f(x) has at the
point x0 the strong +limit, symbolically f(x0[+]), if there exists finite or
infinite of fixed sign limit

f(x0[+]) = lim
x→x0

x∈A+

12

f(x). (2)

The strong −limit

f(x0[−]) = lim
x→x0

x∈A−

12

f(x) (3)

is defined analogously.
If there exist f(x0[+]) and f(x0[−]), then we say that the function f(x)

has strong ±limits at the point x0.

Taking into account (1), the above reasoning allows us to arrive at

Proposition 9.1.1 ([8]). For the function f(x) to have the limit at
the point x0, it is necessary and sufficient that the ±limits for f(x) at x0 be
equal.

If these assumptions are fulfilled, we have

f(x0[−]) = lim
x→x0

f(x) = f(x0[+]). (4)

2. Definition 9.1.2 ([8]). The function f(x) is called strongly +con-
tinuous at the point f(x0), if f(x0) is finite and

f(x0[+]) = f(x0). (5)

Analogously, the function f(x) is called strongly −continuous at the
point x0, if f(x0) is finite and

f(x0[−]) = f(x0). (6)

The function f(x) is called strongly ±continuous at the point x0, if f(x)
at x0 is both strongly +continuous and strongly − continuous.

The following proposition is obvious.

Proposition 9.1.2 ([8]). For the function f(x) to be continuous at
the point x0, it is necessary and sufficient that f(x) be strongly ±continuous
at the point x0.
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9.2. Strong Jump

1. Definition 9.2.1 ([8]). If f(x0[−]) and f(x0[+]) are finite for the
function f(x), then we call

Ω(f, x0) =
∣∣f(x0[+]) − f(x0[−])

∣∣ (1)

a strong jump of the function f(x) at the point x0, and x0 is called a point
of a finite strong jump of f(x).

The following proposition is obvious.

Proposition 9.2.1 ([8]). For the function f(x) to have finite limit at
the point x0, it is necessary and sufficient that

Ω(f, x0) = 0 (2)

and in case this equality is fulfilled, we shall have

f(x0[−]) = lim
x→x0

f(x) = f(x0[+]). (3)

2. If x0 is the point of discontinuity of the function f(x), i.e., f(x)
is not continuous at x0 and equality (2) holds, then x0 is called strongly
removable point of discontinuity of the function f(x): if the limit

lim
x→x0

f(x),

being finite and equal to the strong ±limits of f(x) at x0 is taken as the
value of the function f at the point x0, then as a result of such correction
the newly obtained function will be continuous at the point x0.

This procedure is called strong correction for continuity of the function
f at the point x0, and the point x0 itself is called strongly correctable point
of discontinuity of the function f(x).

If there exist finite f(x0[−]) and f(x0[+]), but f(x0[−]) 6= f(x0[+]), or
what is the same thing, there is a bilateral inequality

0 < Ω(f, x0) < +∞, (4)

then x0 is called the point of strongly first kind discontinuity of the function
f(x).

If there does not exist at least one of f(x0[−]) and f(x0[+]), or there
exist both, but at least one of them is infinite with a fixed sign, then x0 is
called the point of strongly second kind discontinuity of the function f(x).

9.3. Angular Limit and Angular Continuity

In subsection 9.1 we have considered strong unilateral ±limits and ±con-
tinuities. Our consideration was based on such partitioning of the neigh-
borhood of the point, which was dictated by the notion of separately strong
partial continuity.

Moreover, the continuity is likewise equivalent to separately angular
partial continuity (see subsection 5.2). This allows us to introduce angular



46 O. Dzagnidze

limit, angular continuity and unilateral angular limit, unilateral angular
continuity.

Let the function ϕ(x), x = (x1, x2), be defined in the neighborhood of
the point x0 = (x0

1, x
0
2).

1. We start with introducing the notion of an angular limit with re-
spect to the given variable.

Definition 9.3.1 ([8]). We say that the function ϕ(x) at the point x0

has angular limit with respect to the variable x1, symbolically ϕ(x0 ∧ (x1)),
if for every constant c > 0 there exists an independent of c finite or infinite
limit

ϕ(x0 ∧ (x1)) = lim
h1→0

|h2|≤c|h1|

ϕ(x0
1 + h1, x

0
2 + h2). (1)

Similarly, the function ϕ(x) at the point x0 has angular limit with
respect to the variable x2, if for every constant ℓ > 0 there exists an inde-
pendent of ℓ finite or infinite limit

ϕ(x0 ∧ (x2)) = lim
h2→0

|h1|≤ℓ|h2|

ϕ(x0
1 + h1, x

0
2 + h2). (2)

If ϕ(x0 ∧ (x1)) and ϕ(x0 ∧ (x2)) do exist, we say that the function ϕ(x)
has separated angular limits at the point x0.

Theorem 9.3.1 ([8]). The function ϕ(x) will possess the limit at the
point x0, iff at the point x0 there exist equal separated angular limits for
ϕ(x). If these conditions are fulfilled, we shall have

ϕ(x0 ∧ (x1)) = lim
x→x0

ϕ(x) = ϕ(x0 ∧ (x2)). (3)

Proof. The existence for the function ϕ(x) of the limit at the point x0

implies the existence of the same limit for the function ϕ(x) at the point
x0 with respect to every subset with limiting point at x0. In particular, as
such are the sets under the limit sign, indicated in equalities (1) and (2).
Therefore lim

x→x0
ϕ(x) is equal to each of the limits (1) and (2).

If ϕ(x0 ∧ (x1)) = ϕ(x0 ∧ (x2)), then the function ϕ(x) at the point
x0 has equal limits with respect to those two subsets, which correspond to
particular cases c = 1 and ℓ = 1. But union of the two subsets gives the
neighborhood of the point x0. �

The process of proving Theorem 9.3.1 and Proposition 9.1.1 leads us to
the following

Theorem 9.3.2. The existence for the function ϕ(x), x = (x1, x2), of
the limit at the point x0 = (x0

1, x
0
2) is equivalent to each of the following two

statements:
1) the function ϕ(x) at the point x0 has equal strong ±limits;
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2) the right-hand sides of equalities (1) and (2) are equal for particular
cases c = 1 and ℓ = 1.

The limit lim
x→x0

ϕ(x) is equal to each value from statements 1) and 2).

2. Below we shall introduce the notion of an angular continuity with
respect to the given variable. This notion differs from that adopted by us for
angular partial continuity with respect to the same variable (see equalities
5.2.(1) and 5.2.(2)).

The matter is that the angular partial continuity was introduced due
to the specific difference. The subtrahend of that difference is obtained
by substitution of a partial value of the given variable into the function.
Moreover, the minuend of the same difference is value of the function at the
point inside the angle, while the subtrahend is value of the function at the
point not belonging to the given angle.

Here we shall give the notion of angular continuity with respect to the
given variable. This notion involves values of the function only at those
points, which belong to the angle which corresponds to the given variable.

Definition 9.3.2 ([8]). Angular continuity with respect to the variable
x1 of the function ϕ(x) at the point x0 means that ϕ(x0) is finite and

ϕ
(
x0 ∧ (x1)

)
= ϕ(x0). (4)

Similarly, angular continuity with respect to the variable x2 of the func-
tion ϕ(x) at the point x0 means that ϕ(x0) is finite and

ϕ
(
x0 ∧ (x2)

)
= ϕ(x0). (5)

The function ϕ(x) is separately angular continuous at the point x0, if
ϕ(x) at x0 is angular continuous with respect to the variables x1 and x2

(separately angular partial continuity took place in subsection 5.2).

Theorem 9.3.3 ([8]). For the function ϕ(x) to be continuous at the
point x0, it is necessary and sufficient that ϕ(x) be separately angular con-
tinuous at x0.

Proof. If the function ϕ(x) is continuous at the point x0, then ϕ(x0) is finite
and lim

x→x0
ϕ(x) = ϕ(x0). Limits (1) and (2) are the particular cases of the

left-hand side of that equality, and therefore

ϕ
(
x0 ∧ (x1)

)
= ϕ(x0) = ϕ

(
x0 ∧ (x2)

)
.

Hence the function ϕ(x) is separately angular continuous at the point x0.
Conversely, if each of the limits (1) and (2) is equal to the finite ϕ(x0),

then to this ϕ(x0) are equal limits (1) and (2) for the cases c = 1 and ℓ = 1.
Union of these sets gives the neighborhood of the point x0. Hence the limit
of the function ϕ(x) at the point x0 is equal to the finite ϕ(x0), i.e., ϕ(x) is
continuous at the point x0. �

From Theorems 9.3.3, 5.1.1, 5.2.1 and Proposition 9.1.2 follows
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Theorem 9.3.4. The continuity of the function ϕ(x) at the point x0

is equivalent to:
1) separately angular continuity of the function ϕ(x) at the point x0;
2) separately strong partial continuity of the functionϕ(x) at the point x0;
3) separately angular partial continuity of the function ϕ(x) at the point

x0;
4) strong ±continuity of the function ϕ(x) at the point x0.

9.4. Angular Unilateral Limit and Continuity

Angular ±limits at the point x0 of the function ϕ(x) with respect to

x1, symbolically ϕ(x0
∧
+ (x1)) and ϕ(x0

∧
− (x1)) respectively, will be defined

below by means of equalities (1) and (2), in case these limits exist and do
not depend on the constants a > 0 and b > 0:

ϕ(x0
∧
+ (x1)) = lim

h1→0+

|h2|≤ah1

ϕ(x0
1 + h1, x

0
2 + h2), (1)

ϕ(x0
∧
− (x1)) = lim

h1→0−

|h2|≤−bh1

ϕ(x0
1 + h1, x

0
2 + h2) (2)

Angular ±limits at the point x0 of the function ϕ(x) with respect to the
variable x2 can be defined by equalities (3) and (4) under similar assump-
tions on c > 0 and d > 0:

ϕ(x0
∧
+ (x2)) = lim

h2→0+

h2≥c|h1|

ϕ(x0
1 + h1, x

0
2 + h2), (3)

ϕ(x0
∧
− (x2)) = lim

h2→0−

h2≤−d|h1|

ϕ(x0
1 + h1, x

0
2 + h2). (4)

We have the following

Proposition 9.4.1 ([8]). The function ϕ(x) has angular limit with
respect to the variable x1 at the point x0, iff there exist equal quantities

ϕ(x0
∧
− (x1)) and ϕ(x0

∧
+ (x1)). In this case we have the following relations:

ϕ(x0
∧
− (x1)) = ϕ(x0 ∧ (x1)) = ϕ(x0

∧
+ (x1)). (5)

Analogous proposition is, obviously, valid for the variable x2 as well.
From Theorem 9.3.1 and propositions above we arrive at the following

Corollary 9.4.1 ([8]). The function ϕ(x) has at the point x0 the limit,
iff the quantities defined by equalities (1)–(4) exist and all are equal between
each other. In case these conditions are fulfilled, their common value is
equal to lim

x→x0
ϕ(x).
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Definition 9.4.1. The function ϕ with respect to the variable x1 is
angular +continuous at the point x0, if ϕ(x0) is finite and the equality

ϕ
(
x0

∧
+ (x1)

)
= ϕ(x0)

is fulfilled.

Similarly, ϕ(x) with respect to x1 is angular −continuous at the point
x0, if ϕ(x0) is finite and

ϕ
(
x0

∧
− (x1)

)
= ϕ(x0).

Finally, the function ϕ(x) with respect to the variable x1 is angular
±continuous at the point x0, if ϕ(x) at x0 is angular +continuous and an-
gular −continuous with respect to the variable x1.

We have the following

Proposition 9.4.2. The function ϕ(x) at the point x0 is angular con-
tinuous with respect to the variable x1, iff ϕ(x) at x0 is angular ±continuous
with respect to x1.

Analogously we define angular +continuity, −continuity and ±continuity
at the point x0 of the function ϕ(x) with respect to the variable x2.

From Theorem 9.3.2 we arrive at

Theorem 9.4.1. For the function ϕ(x) to be continuous at the point
x0, it is necessary and sufficient that ϕ(x) be angular ±continuous with
respect both to x1 and to x2.

9.5. Angular Jump

Definition 9.5.1 ([8]). If the function ϕ has finite ϕ(x0 ∧ (x1)) and
ϕ(x0 ∧ (x2)), then the value

ω(ϕ, x0) =
∣∣ϕ

(
x0 ∧ (x1)

)
− ϕ

(
x0 ∧ (x2)

)∣∣ (1)

is called angular jump of the function ϕ(x) at the point x0.

The following proposition holds.

Proposition 9.5.1 ([8]). The equality

ω(ϕ, x0) = 0 (2)

is the necessary and sufficient condition for the function ϕ(x) to have finite
limit at the point x0. If equality (2) is fulfilled, then the common value
ϕ(x0 ∧ (x1) = ϕ(x0 ∧ (x2) is the limit of the function ϕ(x) at the point x0.

Here, as above, we can introduce the notions of: angularly removable
point of discontinuity of the function ϕ(x), angular correction for continuity
of the function ϕ(x) at the point x0, angular correctable point of discon-
tinuity of the function ϕ(x), angular first kind discontinuity point of the
function ϕ(x), angular second kind discontinuity point of the function ϕ(x).
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9.6. Equivalence of Strong and Angular Corrections

Proposition 9.6.1 ([8]). If the function f(x) admits strong correction
for the continuity at the point x0, then f(x) likewise admits angular cor-
rection for the continuity at the point x0. The converse statement is also
valid.

Proof. Since f(x) admits strong correction for continuity at the point x0,
equality 9.2.(2) is fulfilled. This implies the existence of the finite limit of the
function f(x) at the point x0, by Proposition 9.2.1, and hence the fulfilment
of equality 9.5.(2), by Proposition 9.5.1. Therefore angular correction of the
function f(x) for its continuity at the point x0 is quite possible.

Converse statement can be established in a similar way. �

The above proposition allows us to come to an agreement that the
function f(x) is called correctable for continuity at the point x0, if f(x)
admits strong or angular correction for continuity at the point x0.

Finally, if the function f(x) at the point x0 has noncorrectable, or what
is the same thing, unremovable discontinuity, then x0 is called the point of
essential discontinuity of the function f(x), and the function itself is called
essentially discontinuous at the point x0.



CHAPTER II

Separately Partial Differentiability in Various

Senses and Differentiability

The main goal of the present chapter is to resolve the problem on the
existence at a point of a total differential.

Regarding a separate independent variable there arises the question:
does there exist a notion, or a property at the point x0 for the function f
of several variables, such that the fulfilment of that property at the point
x0 with respect to all independent variables is the necessary and sufficient
condition for the function f to be differentiable at the point x0?

Introduction

The notion of a derivative of functions of one variable can be extended
automatically to functions of several variables, and we obtain the notion of
a partial derivative with respect to the given variable.

The existence of all finite at the point x0 partial derivatives of the
function f , or what is the same thing, the finiteness at the point x0 of
a gradient of f does not imply the existence at the point x0 of a total
differential of the function f . Moreover, the function, possessing a finite
gradient at the point x0, may be discontinuous at x0. Such, for example,
are at the point (0, 0) the most of the functions of two variables indicated
in Piotrowski’s work [19].

It is remarkable that this fact can be realized at all points of a set, whose
plane measure is arbitrarily close to a total measure. Due to its significance,
this fact, stated by Tolstov, can be formulated in the form of

Theorem B ([27], § 4). For every positive number µ < 1 there
exists the function F (x, y), defined on the square Q = {(x, y) ∈ R2 : 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}, possessing at all points of the Q finite partial derivatives
of all orders, and moreover F (x, y) is discontinuous on some set E ⊂ Q of
plane measure µ2.

In particular, the gradF (x, y) of the Tolstov’s function F (x, y) is finite
in neighborhoods of many points (from the set E), but F (x, y) fails to have a

51
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total differential at these points. The function (see equality 2.4.(12) below)

ψ(x, y) =






x2y

x2 + y2
for x2 + y2 > 0

0 for x = 0 = y
,

is the realization of that fact at one point.
Further, the function may be differentiable at some point (x0, y0), and

moreover, in every punctured neighborhood of the point (x0, y0) there exist
points at which its gradient is devoid of sense. Hence its gradient is not
continuous at (x0, y0). For the point (0, 0) such is the function (see equality
2.4.(10) below)

g(x, y) =





xy sin

1

xy
for x · y 6= 0

0 for x · y = 0
.

Moreover, differentiable at the point x0 function may be disconontinuous
at all points of the punctured neighborhood of x0 (see equalities 2.4.(5),
2.4.(7) and 2.4.(9) below).

It is well known for a long time that the continuity of the grad f(x)
at the point x0 = (x0

1, . . . , x
0
n) is the sufficient condition for the function

f(x1, . . . , xn) to be differentiable at the point x0. The above-mentioned
functions confirm that the continuity of the gradient is only the sufficient
condition for the differentiability.

The content of Chapter II is presented by sections.
§ 1 is devoted to the well-known elementary statements.
In § 2 we introduce the notion of an angular gradient of the function

f at the point x0 and the main results sounds as follows: the finiteness of
the angular gradient of the function f at the point x0 is the necessary and
sufficient condition for the function f to have a total differential at the point
x0.

Some examples of functions for their differentiability are considered
herein.

In § 3 we likewise introduce a new notion of a strong gradient of the
function f at the point x0, whose finiteness implies the differentiability of
the function f at the point x0. The converse statement may turn out to be
invalid almost everywhere.

It is proved that the continuity of the gradient at a point implies the
finiteness of a strong gradient at the same point. Falsity of the converse
statement is realizable almost everywhere.

§ 4 illustrates that the notions of strong and angular partial derivatives
allow one to consider the corresponding unilateral partial derivatives and
differentials for functions of two variables.

§ 5 shows that the necessary and sufficient conditions for the differentia-
bility of functions of two real variables (see Theorem 2.5.3 below) together
with the Cauchy–Riemann condition allow us to formulate in the form of
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one equation

Dx̂F (z0) + iDŷF (z0) = 0

the necessary and sufficient condition for the complex function F (z) of the
complex variable z = x+iy to have at the point z0 = x0+iy0 finite derivative
F ′(z0).

§ 1. Differentiability and Separately Partial Differentiability

1.1. Partial Derivative and Separately Partial Differentiability

Let the finite function u = f(x), x = (x1, . . . , xn) ∈ Rn, be defined
in the neighborhood U(x0) of the point x0 = (x0

1, . . . , x
0
n) ∈ Rn. Here we

use the functions of one variable if(xi) = f(x0(xi)), i = 1, . . . , n, which are
connected with f(x) (see I, 1.3). If if(xi), or what is the same, f(x0(xi)) has
at the point x0

i ∈ R a derivative (if(xi))
′(x0

i ), respectively (f(x0(xi)))
′(x0

i ),
which is finite or infinite of fixed sign (i.e., +∞ or −∞), then this derivative
is called a partial derivative at the point x0 of the function f with respect
to the variable xi. We denote it symbolically f ′

xi
(x0), ∂xi

f(x0), ∂f
∂xi

(x0).

Hence

f ′
xi

(x0) = lim
xi→x0

i

f(x0(xi)) − f(x0)

xi − x0
i

= lim
xi→x0

i

if(xi) − f(x0)

xi − x0
i

. (1)

It is easily seen that in order to find a partial derivative with respect to
the variable xi at the point x0 = (x0

1, . . . , x
0
n) for the function f(x1, . . . , xn)

it is necessary to replace xj in f(x1, . . . , xn) by x0
j for all j 6= i. As a result

we obtain the function of one variable xi, and its derivative at x0
i is given

by equality (1).
If for all i = 1, . . . , n there exist f ′

xi
(x0), finite or infinite, then we

consider the gradient at the point x0 of the function f(x), which is defined
by the equality

gradf(x0) =
(
f ′

x1
(x0), . . . , f ′

xn
(x0)

)
. (2)

If all f ′
xk

(x0) are finite, k = 1, . . . , n, then the function f(x) is called

separately partial differentiable at the point x0, what is equivalent to the
finiteness of the gradf(x0). In case f ′

xi
(x0) is finite, we denote the quantity

f ′
xi

(x0)dxi, dxi = xi − x0
i , by the symbol dxi

f(x0) and call it the partial

differential with respect to the variable xi at the point x0 = (x0
1, . . . , x

0
n) of

the function f(x1, . . . , xn).
Thus

dxi
f(x0) = f ′

xi
(x0) dxi. (3)

1.2. The Notion of the Differentiability

The notion of the differentiability of functions of two variables has taken
its complete shape on the junction of the XIX-XX centuries. The modern
definition of a total differential has been introduced by Stolz. The advantage
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of that definition is illustrated in the works due to Pierpont, Frechet and,
especially, to Young.

Definition 1.2.1. Let the function f(x), x = (x1, . . . , xn) be defined,
and finite in the neighborhood U(x0) of the point x0 = (x0

1, . . . , x
0
n). The

function f is called differentiable at the point x0, if there exists a collection
of finite numbers A = (A1, . . . , An) such that the ratio of the quantity

f(x) − f(x0) − (A, x− x0) (1)

to the positive quantity

‖x− x0‖ =
n∑

i=1

|xi − x0
i | (2)

tends to zero, as x→ x0, where it is assumed that

(A, x− x0) =

n∑

i=1

Ai · (xi − x0
i ). (3)

The above ratio is defined for all x 6= x0 and remains undefined for
x = x0.

For the notion of the differentiability it is very important to know the be-
havior of the above-mentioned ratio in the punctured neighborhood U0(x0)
of the point x0. Since this ratio has zero limit at the point x0, its value at
that point is assumed to be zero. This fact can be realized by introducing
in the neighborhood U(x0) the function

ωx0(x) =






f(x) − f(x0) − (A, x− x0

‖x− x0‖ for x 6= x0

0 for x = x0

. (4)

Using the function ωx0 , the notion of the differentiability of the function
f at the point x0 will take the following form.

Definition 1.2.2. The function f is called differentiable at the point
x0, if there exist a collection of finite numbers A = (a1, . . . , An) and a
function ωx0 such that for every point x ∈ U(x0) the equality

f(x) = f(x0) + (A, x− x0) + ‖x− x0‖ · ωx0(x) (5)

holds, where the function ωx0 is continuous at the point x0 and equal to
zero at x0:

lim
x→x0

ωx0(x) = 0 = ωx0(x0). (6)

Equality (6) means that for any arbitrarily small positive number ε
there exists a positive number δ = δ(x0, ε, f) with the property

∣∣ωxo(x)
∣∣ < ε (7)
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for all x satisfying the condition ‖x − x0‖ < δ. Therefore equality (5), or
what is the same thing, differentiability of the function f at the point x0 is
equivalent to the fulfilment of the inequality

∣∣f(x) − f(x0) − (A, x− x0)
∣∣ < ε · ‖x− x0‖ (8)

for all x with the properties 0 < ‖x− x0‖ < δ and δ = δ(x0, ε, f) > 0.
In such a case, a total differential, or briefly, a differential at the point

x0 of the function f is called a linear mapping
n∑

i=1

Ai · (xi − x0
i ), (9)

which corresponds to the increments x1 − x0
1, . . . , xn − x0

n of independent
variables.

A total differential of the function f at the point x0 is denoted sym-
bolically df(x0, dx), or in short, df(x0), where dx = (dx1, . . . , dxn). Conse-
quently,

df(x0) =

n∑

i=1

Ai · dxi, (10)

where dxi stand for the increment xi−x0
i which need not be infinitely small.

In this case the point x0 is called the point of differentiability of the
function f(x), and df(x0) is sometimes called the first order differential at
the point x0 of the function f .

If the function φ(x) is differentiable at every point of some set E ⊂ Rn,
then φ(x) is called a differentiable function on the set E.

The expression “there exists df(x0)” is equivalent to that of “the func-
tion f(x) is differentiable at the point x0”.

Definition 1.2.3. The function f(x1, . . . , xn) is called continuously
differentiable at the point x0 = (x0

1, . . . , x
0
n), if the function

grad f(x) =
(
f ′

x1
(x), . . . , f ′

xn
(x)

)
, x = (x1, . . . , xn), (11)

is finite in the neighborhood U(x0) and continuous at the point x0, i.e., if the
first order partial derivatives f ′

xj
(x), j = 1, . . . , n, are continuous functions

at the point x0.

1.3. Elementary Properties of Differentiable Functions

For our exposition to be more complete, we present here the proof of
the well-known statement.

Proposition 1.3.1. The differentiability of the function f at the point
x0 implies:

1) the existence and finiteness of all partial derivatives f ′
xi

(x0) and of
the equality

Ai = f ′
xi

(x0), i = 1, . . . , n; (1)

2) the finiteness at the point x0 of the grad f(x0);
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3) separately partial differentiability of the function f at the point x0;
4) the equality

df(x0) =

n∑

i=1

f ′
xi

(x0) dxi. (2)

Proof. All xj but xi in equality 1.2.(5) are replaced by their partial values
x0

j , j 6= i. Thus we obtain the equality

f
(
x0(xi)

)
= f(x0) +Ai · (xi − x0

i ) + |xi − x0
i | · ωx0

(
x0(xi)

)
. (3)

Using a partial increment, the latter will take the form (see I, equality
1.3.(8))

∆x0
i
f(x) = Ai · (xi − x0

i ) + (xi − x0
i ) ·

|xi − x0
i |

xi − x0
i

· ωx0

(
x0(xi)

)
. (4)

Here we introduce an auxiliary function

ωi
x0(xi) =

|xi − x0
i |

xi − x0
i

· ωx0

(
x0(xi)

)
, xi 6= x0

i . (5)

Since the function |xi − x0
i |/(xi − x0

i ) of the variable xi is bounded in the
punctured neighborhood of the point x0

i , and the left-hand side of relation
1.2.(6) is likewise valid for the partial value x = x0(xi), from (5) we obtain
the equality

lim
xi→x0

i

ωi
x0(xi) = 0 (6)

and (4) takes the form

∆x0
i
f(x) = Ai · (xi − x0

i ) + (xi − x0
i ) · ωi

x0(xi). (7)

The last two equalities imply that the function f(x0(xi)) has a deriva-
tive at the point x0

i , and the equality (f(x0(xi)))
′(x0

i ) = Ai holds.
Since the function f(x) is differentiable at the point x0, all numbers

Ai are finite. Hence there exist finite partial derivatives f ′
xi

(x0) = Ai, i =
1, . . . , n. This in its turn means that the function f(x) is, by the definition,
separately partial differentiable at the point x0, and the grad f(x0) is finite.
Thus according to equality 1.2.(10) we obtain equality (2). �

For df(x0) we have the following well-known

Proposition 1.3.2. 1) The df(x0) is linear function of differentials of
independent variables dxi, i = 1, . . . , n;

2) the df(x0) is the sum of partial dxi
f(x0) differentials

df(x0) =

n∑

i=1

dxi
f(x0); (8)

3) the increment ∆x0f(x) = f(x)−f(x0) for the function f at the point
x0 admits the representation

∆x0f(x) = df(x0) + ‖x− x0‖ · o(1), (9)
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where o(1) denotes an infinitesimal at the point x0 function ωx0(x) satisfying
condition 1.2.(6).

The summand df(x0) in the right-hand side of equality (9) is called a
principal part of the increment ∆x0f(x) of the function f at the point x0,
which is equipped with the property

lim
x→x0

df(x0) = 0 (10)

(due to the fact that all dxi → 0 as x→ x0).
For the second summand from equality (9) the equality

lim
x→x0

‖x− x0‖ · o(1) = 0 (11)

is obvious.
From the last two equalities we obtain the equality

lim
x→x0

∆x0f(x) = 0, (12)

which means that the function f is continuous at the point x0.
This fact can be formulated in the form of the following

Proposition 1.3.3. If x0 is the point of differentiability of the function
f , then f is continuous at x0.

This proposition is likewise evident from the relations
∣∣f(x) − f(x0)

∣∣ ≤
∣∣f(x) − f(x0) − (A, x− x0)

∣∣ +
∣∣(A, x− x0)

∣∣ <
< ε‖x− x0‖ + ‖x− x0‖ · max

1≤i≤n

∣∣f ′
xi

(x0)
∣∣.

If along with 1.1.(2) we introduce the vector dx = (dx1, . . . , dxn), then
equality (2) can be written in the form of the scalar product

df(x0) =
(
gradf(x0), dx

)
. (13)

Proposition 1.3.4. Let the function f(x), x = (x1, . . . , xn) be differ-
entiable at the point x0 = (x0

1, . . . , x
0
n). We take arbitrary natural number

m > n and define for x ∈ U(x0) and (xn+1, . . . , xm) ∈ Rm−n the function
F by the equality

F (x1, . . . , xn, xn+1, . . . , xm) = f(x1, . . . , xn). (14)

Then the function F (x), where x = (x1, . . . , xn, xn+1, . . . , xm), is differen-
tiable at the point x0 = (x0

1, . . . , x
0
n, x

0
n+1, . . . , x

0
m), no matter how the point

(x0
n+1, . . . , x

0
m) is, and the equality

dF (x0)(dx1, . . . , dxm) = df(x0)(dx1, . . . , dxn). (15)

takes place.

Proof. The property appearing in inequality 1.2.(8) can now be written as

∣∣∣f(x) − f(x0) −
n∑

i=1

f ′
xi

(x0) · (xi − x0
i )

∣∣∣ < ε‖x− x0‖ (16)
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for all x with the properties 0 < |xk − x0
k| < δ/m, k = 1, . . . , n.

As far as the function F is constant with respect to the variables
xn+1, . . . , xm, F ′

xj
(x0) = 0 for j = n+1, . . . ,m. On the other hand, it is ob-

vious that ‖x−x0‖ < ‖x−x0‖ for any system |xn+1−x0
n+1|, . . . , |xm−x0

m|.
In particular, take |xj − x0

j | < δ/m, j = n+ 1, . . . ,m. Thus we have

∣∣∣F (x) − F (x0) −
m∑

k=1

(xk − x0
k) · F ′

xk
(x0)

∣∣∣ < ε‖x− x0‖ (17)

under 0 < ‖x− x0‖ =
m∑

k=1

|xk − x0
k| < m · δ/m = δ.

Hence the function F is differentiable at the point x0, and

dF (x0)(dx1, . . . , dxm) =

=

m∑

k=1

F ′
xk

(x0)dxk =

n∑

k=1

f ′
xk

(x0)dxk = df(x0)(dx1, . . . , dxn). �

Corollary 1.3.1. Let the functions a(x1) and b(x2) have finite deriva-
tives a′(x0

1) and b′(x0
2) at the points x0

1 and x0
2, respectively. Then the func-

tions ϕ(x1, x2) = a(x1) + b(x2), ψ(x1, x2) = a(x1) · b(x2) and ω(x1, x2) =
a(x1)/b(x2) (if b(x2) 6= 0 in the neighborhood of the point x0

2) have total
differentials at the point (x0

1, x
0
2), and the equalities

dϕ(x0
1, x

0
2) = a′(x0

1)dx1 + b′(x0
2)dx2, (18)

dψ(x0
1, x

0
2) = a′(x0

1) · b(x0
2)dx1 + b′(x0

2) · a(x0
1)dx2, (19)

dω(x0
1, x

0
2) =

1

b2(x0
2)

[
a′(x0

1)b(x
0
2)dx1 − b′(x0

2)a(x
0
1)dx2

]
. (20)

are valid.

Proof. The function a(x1), being as the function of two variables (x1, x2),
is differentiable at all points (x0

1, x2), by Proposition 1.3.3. Analogously,
the function b(x2) has the total differential at all points (x1, x

0
2). The both

functions a(x1) and b(x2), being the functions of two variables, have total
differentials at the point (x0

1, x
0
2). Next, we use the well-known formulas:

d(u± v) = du ± dv,

d(uv) = udv + vdu, (21)

d
(u
v

)
=

1

v2

[
vdu − udv

]
, v 6= 0. �

Remark 1.3.1. 1) We know from Proposition 1.3.1 that the differ-
entiability of the function f at the point x0 implies the finiteness of the
expression

n∑

i=1

f ′
xi

(x0) dxi =
(
gradf(x0), dx

)
. (22)
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The converse statement is invalid because from the finiteness of (22)
we cannot conclude that (22) is the differential of the function f at the
point x0 for a very simple reason that f need not be differentiable and even
continuous at the point x0 ( see Introduction in Chapter II).

2) The differentiability is defined by means of the norm 1.2.(2). We
have made such a choice for a very simple reason that different estimations
can be easily performed by using this norm, and moreover, the notion of the
differentiability does not depend on the norms 1.1.(1)–1.1.(3) from Chap-
ter I. This follows from the fact that the ratio of each of the above-mentioned
norms to another norm is bounded below by an absolute or dependent only
of the dimension n of the space Rn a positive constant (see estimates 1.1.(4)–
1.1.(6) of Chapter I).

3) For the function of one variable λ(t), the existence at the point t0 of
a finite derivative λ′(t0) implies that the equality

lim
t→t0

λ(t) − λ(t0) − (t− t0) · λ′(t0)
t− t0

= 0. (23)

is fulfilled.
For the same function λ(t), the notion of the differentiability 1.2.1 at the

point t0 implies the fulfilment of the equality (in fact, for the function of one
variable the differentiability is equivalent to the finiteness of its derivative)

lim
t→t0

λ(t) − λ(t0) − (t− t0) · λ′(t0)
|t− t0|

= 0. (24)

The last two equalities are equivalent.
Indeed, if t > t0, then equalities (23) and (24) coincide. If t < t0, then

the denominator in equality (24) is |t− t0| = −(t− t0), and these equalities
are again coincide because −0 = 0.

4) It is evident that the results established for real-valued functions
u = f(x), x ∈ R

n, u ∈ R are extended to vector-valued functions u =
(u1, . . . , um), u ∈ Rm, if every function uj = uj(x1, . . . , xn) has the needed
properties, j = 1, . . . , n.

1.4. The Differentiability with Respect to a Subcollection of
Variables

As is known, the existence with respect to xi of the partial differential
dxi

f(x0) at the point x0 = (x0
1, . . . , x

0
n) for the function f(x1, . . . , xn) is

equivalent to the existence at the point x0 of a finite partial derivative
f ′

xi
(x0) with respect to the same variable xi.
This situation can be widened, if we consider the problem on the exis-

tence at the point x0 of a differential of the function f with respect to ar-
bitrary subcollection of variables from the principal collection (x1, . . . , xn).

To avoid formal complications, we will consider the existence at the
point x0 of a differential of the function f with respect to the subcollection
(x2, . . . , xn).
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To this end, we have in f(x1, . . . , xn) to replace x1 by x0
1 and then to

consider the new function φ(x2, . . . , xn) = f(x0
1, x2, . . . , xn).

Definition 1.4.1. If the differential at the point (x0
2, . . . , x

0
n) of the

function φ(x2, . . . , xn) exists, then we say that the function f(x1, . . . , xn)
with respect to the subcollection (x2, . . . , xn) has the differential at the
point x0.

It can be easily seen that statement 1) in Proposition 1.3.1 admits the
following generalization.

Proposition 1.4.1. If the function f(x1, . . . , xn) is differentiable at
the point x0 = (x0

1, . . . , x
0
n), then the function f with respect to every sub-

collection from the collection (x1, . . . , xn) is differentiable at x0.

The converse statement is invalid. This is understood in a sense that
the differentiability at the point x0 does not follow from the differentiability
at the point x0 with respect to every subcollection consisting of a lesser
number of independent variables than the principal collection. This is seen
by an example of the function

ϕ(x, y) =

{
1 for x · y 6= 0

0 for x · y = 0
. (1)

This function is discontinuous and, the more so, non-differentiable at the
point (0, 0), although the function ϕ(x, y) has zero partial derivatives at the
point (0, 0).

The sufficient conditions allowing one to conversing Proposition 1.4.1,
will be given in Theorem 3.4.1.

§ 2. Differentiability is Equivalent the Finiteness of an Angular
Gradient

Before proving the basic theorem on the necessary and sufficient condi-
tion for the differentiation, we will cite some definitions.

Let the function f(x), x = (x1, . . . , xn) ∈ Rn, be defined and finite in
the neighborhood U(x0) of the point x0 = (x0

1, . . . , x
0
n) ∈ Rn.

2.1. Angular Partial Derivative and Angular Gradient

Definition 2.1.1 ([2], [5]). We say that the function f has at the point
x0 an angular partial derivative with respect to the variable xk, symbolically
f ′

x̂k
(x0), if for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive

n − 1 constants there exists an independent of the c finite or infinite (of
fixed sign) limit

f ′
x̂k

(x0) = lim
xk→x0

k

∆c
x̂0

k

f(x)

xk − x0
k

, (1)
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where (see I, equality 3.1.(1))

∆c
x̂0

k
f(x) = f(x) − f

(
x(x0

k)
)

for |xj − x0
j | ≤ cj |xk − x0

k|, j 6= k. (2)

Relations (1) and (2) can be written in short as follows:

f ′
x̂k

(x0) = lim
xk→x0

k

|xj−x0
j |≤cj |xk−x0

k|

j 6=k

f(x) − f(x(x0
k))

xk − x0
k

. (3)

If the angular partial derivative f ′
x̂k

(x0) is finite, then equality (3) means
that for every arbitrarily small number ε > 0 and for every collection of
positive constants c = (c1, . . . , ck−1, ck+1, . . . , cn) there exists a number δ =
δ(x0, ε, c, f) such that

∣∣∣
f(x) − f(x(x0

k))

xk − x0
k

− f ′
x̂k

(x0)
∣∣∣ < ε (4)

for all x’s with the properties 0 < ‖x− x0‖ < δ and |xj − x0
j | ≤ cj |xk − x0

k|
for all j 6= k.

The existence of f ′
x̂k

(x0) implies existence of the partial derivative

f ′
xk

(x0), and the equality f ′
x̂k

(x0) = f ′
xk

(x0). To show this, we have to

put in (3) xj = x0
j for all j 6= k.

The existence of the angular partial derivative does not, in general,
follow from existence of the partial derivative. Indeed, the function ϕ(x1, x2)
defined by equality 1.4.(1) has finite partial derivatives at the point O =
(0, 0) and has no angular partial derivatives at O. In fact, the absence at O
of an angular partial derivative with respect to the variable x1 follows from
that the ratio in equality (3) for ϕ(x1, x2) has the form ϕ(x1, x2)/x1, which
has no limit at O, if the conditions mentioned in (3) are satisfied (this ratio
along the Ox1 axis has the form 0/x1 = 0, while along the line x2 = x1 it
has the form 1/x1, 0 6= x1 → 0).

If f ′
x̂k

(x0) is finite, then the function f(x) with respect to the variable xk

has the property of angular partial continuity at the point x0 (see Chapter I,
Section 3.1).

Arbitrary finite function a(x1) of one variable can be considered as
a function of several variables ψ(x1, . . . , xn), which is equal to a(x1) for
arbitrary x1, . . . , xn. Therefore the derivative a′(x0

1), if it is, coincides with
ψ′

x̂1
(x0

1, x2, . . . , xn) for arbitrary x2, . . . , xn.

Definition 2.1.2 ([2], [5]). If there exist f ′
x̂k

(x0), k = 1, . . . , n, finite

or infinite (of fixed signs), then we call f(x) the function possessing an
angular gradient at the point x0 and write

ang grad f(x0) =
(
f ′

x̂1
(x0), . . . , f ′

x̂n
(x0)

)
. (5)

Definition 2.1.3. We say that the function f(x) with respect to the
variable xk has the property of angular partial differentiability at the point
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x0, if f ′
x̂k

(x0) is finite and we write

dx̂k
f(x0) = f ′

x̂k
(x0) dxk. (6)

Moreover, dx̂k
f(x0) is called an angular partial differential with respect

to the variable xk of the function f(x) at the point x0.

Definition 2.1.4 [2], [5]. The function f has at the point x0 the
property of separately angular partial differentiability, if f ′

x̂k
(x0) are finite

for all k = 1, . . . , n, and this means that ang gradf(x0) is finite.

2.2. The First Basic Theorem on the Differentiability

Theorem 2.2.1 ([2], [5]). For the function f(x) to be differentiable at
the point x0, it is necessary and sufficient that ang grad f(x0) is finite, i.e.,
it is necessary and sufficient that the function f(x) is separately angular
partial differentiable at the point x0.

Proof. The necessity. Suppose that the function f(x) is differentiable at
the point x0 and establish that f ′

x̂k
(x0) is finite for all k = 1, . . . , n.

We write the identity

f(x) − f
(
x(x0

k)
)
− (xk − x0

k)f ′
xk

(x0) =
[
f(x) − f(x0)

]
−

−
n∑

j=1

(xj − x0
j )f

′
xj

(x0) −
[
f
(
x(x0

k)
)
− f(x0) −

∑

j 6=k

(xj − x0
j )f

′
xj

(x0)
]
. (1)

Suppose we have an arbitrary positive number ε and a collection c =
(c1, . . . , ck−1, ck+1, . . . , cn) of positive constants. Since the function f(x) is
differentiable at the point x0, then for ε∗ = ε/4(1 +

∑
j 6=k

cj) there exists a

number δ = δ(x0, c, ε, f) > 0 such that an absolute value in the right-hand
side of identity (1) will be, by estimate 1.2.(8), smaller than the value

ε∗
n∑

j=1

|xj − x0
j | + ε∗

∑

j 6=k

|xj − x0
j | ≤ 2ε∗

n∑

j=1

|xj − x0
j | =

= 2ε∗
(
|xk − x0

k| +
∑

j 6=k

|xj − x0
j |

)
(2)

for all x’s with the properties 0 < ‖x− x0‖ < δ.
If along with the condition 0 < ‖x− x0‖ < δ the point x = (x1, . . . , xn)

is subjected to the conditions |xj − x0
j | ≤ cj |xk − x0

k| for all j 6= k, then the
absolute value in the left-hand side of identity (1) will be, by virtue of (2),
smaller then the value

|xk − x0
k| · 2ε∗

(
1 +

∑

j 6=k

cj

)
=

1

2
ε|xk − x0

k| < ε|xk − x0
k|.

Hence inequality 2.1.(4) is fulfilled, and f ′
x̂k

(x0) = f ′
xk

(x0).
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Since the function f(x) is differentiable at the point x0, all partial
derivatives f ′

xk
(x0) are finite, k = 1, . . . , n.

Consequently, the function f possesses at the point x0 the property of
separately angular partial differentiability, or what is the same thing, the
ang gradf(x0) is finite.

Moreover, it is stated that the total differential df(x0) of the differen-
tiable at the point x0 function f admits the following two representations:

df(x0) =

n∑

k=1

f ′
x̂k

(x0) dxk, (3)

and

df(x0) =
n∑

k=1

dx̂k
f(x0). (4)

Sufficiency. Let the function f possesses at the point x0 the property
of separately angular partial differentiability, i.e., all f ′

x̂k
(x0) are finite, k =

1, . . . , n. Therefore limit 2.1.(3) is finite for all values of k and for arbitrary
collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants, in particular,
for cj = 1, j 6= k.

By Pk we denote a set of all points x = (x1, . . . , xn) ∈ Rn each of which
satisfies the conditions |xj −x0

j | ≤ |xk −x0
k| for all j 6= k. A set of all points

x ∈ Pk likewise satisfying the condition ‖x− x0‖ < η, η > 0, we denote by
P η

k . Thus the neighborhood U(x0, η) is the union of a finite number of sets
P η

k , k = 1, . . . , n.
Take arbitary number ε > 0. Since all f ′

x̂k
(x0) and all values k =

1, . . . , n are finite, there is a number δ = δ(x0, ε, f) > 0, suitable for all
values k = 1, . . . , n, such that the inequality

∣∣f(x) − f
(
x(x0

k)
)
− (xk − x0

k) · f ′
x̂k

(x0)
∣∣ < ε|xk − x0

k| (5)

will be satisfied by all points x ∈ P δ
k \ {x0}.

To establish that the function f is differentiable at the point x0, we have
to state that inequality 1.2.(8) in the punctured neighborhood U(x0, δ)\{x0}
is fulfilled. Towards this end, in its turn it is sufficient that inequality 1.2.(8)
be fulfilled for each of P δ

k \ {x0} separately, k = 1, . . . , n.
Without loss of generality, we may be satisfied with the proof of the

same inequality 1.2.(8) for one set, say for P δ
1 \ {x0}. Therefore in the

sequel we will assume that the point x, tending to the point x0, always
belongs to P δ

1 \ {x0}.
Since the point x belongs to P δ

1 \ {x0}, inequality (5) is fulfilled for
k = 1. Hence the inequality

∣∣f(x) − f
(
x(x0

1)
)
− (x1 − x0

1)f
′
x̂1

(x0)
∣∣ < ε|x1 − x0

1| (6)1

is fulfilled for all x with the properties 0 < ‖x − x0‖ < δ and |xj − x0
j | ≤

|x1 − x0
1| for all j = 2, . . . , n.
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The point x(x0
1) = (x0

1, x2, . . . , xn) appearing in the punctured neigh-
borhood U(x0, δ)\{x0} does not belong to the set P δ

1 \{x0}; it will belong∗

to some P δ
ℓ1
\ {x0} with ℓ1 6= 1. Therefore again, by virtue of inequality (5)

for k = ℓ1, the inequality
∣∣f

(
x(x0

1)
)
− f

(
x(x0

1, x
0
ℓ1)

)
− (xℓ1 − x0

ℓ1)f
′
x̂ℓ1

(x0)
∣∣ <

< ε|xℓ1 − x0
ℓ1 |, (6)ℓ1

will be fulfilled, where x(x0
1, x

0
ℓ1

) denotes that point (x0
1, · · · ) whose ℓ1-th

coordinate is equal to x0
ℓ1

(see I, notation 2.3.(1)).

Now the point x(x0
1, x

0
ℓ1

) whose two coordinates are already fixed, will

belong to some P δ
ℓ2
\ {x0} with ℓ2 6= 1 and ℓ2 6= ℓ1.

Continuing this process, as a result we obtain a point whose all, but one,
coordinates are fixed. This single varying coordinate is xℓn−1

. Then using
symbol 1.3.(2) from Chapter I, we can write this point as x0(xℓn−1

). This

means that the point x0(xℓn−1
) belongs to the set P δ

ℓn−1
\ {x0}. Applying

inequality (5) for k = ℓn−1, we have
∣∣f

(
x0(xℓn−1

)
)
− f(x0) − (xℓn−1

− x0
ℓn−1

)f ′
x̂ℓn−1

(x0)
∣∣ <

< ε|xℓn−1
− x0

ℓn−1
|. (6)ℓn−1

Write the following identity

f(x) − f(x0) −
n∑

k=1

(xk − x0
k)f ′

x̂k
(x0) =

=
[
f(x) − f

(
x(x0

1)
)
− (x1 − x0

1)f
′
x̂1

(x0)
]
+

+
[
f
(
x(x0

1)
)
− f

(
x(x0

1, x
0
ℓ1)

)
− (xℓ1 − x0

ℓ1)f
′
x̂ℓ1

(x0)
]
+

+ · · ·+
[
f
(
x0(x0

ℓn−1
)
)
− f(x0) − (xℓn−1

− x0
ℓn−1

)f ′
x̂ℓn−1

(x0)
]
. (7)

It follows from inequalities (6)1–(6)ℓn−1
that the absolute value in the left-

hand side of equality (7) is less than the value

ε
(
|x1 − x0

1| + |xℓ1 − x0
ℓ1 | + · · · + |xℓn−1

− x0
ℓn−1

|
)

= ε‖x− x0‖.
Hence the function f(x) is differentiable at the point x0, and its differ-

ential df(x0) at x0 is equal to the sum
n∑

k=1

f ′
x̂k

(x0) dxk. (8)

Thus the proof of Theorem 2.2.1 is complete. �

Corollary 2.2.1. The finiteness of the expression (8) is the necessary
and sufficient condition in order that, (8) to be the differential of the function
f at the point x0.

∗If n = 2, then the point x(x0

1
) = (x0

1
, x2) will necessarily belong to the set P δ

2
\{x0},

which in this case has the form {(x1, x2) : |x2 − x0

2
| ≥ |x1 − x0

1
|}. In case n = 3, the

point x(x0

1
) = (x0

1
, x2, x3) will belong to P δ

2
\ {x0}, or to P δ

3
\ {x0}.
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2.3. The Second Theorem on the Differentiability

As we have seen, every angular partial derivative is defined by using
a collection of arbitrary positive constants. If the function depends on m
independent variables, then for that function we have m angular partial
derivatives, and the definition of every angular partial derivative involves a
collection of (m−1) arbitrary positive constants. The arbitrariness of these
positive constants is needed for the definition, i.e., for the existence of a
separate angular partial derivative.

But while proving the second part of Theorem 2.2.1 we have revealed
the following fact: if in the definitions of all angular partial derivatives of
the function f(x) at the point x0 one takes all constants cj equal to 1, then
the finiteness of all the obtained in such a way values is sufficient for the
function f to be differentiable at the point x0.

This fact will be used in the sequel in investigating of functions for their
differentiability (see Section 2.4 below). We formulate it in the form of the
following

Theorem 2.3.1 ([5]). For the function f(x1, . . . , xn) to be differen-
tiable at the point x0 = (x0

1, . . . , x
0
n), it is necessary and sufficient that

Dx̂k
f(x0) = lim

xk→x0
k

|xj−x0
j |≤|xk−x0

k|

j 6=k

f(x) − f(x(x0
k))

xk − x0
k

(1)

is finite for all k = 1, . . . , n.

Corollary 2.3.1 ([5]). The finiteness of all Dx̂k
f(x0) implies finite-

ness of all f ′
x̂k
f(x0), and the equality

f ′
x̂k

(x0) = Dx̂k
f(x0), k = 1, . . . , n, (2)

df(x0) =

n∑

k=1

Dx̂k
f(x0) dxk. (3)

Corollary 2.3.2. From the finiteness of all Dx̂k
f(x0) it follows that

the function f(x) possesses at the point x0 the property of separately angular
partial differentiability, or what is the same, the function f(x) has a finite
ang gradf(x0).

Introduce the notation

D̂f(x0) =
(
Dx̂1

f(x0), . . . , Dx̂n
f(x0)

)
, (4)

whose finiteness is understood in a sense that every component Dx̂k
f(x0),

k = 1, . . . , n, is finite.
Now Theorem 2.3.1 can be rephrased as follows.
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Theorem 2.3.2 ([5]). For the existence of df(x0) it is necessary and

sufficient that D̂f(x0) be finite. If D̂f(x0) is finite, we have the equality

df(x0) =
(
D̂f(x0), dx

)
. (5)

2.4. Examples on the Differentiability

Using Theorem 2.3.1, we can establish the differentiability as well as
non-differentiability of concrete functions.

On the differentiability we investigate some appearing frequently func-
tions.

Proposition 2.4.1 ([5]). Suppose the numbers αj are positive, j =
1, . . . , n. Then the condition

α1 + α2 + · · · + αn > 1 (1)

is necessary and sufficient for the everywhere continuous function

ϕ(x1, . . . , xn) = |x1|α1 · |x2|α2 · · · |xn|αn (2)

to be differentiable at the point x0 = (0, · · · , 0).
In particular, the function ν(x1, . . . , xn) = (|x1| · · · |xn|)α is differen-

tiable at the point x0 if and only if α > 1
n .

Proof. Sufficiency. By equality 2.3.(3) we have

Dx̂k
ϕ(x0) = lim

xk→0
|xj |≤|xk|

j 6=k

|x1|α1 · · · |xn|αn

xk
= lim

xk→0
|xj |≤|xk|

j 6=k

|xk|
xk

· |x1|α1 · · · |xn|αn

xk
.

Under the above conditions it follows that

|x1|α1 · · · |xn|αn

|xk|
≤ |xk|α1 · · · |xk|αk−1 · |xk|αk−1 · |xk|αk+1 · · · |xk|αn =

= |xk|(α1+···+αk−1+αk+αk+1+···+αn)−1 → 0, xk → 0.

Hence Dx̂k
ϕ(x0) = 0 for all k = 1, . . . , n, and by equality 2.3.(3) we obtain

dϕ(x0) = 0. (3)

Necessity. For αj > 0 and α1 + α2 + · · · + αn ≤ 1 there exists none finite
Dx̂k

ϕ(x0), in particular, ϕ(x) is not differentiable at the point x0. Indeed,
should the finite Dx̂k

ϕ(x0) exist for some k, the expression

|xk|α1 · · · |xk|αn

xk
=

|xk|α1+···+αn

xk
=

=






|xk|
xk

for α1 + · · · + αn = 1

|xk|
xk

· |xk|−β for α1 + · · · + αn < 1, β = 1 − (α1 + · · · + αn)
,

would have a finite limit, but this is not the case.
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In particular, the function

µ(x1, x2) =
√
|x1| · |x2| (4)

is non-differentiable at the point (0, 0). �

Remark 2.4.1. By Proposition 2.4.1, the function

λ(x1, x2) = |x1 · x2|2/3 (5)

is differentiable at the point (0, 0), while λ(x1, x2) is non-differentiable at
the points (a, 0) and (0, b), where a 6= 0 and b 6= 0.

Indeed, should the function λ(x1, x2) be differentiable at the point (a, 0),
a 6= 0, there would exist a finite partial derivative

λ′
x2

(a, 0) =
(
λ(a, x2)

)′
(0) = |a|2/3 ·

(
|x2|2/3

)′
(0),

but this is not the case∗.
Hence the function (4) is differentiable only at those points both coor-

dinates of which are different from zero, or equal to zero.

Proposition 2.4.2. Suppose the numbers βj > 1, j = 1, . . . , n. Then
the function

φ(x1, . . . , xn) =






n∑

j=1

|xj |βj for all rational xj

0 at the remaining points

(6)

is differentiable at the point x0 = (0, . . . , 0),

dφ(x0) = 0 (7)

and discontinuous at all the remaining points (x1, . . . , xn) 6= (0, . . . , 0).

Proof. We have

Dx̂k
φ(x0) = lim

xk→0
|xj|≤|xk|

j 6=k

φ(x) − φ(x(x0
k))

xk
=

= lim
xk→0

|xj |≤|xk|
j 6=k

n∑
j=1

|xj |βj − ∑
j 6=k

|xj |βj

xk
= lim

xk→0

|xk|
xk

· |xk|βk

|xk|
= 0

and equality (7) follows from 2.3.(3).
The discontinuity of the function φ at every point x 6= x0 follows from

that there exist two sequences of points, which tend to x and the values of
the function φ tend to zero along one of the sequences and do not tend to
zero along the other sequence. �

∗And what is more, (|x2|2/3)′(0+) = +∞ and (|x2|2/3)′(0−) = −∞.
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Proposition 2.4.3. The corresponding to the number q > 1 function

Ψ(x1, . . . , xn) =






( n∑

j=1

|xj |
)q

for all rational xj

0 at the remaining points

, (8)

possesses the same properties as the function (6).

Proof.

Dx̂k
Ψ(x0) = lim

xk→0
|xj|≤|xk|

j 6=k

( n∑
j=1

|xj |
)q −

( ∑
j 6=k

|xj |
)q

xk
.

But

∣∣∣∣

( n∑
j=1

|xj |
)q −

( ∑
j 6=k

|xj |
)q

xk

∣∣∣∣ ≤

≤
2
( n∑

j=1

|xk|
)q

|xk|
=

2 · (n|xk|)q

|xk|
→ 0, xk → 0.

Hence

dΨ(x0) = 0. (9)

As regards the discontinuity, the function ψ is similar to the function φ. �

Proposition 2.4.4. The corresponding to the number α > 0 function

ω(x1, . . . , xn) =






( n∑

j=1

x2
j

) 1+α
2

for all rational xj

0 at the remaining points

, (10)

possesses all properties of functions (6) and (8).

Proof. Again,

Dx̂k
ω(x0) = lim

xk→0
|xj |≤|xk|

j 6=k

( n∑
j=1

x2
j

) 1+α
2 −

( ∑
j 6=k

x2
j

) 1+α
2

xk

and

∣∣∣∣

( n∑
j=1

x2
j

) 1+α
2 −

( ∑
j 6=k

x2
j

) 1+α
2

xk

∣∣∣∣ ≤
2
( n∑

j=1

x2
j

) 1+α
2

|xk|
≤

2
( n∑

j=1

x2
k

) 1+α
2

|xk|
=

=
2(nx2

k)
1+α

2

|xk|
=

2n
1+α
2 |xk|1+α

|xk|
= 2n

1+α
2 · |xk|α → 0, xk → 0. �
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Proposition 2.4.5. The function

g(x1, x2) =





x1x2 sin

1

x1x2
for x1 · x2 6= 0

0 for x1 · x2 = 0
(11)

is differentiable at the point x0 = (0, 0), and its gradient gradg(x1, x2) is
indeterminate at the punctured neighborhood of the point x0.

Proof. We have

Dx̂1
g(x0) = lim

x1→0
|x2|≤|x1|

g(x1, x2) − g(0, x2)

x1
= lim

x1→0
|x2|≤|x1|

g(x1, x2)

x1
.

But

∣∣∣
g(x1, x2)

x1

∣∣∣ =





0 for x2 = 0∣∣∣x2 · sin

1

x1x2

∣∣∣ ≤ |x2| ≤ |x1| for x2 6= 0
.

Therefore Dx̂1
g(0, 0) = 0. Similarly we find that Dx̂2

g(0, 0) = 0. Hence

dg(x0) = 0. (12)

Next, at all points (0, b) with b 6= 0 we have

g′
x1
g(0, b) = lim

x1→0

g(x1, b) − g(0, b)

x1
= b · lim

x1→0
sin

1

x1b
.

Therefore there non-exist neither g′
x1

(0, b), nor g′
x2

(a, 0) for a 6= 0. Hence

the gradg(x1, x2) is indeterminate in the neighborhood of the point x0,
and at this stage we cannot speak about the continuity of the function
gradg(x1, x2) at the point (0, 0). �

Proposition 2.4.5. The function

ψ(x1, x2) =






x2
1 · x2

x2
1 + x2

2

for x2
1 + x2

2 > 0

0 for x1 = 0 = x2

(13)

possesses the following properties:
1) ψ(x1, x2) is continuous everywhere;
2) gradψ(x1, x2) is finite everywhere;
3) ψ(x1, x2) is not differentiable at the point (0, 0);
4) gradψ(x1, x2) is not continuous at the point (0, 0).

Proof. The continuity of the function ψ(x1, x2) at the points (x1, x2) 6= (0, 0)
is obvious.

For the function ψ(x1, x2) to be continuous at the point (0, 0), it is
necessary and sufficient that equalities 5.1.(1) and 5.1.(2) from Chapter I
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are fulfilled for x0
1 = 0 and x0

2 = 0, respectively. We have
∣∣ψ(x1, x2) − ψ(0, x2)

∣∣ =
∣∣ψ(x1, x2) − ψ(x1, 0)

∣∣ =
∣∣ψ(x1, x2)

∣∣ =

=
x2

1 · |x2|
x2

1 + x2
2

<
x2

1 · |x2|
x2

1

= |x2| → 0, (x1, x2) → (0, 0).

Thus the function ψ(x1, x2) is continuous at the point (0, 0) as well.
The finiteness of the gradψ(x1, x2) at all points (x1, x2) 6= (0, 0) is

obvious, while for the point (0, 0) we have ψ′
x1

(0, 0) = (ψ(x1, 0))′(0) = 0 =

ψ′
x2

(0, 0). Therefore the gradψ(x1, x2) is finite everywhere.

The non-differentiability of the function ψ(x1, x2) at the point x0 =
(0, 0) follows from the nonexistence, for e.g., of Dx̂1

ψ(0, 0). Indeed, the
ratio appearing in equality 2.3.(1) for k = 1 has the form

x2
1 · x2

x1(x2
1 + x2

2)
=

x1 · x2

x2
1 + x2

2

. (14)

Let us take arbitrary positive number ℓ < 1 and put in equality (14) x2 =
ℓx1. Then |x2| < |x1|, and the obtained for that case ratio is equal to ℓ

1+ℓ2 .

This means that Dx̂1
ψ(0, 0) and hence dψ(x0) do not exist.

Finally, were the gradψ(x1, x2) continuous at the point x0, dψ(x0)
would exist, but this is not the case. �

Remark 2.4.2. The fact that the finite limit

lim
xk→x0

k

|xj−x0
j |=|xk−x0

k|

j 6=k

f(x) − f(x(x0
k))

xk − x0
k

(15)

does not exist at least for one value k from 1, . . . , n, is the sufficient condition
for the function f(x1, . . . , xn) is non-differentiable at the point (x0

1, . . . , x
0
n).

2.5. The Necessary and Sufficient Conditions for the
Differentiability of Functions of Two Variables

As far as real functions of two real variables are tightly connected with
analytic functions of a complex variable, to simplify our investigation it is
more convenient to formulate separately the results which correspond to the
case n = 2.

The differentiability of the function ϕ(x1, x2) at the point x0 = (x0
1, x

0
2)

implies the existence of ϕ′
x1

(x0) and ϕ′
x2

(x0) and the fulfilment of the equal-

ity

lim
x1→x0

1

x2→x0
2

ϕ(x1, x2)−ϕ(x0)−(x1−x0
1)ϕ

′
x1

(x0)−(x2−x0
2)ϕ

′
x2

(x0)

|x1 − x0
1| + |x2 − x0

2|
=0. (1)

The existence for the function ϕ(x1, x2) of the angular partial derivative
ϕ′

x̂1
(x0) at the point x0, means that for every constant c2 > 0 there exists
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a finite, or an infinite (of fixed sign) limit

ϕ′
x̂1

(x0) = lim
x1→x0

1

|x2−x0
2|≤c2|x1−x0

1|

ϕ(x1, x2) − ϕ(x0
1, x2)

x1 − x0
1

, (2)

which does not depend on c2.
Analogously, the existence of ϕ′

x̂2
(x0) means that of a finite, or an infi-

nite limit

ϕ′
x̂2

(x0) = lim
x2→x0

2

|x1−x0
1|≤c1|x2−x0

2|

ϕ(x1, x2) − ϕ(x1, x
0
2)

x2 − x0
2

, (3)

for an arbitrary constant c1 > 0 such that this limit would be independent
from c1.

Moreover (see equality 2.1.(5)),

ang gradϕ(x0) =
(
ϕ′

x̂1
(x0), ϕ′

x̂2
(x0)

)
. (4)

1. The first basic Theorem 2.2.1 results in

Theorem 2.5.1 ([2]). For the function ϕ(x1, x2) to be differentiable
at the point x0 = (x0

1, x
0
2), it is necessary and sufficient that angular partial

derivatives ϕ′
x̂1

(x0) and ϕ′
x̂2

(x0), or what is the same, ang gradϕ(x0), be

finite. The finiteness of the ang gradϕ(x0) is equivalent to the existence of
the equality

dϕ(x0) = ϕ′
x̂1

(x0) dx1 + ϕ′
x̂2

(x0) dx2. (5)

Specific character of a plane set allows one to prove the following

Theorem 2.5.2 ([2]). For the function ϕ(x1, x2) to be differentiable
at the point x0 = (x0

1, x
0
2), it is necessary and sufficient that the limits

lim
x1→x0

1

|x2→x0
2|≤c|x1−x0

2|

ϕ(x1, x2) − ϕ(x0
1, x2)

x1 − x0
1

(6)

and

lim
x2→x0

2

|x2−x0
2|≥c|x1−x0

1|

ϕ(x1, x2) − ϕ(x1, x
0
2)

x2 − x0
2

. (7)

be finite for some one constant c > 0. If these limits are finite, they are
equal to ϕ′

x̂1
(x0) and ϕ′

x̂2
(x0), respectively.

For the particular case x0
1 = 0 = x0

2, Theorem 2.5.2 can be interpreted
from geometrical viewpoint. When calculating limit (6), the point (x1, x2)
always belongs to the union of mutually vertical angles, containing the Ox1-
axis,

x1 ≥ 0

−cx1 ≤ x2 ≤ cx1

}
and

{
x1 ≤ 0

cx1 ≤ x2 ≤ −cx1

.
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At the same time, the point (0, x2) is outside of that union, on the
Ox2-axis.

When calculating limit (7), the point x0 = (x0
1, x

0
2) belongs to the union

of angles

x2 ≥ 0

−1

c
x2 ≤ x1 ≤ 1

c
x2




 and






x2 ≤ 0

1

c
x2 ≤ x1 ≤ −1

c
x2

,

while the point (x1, 0) lies on the Ox1-axis.
By Theorem 2.3.1, for the function ϕ(x1, x2) to be differentiable at the

point x0 = (x0
1, x

0
2), it is necessary and sufficient that limits

1) (2) and (3) for c2 = 1 = c1,
or

2) (6) and (8) for c = 1
be finite.

Thus we have the following

Theorem 2.5.3 ([5]). For the function ϕ(x1, x2) to be differentiable
at the point x0 = (x0

1, x
0
2), it is necessary and sufficient that the quantities

Dx̂1
(x0) = lim

x1→x0
1

|x2−x0
2|≤|x1−x0

1|

ϕ(x1, x2) − ϕ(x0
1, x2)

x1 − x0
1

(8)

and

Dx̂2
(x0) = lim

x2→x0
2

|x1−x0
1|≤|x2−x0

2|

ϕ(x1, x2) − ϕ(x1, x
0
2)

x2 − x0
2

(9)

be finite.
If these limits are finite, we have the following equalities:

ϕx̂1
(x0) = Dx̂1

ϕ(x0), ϕx̂2
(x0) = Dx̂2

ϕ(x0), (10)

dϕ(x0) = Dx̂1
ϕ(x0)dx1 +Dx̂2

ϕ(x0) dx2. (11)

2. Here we present one somewhat different necessary and sufficient
condition for the differentiability of a function of two variables, when be-
forehand are known finiteness its partial derivatives.

Theorem 2.5.4 ([30], p. 139). If the gradϕ(x0) is finite, then for
the differentiability of the function ϕ(x1, x2) at the point x0 = (x0

1, x
0
2) it is

necessary and sufficient that the equality

lim
x1→x0

1

x2−x0
2

∆2
[x0]ϕ(x1, x2)

|x1 − x0
1| + |x2 − x0

2|
= 0 (12)

be fulfilled, where

∆2
[x0]ϕ(x1, x2) = ϕ(x1, x2) − ϕ(x0

1, x2) − ϕ(x1, x
0
2) + ϕ(x0

1, x
0
2). (13)
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Proof. We have
[
ϕ(x1, x2) − ϕ(x0) − (x1 − x0

1)ϕ
′
x1

(x0) − (x2 − x0
2)ϕ

′
x2

(x0)
]
−

−∆2
[x0]ϕ(x1, x2) =

[
ϕ(x1, x

0
2) − ϕ(x0) − (x1 − x0

1)ϕ
′
x1

(x0)
]
+

+
[
ϕ(x0

1, x2) − ϕ(x0) − (x2 − x0
2)ϕ

′
x2

(x0)
]
. (14)

Since partial derivatives ϕ′
x1

(x0) and ϕ′
x2

(x0) are finite, for arbitrary

ε > 0 there exists δ = δ(ε, x0, ϕ) > 0 such that the absolute value in the
right-hand side of equality (14) is less than ε(|x1 − x0

1)| + |x2 − x0
2|) under

|x1 − x0
1| < δ and |x2 − x0

2| < δ. Thus we have
∣∣∣∣
ϕ(x1, x2) − ϕ(x0) − (x1 − x0

1)ϕ
′
x1

(x0) − (x2 − x0
2)ϕ

′
x2

(x0)

|x1 − x0
1| + |x2 − x0

2|
−

−
∆2

[x0]ϕ(x1, x2)

|x1 − x0
1| + |x2 − x0

2|

∣∣∣∣ < ε, |x1 − x0
1| < δ, |x2 − x0

2| < δ.

It is clear that equalities (1) and (12) are, or are not fulfilled together.
�

Remark 2.5.1. Below we will give somewhat different sufficient condi-
tions for the existence of a total differential for functions of two variables
(see Theorem 2.2.1 and statement (2) of Theorem 2.2.3 in Chapter III).

§ 3. Finiteness of a Strong Gradient Implies Differentiability

Here we introduce the notion of a strong gradient and state that the
finiteness of the strong gradient implies differentiability, and not vice versa.
It is also established that the continuity of the gradient implies the existence
of a finite strong gradient, and not vice versa.

3.1. A Strong Partial Derivative and a Strong Gradient

For the finite function f(x), x = (x1, . . . , xn) defined in the neighbor-
hood U(x0) of the point x0 = (x0

1, . . . , x
0
n) ∈ Rn we introduce the following

Definition 3.1.1 ([2], [5]). We say that the function f(x) possesses
at the point x0 a strong partial derivative with respect to the variable xk,
symbolically f ′

[xk](x
0), if there exists a finite, or an infinite (of fixed sign)

limit

f ′
[xk](x

0) = lim
x→x0

=
∆[x0

k
]f(x)

xk − x0
k

, (1)

where (see I, equality 2.1.(1))

∆[x0
k
]f(x) = f(x) − f

(
x(x0

k)
)
. (2)

If f ′
[xk](x

0) is finite, equality (1) means that for every ε > 0 there exists

the number δk = δk(x0, ε, f) > 0 with the property
∣∣∆[x0

k
]f(x) − (xk − x0

k)f ′
[xk](x

0)
∣∣ < ε|xk − x0

k| (3)
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for all x ∈ U0(x0, δk).

The existence of the finite f ′
[xk](x

0) implies, obviously, that with respect

to the variable xk the function f is strongly partial continuous at the point
x0 (see I, equality 2.1.(2)).

Proposition 3.1.1 ([2], [5]). If the continuous in the neighborhood
U(x0) of the point x0 function f has in the punctured neighborhood U0(x0)
a finite partial derivative f ′

xk
(x) for which there exists at x0 the limit

lim
x→x0

f ′
xk

(x) (4)

finite, or infinite, then the equality

f ′
[xk](x

0) = lim
x→x0

f ′
xk

(x) (5)

holds. However, if limit (4) is finite, then the partial derivative f ′
xk

(x) is

continuous at the point x0, and there takes place the equality

f ′
[xk](x

0) = f ′
xk

(x0). (6)

The proof of the above proposition is contained in the proof of Theo-
rem 3.2.1, below.

Note that one can consider the derivative of a function of one variable
in terms of a strong partial derivative with respect to the same variable
of the same function, but interpreting it as dependent formally of several
variables.

Definition 3.1.2 ([2], [5]). We say that the function f has at the point
x0 a strong gradient, symbolically str gradf(x0), if for every k = 1, . . . , n
there exist finite or infinite f ′

[xk](x
0), and we write

str gradf(x0) =
(
f ′
[x1]

(x0), . . . , f ′
[xn](x

0)
)
. (7)

The following proposition is obvious.

Proposition 3.1.2 ([2], [5]). If there exists a str gradf(x0), then
there likewise exists ang grad f(x0), and the equalities

str gradf(x0) = ang grad f(x0) = gradf(x0) (8)

hold.

Definition 3.1.3. The function f is called strongly partial differen-
tiable at the point x0 with respect to the variable xk, if there exists finite
f ′
[xk](x

0), and in this case we write

d[xk]f(x0) = f ′
[xk](x

0) dxk. (9)

Moreover, d[xk](x
0) is called a strong partial differential with respect to

the variable xk of the function f at the point x0.
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Definition 3.1.4. The function f(x) possesses at the point x0 the
property of separately strong partial differentiability, if there all f ′

[xk](x
0)

exist and are finite, i.e., if there exists a finite str gradf(x0).

3.2. The Continuity of a Gradient Implies the Existence of a
Finite Strong Gradient

Theorem 3.2.1 ([2], [5]). If in the neighborhood U(x0) of the point x0

the function f(x) is continuous and in the punctured neighborhood U0(x0)
it has a finite grad f(x), for which there exists a finite, or an infinite limit

lim
x→x0

gradf(x), (1)

then the equality

str gradf(x0) = lim
x→x0

grad f(x) (2)

holds.
However, if limit (1) is finite, then the grad f(x) is continuous at the

point x0, and we have the equality

str gradf(x0) = grad f(x0). (3)

Moreover, the existence of the finite str gradf(x0) does not, in general,
imply the continuity of gradf(x) at the point x0.

proof. Equality (2) yields

∆[x0
k
]f(x) =

= (xk − x0
k)f ′

xk
(x1, . . . , xk−1, x

0
k + θk(xk − x0

k), xk+1, . . . , xn), 0<θk<1.

The finiteness of limit (1) implies both the continuity of gradf(x) at
the point x0 and equality (3) due to the fact that the partial derivative,
possessing the finite limit at some point, is continuous at the same point.

That the converse to the concluding statement of the above theorem is
invalid can be illustrated by an example of the function g(x1, x2) defined
by equality 2.4.(11). It is already known that the function g(x1, x2) is
differentiable at the point (0, 0) and its gradient is not continuous at (0, 0).

Let us now prove that the strong gradient of the function g(x1, x2) at
the point (0, 0) is finite. By the definition, we have

g′[x1]
(0, 0) = lim

(x1,x2)→(0,0)

g(x1, x2) − g(0, x2)

x1
=

= lim
(x1,x2)→(0,0)

x2 sin
1

x1x2
= 0.

In a similar way we obtain the equality g′[x2]
(0, 0) = 0. Hence

str gradg(0, 0) = (0, 0). � (4)
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3.3. Relation Between the Continuity of a Gradient of a
Function and the Finiteness of Its Strong Gradient

1. For a function of one variable we can indicate two properties which
are equivalent almost everywhere, though one of the properties is stronger
at an individual point.

Such properties are, for example:
1) continuity and symmetric continuity ([22], p. 266);
2) derivability and symmetric derivability ([13], p. 381; [22], p. 249);
3) derivability and existence of a finite upper derivate (see [21], pp. 270

and 108).
Tolstov’s Theorem shows that the continuity of a function of two vari-

ables and its continuity with respect to each of variables are the properties
of that function which may be nonequivalent almost everywhere (see The-
orem A in introduction of Chapter I).

2. In proving the concluding part of Theorem 3.2.1 we have stated
that the function g(x1, x2) defined by equality 2.4.(11) has the finite strong
gradient at the point x0 = (0, 0), and moreover, its gradient is not continu-
ous at the point x0.

Here we prove that the just mentioned nonequivalence can be realized
almost everywhere.

Theorem∗ 3.3.1. There exists an absolutely continuous function of two
variables which has almost everywhere both finite strong and discontinuous
gradients.

Proof. For bounded and everywhere on the [0, 1] discontinuous functions
α(x) and β(y) we consider the corresponding indefinite L-integrals

A(x) =

x∫

0

α(x) dt and B(y) =

y∫

0

β(τ) dτ.

The function of two variables ν(x, y) = A(x) +B(y) on the unit square
Q = [0, 1] × [0, 1] is absolutely continuous (see Definition 2.1.1 in Chap-
ter IV) and possesses a total differential at almost all points (x, y) ∈ Q (see
Corollary 1.3.1),

dν(x, y) = α(x) dx + β(y) dy.

Since the derivative of the function of one variable is its strong partial
derivative with respect to the same variable (see 3.1), then at the points
(x, y) ∈ Q, at which the total differential dν(x, y) exists, the finite is

str gradν(x, y) =
(
α(x), β(x)

)
.

On the other hand, the gradν(x, y) = (α(x), β(y)) is discontinuous
almost everywhere. Hence the str gradν(x, y) is finite almost everywhere
and the grad ν(x, y) is discontinuous almost everywhere. �

∗The author’s this result is published for the first time.
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3.4. The Finitenes of a Strong Gradient Implies Differentiability

Theorem 3.4.1 ([2], [5]). The existence of a finite str gradf(x0)
implies existence of a total differential df(x0) and

str gradf(x0) = ang gradf(x0) = gradf(x0). (1)

The First Proof. In the neighborhood of the point x0 the expression

f(x) − f(x0) −
n∑

k=1

(xk − x0
k)f ′

[xk](x
0) (2)

is finite. It can be represented as
[
f(x) − f

(
x(x0

1)
)
− (x1 − x0

1)f
′
[x1]

(x0)
]
+

+
[
f
(
x(x0

1)
)
− f

(
x(x0

1, x
0
2) − (x2 − x0

2)
)
f ′
[x2]

(x0)
]
+ · · ·+

+
[
f
(
x0(xn)

)
− f(x0) − (xn − x0

n)f ′
[xn](x

0)
]
. (3)

In (3), for every square bracket we make use of estimate 3.1.(3). Note
that for the values k = 2, . . . , n we put in 3.1.(3) partial values xj = x0

j for
j = 1, . . . , k − 1.

It is clear that the absolute value of (2) is less than

ε
(
|x1 − x0

1| + |x2 − x0
2| + · · · + |xn − x0

n|
)

= ε‖x− x0‖.
Hence df(x0) exists.
The Second Proof is obtained by virtue of Theorem 2.2.1 with regard

of Proposition 3.1.2. �

Remark 3.4.1. Classical result that the continuity of a gradient implies
the existence of a total differential can be obtained from Theorems 3.2.1
and 3.4.1.

Proposition 3.4.1 ([2], [5]). The finiteness of ang grad f(x0), or what
is the same, the existence of df(x0) does not imply the existence of (neither
finite, nor infinite) str gradf(x0).

Proof. As is known, the function

λ(x1, x2) = |x1 · x2|2/3 (4)

defined by equality 2.4.(4), is differentiable at the point x0 = (0, 0).
Let us now show that the str gradλ(x0) does not exist. Indeed, for a

particular case x1 > 0 we have the expression (here x0
1 = 0 = x0

2)

∆[x0
1
]λ(x1, x2)

x1
=

(x1|x2|)2/3

x1
=

(x2
2

x1

)1/3

,

which has no limit as (x1, x2) → (0, 0). This follows from the fact that the
last expression tends to different numbers for x2

2 = x1 (to 1) and for x2 = x1

(to 0). Hence λ′[x1]
(x0) does not exist.

Consequently, the str gradλ(x0) does not exist. �
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Remark 3.4.2. The gradient of the function λ(x1, x2) = |x1 · x2|2/3 is
not continuous at the point x0 = (0, 0). This follows from Theorem 3.2.1
with regard of the fact that the str gradλ(x0) does not exist.

Remark 3.4.3. In [16] has been announced the following result: for
every n ≥ 2 there exists a continuous function f : Rn → R which is almost
everywhere differentiable, but has no almost everywhere a finite strong gra-
dient.

3.5. The Sufficient Condition for Differentiability of a Function,
when It Is Differentiable with Respect to a Subcollection of

Variables

As is already known, the function λ(x1, x2) defined by equality 3.4.(4)
is differentiable at the point (0, 0), but it has no strong partial derivatives
at that point. This fact indicates that equality 2.2.(1) does not imply the
existence of f ′

[xk](x
0), when df(x0) does exist.

But despite this fact, equality 2.2.(1) allows nevertheless us to find for
one and the same function the connection between its differentiability both
for n and for n− 1 variables at a given point.

The theorem below follows directly from equality 2.2.(1) and Definiti-
on 1.4.1.

Theorem 3.5.1 ([5]). For the function f(x1, . . . , xn) to be differen-
tiable at the point x0 = (x0

1, . . . , x
0
n), it is sufficient that the function f(x)

at the point x0 have a finite strong partial derivative with respect to some
one variable xk and at the point x0 differentiable is function

f(x(x0
k)) = f(x1, . . . , xk−1, x

0
k, xk+1, . . . , xn), (1)

depending on the remaining n− 1 variables.

Obviously, we can apply Theorem 3.5.1 to the function f(x(x0
k)) from

the same theorem and then continue the procedure until we get a function
of one variable.

Therefore the following theorem is valid if we take into account that a
derivative of function of one variable can be interpreted as its strong partial
derivative with respect to the same variable (see 3.1).

Theorem 3.5.2. For the function f(x1, . . . , xn) to be differentiable at
the point x0 = (x0

1, . . . , x
0
n), it is sufficient that the following conditions be

fulfilled:
(ik) f(x) has at the point x0 a finite strong partial derivative with respect

to one, say xk, variable;
(ikℓ) f(x(x0

k)) has at the point x0 a finite strong partial derivative with
respect to the other variable, say with respect to xℓ, ℓ 6= k;

(ikℓs) f(x(x0
k, x

0
ℓ )) has at the point x0 a finite strong partial derivative

with respect to the variable xs, different from xk and xℓ;
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And so on, the obtained in such a way function of one variable has at
the point x0 a finite derivative.

It should be noted that the existence at the point x0 of a finite strong
partial derivative with respect to variable xi for the function f(x(x0

k)), i 6= k,
is more weak property of the function f(x), than the existence of a finite
strong partial derivative for the function f(x) at the point x0 with respect
to the same variable xi.

Thus we have the following

Theorem 3.5.3 ([5]). Assume the function f(x1, . . . , xn) has at the
point x0 = (x0

1, . . . , x
0
n) a finite partial derivative with respect to some one

variable and at the point x0 it has finite strong partial derivatives with re-
spect to each of the remaining n− 1 variables. Then the function f(x):

(a) is differentiable at the point x0;
(b) has at the point x0 a finite angular partial derivative with respect to

the variable we have just spoken at the beginning of our theorem.

Proof. Statement (a) follows from Theorem 3.5.2, and statement (b) follows
from Theorem 2.2.1 with regard of statement (a). �

Since the continuity of the partial derivative implies the existence of
the finite strong partial derivative with respect to the same variable (see
Proposition 3.1.1), form Theorem 3.5.3 we obtain

Theorem 3.5.4. If from the partial derivatives f ′
xj

, j = 1, . . . , n, some

one is finite at the point x0 and the remaining partial derivatives are con-
tinuous at x0 functions, then statements (a) and (b) of Theorem 3.5.3 hold.

3.6. The Sufficient Conditions for Differentiability of Functions
of Two Variables

For the function of two variables ϕ(x), x = (x1, x2) defined in the
neighborhood of the point x0 = (x0

1, x
0
2) we can determine strong partial

derivatives with respect to variables x1 and x2 by using respectively the
following equalities:

ϕ′
[x1]

(x0) = lim
x1→x0

1

x2→x0
2

ϕ(x1, x2) − ϕ(x0
1, x2)

x1 − x0
1

(1)

and

ϕ′
[x2](x

0) = lim
x1→x0

1

x2→x0
2

ϕ(x1, x2) − ϕ(x1, x
0
2)

x2 − x0
2

. (2)

Moreover (see equality 3.1.(7)),

str gradϕ(x0) = (ϕ′
[x1]

(x0), ϕ′
[x2](x

0)). (3)

For functions of two variables, both Theorems 3.5.2 and 3.5.3 are iden-
tical. We formulate them in the form of one
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Theorem 3.6.1 ([2], [5]). Let the function of two variables ϕ(x),
x = (x1, x2) have at the point x0 = (x0

1, x
0
2) a finite partial derivative with

respect to one of the variables and at the point x0 a finite strong partial
derivative with respect to the other variable. Then the function ϕ(x) is
differentiable at the point x0, and therefore ϕ(x) has at the point x0 finite
an angular partial derivative with respect to that variable we have just spoken
at the beginning of this theorem.

From the above theorem we immediately arrive at

Theorem 3.6.2. Let the function ϕ(x1, x2) be separately partial dif-
ferentiable at the point x0 = (x0

1, x
0
2). Then for the existence of a total

differential dϕ(x0) it is sufficient that ϕ(x1, x2) possess at the point x0 a
finite strong partial derivative with respect to one of the variables.

For functions of two variables Theorem 3.5.4 can be rewritten in the
form of

Theorem 3.6.3. If the function ϕ(x1, x2) has partial derivatives, one
of which is finite at the point x0 = (x0

1, x2) and the other is continuous at
the point x0, then the following statements take place:

1) there exists dϕ(x0);
2) ϕ(x1, x2) has at the point x0 a finite angular partial derivative with

respect to the same variable, mentioned at the begining of to theorem.

It should be noted that statement 1) of Theorem 3.6.3 is due to K. J. Tho-
mae ([25]; [11], § 310). We formulate this theorem as follows.

Theorem 3.6.4 ([25]). If for the function ϕ(x1, x2) one of partial
derivatives is finite and the other is continuous at the point x0 = (x0

1, x
0
2),

then ϕ(x1, x2) is differentiable at x0.

3.7. Classification of Functions by Various Gradients

The obtained in this section results on the differentiability of functions
of several variables allow us to formulate the following summarizing theo-
rem.

Theorem 3.7.1 ([5]). A class with continuous at the point x0 gradi-
ents of functions is contained strictly in a class with finite at the point x0

strong gradients of functions, and the latter is contained strictly in a class of
functions with finite at the point x0 angular gradients. This class coincides
with the class of differentiable at x0 functions.

§ 4. Unilateral in Various Senses Partial Derivatives and
Differentials of Functions of Two Variables

For the function ψ(x), x = (x1, x2) defined in the neighborhood U(x0)
of the point x0 = (x0

1, x
0
2) we introduce the functions (see equality 1.1.(1))

1ψ(x1) = ψ(x1, x
0
2) and 2ψ(x2) = ψ(x0

1, x2).
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If the function iψ(xi) has at the point x0
i a derivative (iψ(xi))

′(x0
i ) called

a partial derivative at the point x0 of the function ψ(x) with respect to the
variable xi, then we denote it now by ∂xi

ψ(x0). If there exist ∂x
1
ψ(x0) and

∂x
2
ψ(x0), then we consider the gradient of the function ψ(x) at the point

x0 (see equality 1.1.(2))

gradψ(x0) =
(
∂x

1
ψ(x0), ∂x

2
ψ(x0)

)
.

It is quite possible that the function iψ(xi) has no derivative at the point
x0

i , i.e., there is no ∂xiψ(x0), but iψ(xi) has +derivative at x0
i , symbolically

∂+
xi
ψ(x0), which is called the right-hand partial derivative of the function

ψ(x) at the point x0 with respect to the variable xi. Hence

∂+
xi
ψ(x0) = lim

xi→x0
i
+

iψ(xi) − iψ(x0
i )

xi − x0
i

= lim
xi→x0

i

iψ(xi) − ψ(x0)

xi − x0
i

.

The left-hand partial derivative of the function ψ(x) at the point x0

with respect to the variable xi,

∂−xi
ψ(x0) = lim

xi→x0
i−

iψ(xi) − iψ(x0
i )

xi − x0
i

= lim
xi→x0

i

iψ(xi) − ψ(x0)

xi − x0
i

is defined analogously.
It is obvious that for the existence of ∂xi

ψ(x0) the necessary and suffi-
cient condition is the existence of equal quantities ∂+

xi
ψ(x0) and ∂−xi

ψ(x0),
i = 1, 2.

In case quantities ∂+
x
1
ψ(x0) and ∂+

x
2
ψ(x0) exist we introduce +gradient

of the function ψ(x) at the point x0,

+ gradψ(x0) =
(
∂+

x
1
ψ(x0), ∂+

x
2
ψ(x0)

)
.

Analogously, if ∂−x
1
ψ(x0) and ∂−x

2
ψ(x0) exist, then we introduce −gra-

dient of the function ψ(x) at the point x0 by the equality

− gradψ(x0) =
(
∂−x

1
ψ(x0), ∂−x

2
ψ(x0)

)
.

For the relations

− gradψ(x0) = gradψ(x0) = + gradψ(x0)

to be valid, it is necessary and sufficient that all components be equal,

∂−xi
ψ(x0) = ∂xi

ψ(x0) = ∂+
xi
ψ(x0), i = 1, 2.

The above equalities are not, in general, sufficient for the existence of
an angular, or a strong gradient.

Below we will introduce unilateral strong and angular partial ±deriva-
tives and prove the necessary and sufficient conditions for the existence of
a strong and an angular gradient. The conditions for the existence of an
angular gradient will at the same time be the conditions for the existence
of a total differential.
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4.1. Unilateral Strong Partial Derivatives

The notion of strong partial derivatives (see 3.1) with respect to the vari-
ables x1 and x2 at the point x0 = (x0

1, x
0
2) for the function ψ(x), x = (x1, x2)

makes it possible to introduce strong partial ±derivatives with respect to
x1 and x2 at the point x0 for ψ(x):

∂+
[x1]

ψ(x0)= lim
(h1,h2)→(0,0)

h1>0

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1, x
0
2+h2)

h1
, (1)

∂−[x1]
ψ(x0)= lim

(h1,h2)→(0,0)
h1<0

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1, x
0
2+h2)

h1
, (2)

∂+
[x2]

ψ(x0)= lim
(h1,h2)→(0,0)

h2>0

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1+h1, x
0
2)

h2
, (3)

∂−[x2]
ψ(x0)= lim

(h1,h2)→(0,0)
h2<0

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1+h1, x
0
2)

h2
. (4)

It is clear that for the existence of ∂[xi]ψ(x0) it is necessary and sufficient

that there exist equal quantities ∂+
[xi]
ψ(x0) and ∂−[xi]

ψ(x0), and if they are

equal, we have

∂−[xi]
ψ(x0) = ∂[xi]ψ(x0) = ∂+

[xi]
ψ(x0), i = 1, 2. (5)

Introduce now strong ±gradients at the point x0 for the function ψ(x)
by the equalities

+ str gradψ(x0) =
(
∂+
[x1]

ψ(x0), ∂+
[x2]ψ(x0)

)
, (6)

− str gradψ(x0) =
(
∂−[x1]

ψ(x0), ∂−[x2]ψ(x0)
)
, (7)

which together with the strong gradient

str gradψ(x0) =
(
∂[x1]ψ(x0), ∂[x2]ψ(x0)

)
(8)

are connected as follows.

Proposition 4.1.1 ([8]). For the existence of str gradψ(x0) it is nec-
essary and sufficient that equal − str gradψ(x0) and + str gradψ(x0) exist,
and if they are equal, we have

− str gradψ(x0) = str gradψ(x0) = + str gradψ(x0). (9)

Theorem 4.1.1 ([8]). The existence of finites ∂−[xi]
ψ(x0) and ∂+

[xi]
ψ(x0)

implies the finiteness of a strong symmetrical partial derivative with respect
to the variable xi at the point x0 for the function ψ(x1, x2), denoted by

∂
(1)
[xi]
ψ(x0), for which we have the equality

∂
(1)
[xi]
ψ(x0) =

1

2

[
∂−[xi]

ψ(x0) + ∂+
[xi]
ψ(x0)

]
, i = 1, 2. (10)
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Moreover, there exists the function for which the left-hand side of equal-
ity (10) is finite , and the summands in the right-hand side of the same
equality are infinite, of opposite signs.

Proof. The first part of the theorem we verify for the variable x1. Since in
the equality (see [17], Definition 3)

∂
(1)
[x1]

ψ(x0)= lim
(h1,h2)→(0,0)

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1−h1, x
0
2+h2)

2h1
, (11)

the ratio appearing under the limit sign is an even function with respect to
h1, we can assume that h1 > 0 and have

∂
(1)
[x1]

ψ(x0) =
1

2
lim

(h1,h2)→(0,0)

ψ(x0
1 + h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

h1
+

+
1

2
lim

(h1,h2)→(0,0)

ψ(x0
1 − h1, x

0
2 + h2) − ψ(x0

1, x
0
2 + h2)

−h1
=

=
1

2

[
∂+
[xi]
ψ(x0) + ∂−[xi]

ψ(x0)
]
.

The function ϕ(x1, x2) = |x1|1/2 + |x2|1/2 in the neighborhood of the
point x0 = (0, 0) is most convenient for the second part of the above theo-
rem. We have

∂
(1)
[x1]

ϕ(x0) = lim
(h1,h2)→(0,0)

ϕ(h1, h2) − ϕ(−h1, h2)

2h1
=

= lim
(h1,h2)→(0,0)

|h1|1/2 + |h2|1/2 − | − h1|1/2 − |h2|1/2

2h1
= 0,

∂+
[x1]

ϕ(x0) = lim
h1→0+
h2→0

ϕ(h1, h2) − ϕ(0, h2)

h1
=

= lim
h1→0+
h2→0

|h1|1/2 + |h2|1/2 − |h2|1/2

h1
= +∞,

∂−[x1]
ϕ(x0) = lim

h1→0−
h2→0

|h1|1/2

h1
= − lim

h1→0−
h2→0

|h1|1/2

|h1|
= −∞. �

4.2. Unlateral Angular Partial Derivatives

Below, using equalities (1)–(4), we will introduce angular partial ±de-
rivatives with respect to the variables x1 and x2 at the point x0 = (x0

1, x
0
2)

for the function ψ(x), x = (x1, x2), under the condition that each of the
following limits exists and does not depend on the constants, indicated
there:

∂+
x̂1
ψ(x0)= lim

h1→0+
|h2|≤a·h1

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1, x
0
2+h2)

h1
, a > 0, (1)



84 O. Dzagnidze

∂+
x̂2
ψ(x0)= lim

h2→0+
h2≥b·h1

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1+h1, x
0
2)

h2
, b > 0, (2)

∂−x̂1
ψ(x0)= lim

h1→0−
|h2|≤−c·h1

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1, x
0
2+h2)

h1
, c > 0, (3)

∂−x̂2
ψ(x0)= lim

h2→0−
h2≤−d·|h1|

ψ(x0
1+h1, x

0
2+h2)−ψ(x0

1+h1, x
0
2)

h2
, d > 0. (4)

The existence of equal quantities ∂−x̂i
ψ(x0) and ∂+

x̂i
ψ(x0) is the necessary

and sufficient condition for the existence of ∂x̂i
ψ(x0) (see 2.5).

We introduce also angular ±gradients at the point x0 for the function
ψ(x) by the equalities (if there exist their components)

+ ang gradψ(x0) =
(
∂+

x̂1
ψ(x0), ∂+

x̂2
ψ(x0)

)
, (5)

− ang gradψ(x0) =
(
∂−x̂1

ψ(x0), ∂−x̂2
ψ(x0)

)
. (6)

Thus for the angular gradient (see equality 2.5.(4)) we obtain

Proposition 4.2.1 ([8]). For the existence of ang gradψ(x0), it is nec-
essary and sufficient that the quantities + ang gradψ(x0) and
− ang gradψ(x0) be equal, and if they are such we have

− ang gradψ(x0) = ang gradψ(x0) = + ang gradψ(x0). (7)

By Theorem 2.5.1 we obtain

Proposition 4.2.2 ([8]). For the existence of the total differential
dψ(x0), it is necessary and sufficient that the given by equalities (5) and (6)
angular ±gradients are finite and equal.

4.3. Unilateral Differentials

Since the finiteness of ang gradψ(x0) is the necessary and sufficient con-
dition for the existence of the total differential dψ(x0) (see Theorem 2.5.1),
using angular ±gradients we can introduce the following

Definition 4.3.1 ([8]). The function ψ(x) is called +differentiable at
the point x0 if + ang gradψ(x0) is finite, and the +differential, symbolically
d+ψ(x0), for ψ(x) at x0 is defined by the equality

d+ψ(x0) = ∂+
x̂1
ψ(x0) dx1 + ∂+

x̂2
ψ(x0) dx2. (1)

The −differential under the finite − ang gradψ(x0) is defined analo-
gously by the equality

d−ψ(x0) = ∂−x̂1
ψ(x0) dx1 + ∂−x̂2

ψ(x0) dx2. (2)

Thus we have
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Proposition 4.3.1 ([8]). For the existence of the total differential
dψ(x0), it is necessary and sufficient that ±differentials d−ψ(x0) and
d+ψ(x0) be equal, and if they are such we have

d−ψ(x0) = dψ(x0) = d+ψ(x0). (3)

Remark 4.3.1 ([8]). The finiteness of the + str gradψ(x0) implies fimite-
ness of the + ang gradψ(x0) and hence the existence of the + differential
d+ψ(x0). Similar fact can be applied to the − str gradψ(x0).

§ 5. Conditions for the C-Differentiability

It is well-known (see, for e.g. [1]) that the fundamental theorem of
complex analysis concerning C-differentiability of a complex-valued function
w = F (z) of a complex variable z = x + iy consists of two parts and their
fulfilment at the point z0 = x0 + iy0 is the necessary and sufficient condition
for the existence of a finite derivative F ′(z0).

In the first part of this theorem the function F (z), being the function
of two real variables (x, y), is required to be differentiable at the point
z0 = (x0, y0) (see 2.5).

The second part of the same theorem requires the fulfilment of the
Cauchy–Riemenn condition

F ′
x(z0) + iF ′

y(z0) = 0. (C-R)

5.1. The Necessary and Sufficient Condition for the
C-Differentiability

We have already obtained the necessary and sufficient conditions of
differentiability of real-values functions of two real variables (see Theo-
rem 2.5.3). Here we present the theorem whose statement somewhat differs
from that suggested in [2] and [5].

Theorem 5.1.1. For the complex-valued function w = F (z) of the
complex variable z = x + iy to have a finite derivative F ′(z0) at the point
z0 = x0 + iy0, it is necessary and sufficient that the equality

Dx̂ F (z0) + iDŷ F (z0) = 0 (1)

or what is the same thing, the equalities

Dx̂ u(z0) = Dŷ v(z0), (2)

Dŷ u(z0) = −Dx̂ v(z0), (3)

where F (z) = u(z) + iv(z), be fulfilled.

Corollary 5.1.1. For the function F (z) to be holomorphic in the open
set G ⊂ C, it is necessary and sufficient that the equality (1) or, which is
the same, equalities (2) and (3) be fulfilled at all points z0 ∈ G.
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5.2. Sufficient Conditions for the C-Differentiability

The sufficient conditions for differentiability of functions of two real
variables are also available (see Theorem 3.6.2). Therefore the following
theorem is valid.

Theorem 5.2.1. If the condition (C-R) is fulfilled for the function
F (z) and either F ′

[x](z0), or F ′
[y](z0) is finite, then there exists at z0 the

finite derivative F ′(z0) and equality 5.1.(1) holds.

From Theorem 3.6.3 we obtain

Theorem 5.2.2. If the function F (z) satisfies the condition (C-R) and
any one of its partial derivatives F ′

x(z) and F ′
y(z) is continuous at the point

z0, then there exists the finite derivative F ′(z0), and equality 5.1.(1) holds.

Obviously, the sufficient conditions of the existence of the finite deriva-
tive F ′(z0), mentioned in Theorems 5.2.1 and 5.2.2 can be rephrased in the
form of sufficient conditions for the function F (z) to be holomorphic both
in the open set G ⊂ C and at the given point.

Remark 5.2.1. Since the continuity at the point z0 = x0 + iy0 of the
complex-values function Φ(z) = A(z) + iB(z) is equivalent to the simulta-
neous continuity at the point z0 = x0 + iy0 of real functions A(z) = A(x, y)
and B(z) = B(x, y) at the point (x0, y0), the problem on the continuity
at z0 of the function Φ(z) and, for e.g., of the partial derivative Φ′

x(z) =
A′

x(z) + iB′
x(z), can be solved by means of earlier stated theorems for the

continuity of real-valued functions of two real variables.



CHAPTER III

Twice Differentiability, Bettazzi Derivative

and Mixed Partial Derivatives

Introduction

The material of the present chapter is organized as follows.
§ 1. The results obtained in the previous chapter allow us to formulate

the necessary and sufficient conditions for the existence of a total differential
of arbitrary order. First of all, this will be realized with respect to twice
differentiability. The sufficient conditions for functions of two variables to
have a total differential of second order are established.

§ 2. The notion of a derivative introduced by Bettazzi in 1884 and for
certain reasons called afterwards a strong derivative, is tightly connected
with functions of two variables. The connection of Bettazzi derivative with
the existence of a total differential as well as with a mixed partial derivative
of second order is indicated.

§ 3. This section presents a survey of the results on the interconnec-
tion between mixed partial derivatives of second order. First, the classical
Young’s theorem and Tolstov’s two theorems are formulated. The sufficient
conditions for the equality of mixed partial derivatives of second order due
to Chelidze, are given.

§ 1. The Conditions of Twice Differentiability

1.1. The Necessary and Sufficient Condition of Twice
Differentiability

Let the function f(x), x = (x1, . . . , xn) defined in the neighborhood
U(x0) of the point x0 = (x0

1, . . . , x
0
n) have a total differential df(x) at every

point x ∈ U(x0).
If the function df(x) of the variable x ∈ U(x0) is differentiable at the

point x0, then the function f is, as is known, called twice differentiable at
the point x0.

1. The necessary and sufficient condition is available for the exis-
tence of the total differential df(x), x ∈ U(x0) which consists in the finite-
ness of ang grad f(x), or what is the same, in the finiteness of the sum∑n

k=1 f
′
x̂k

(x)dxk.
Here we have the following

87
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Theorem 1.1.1 ([2]). For the function f(x) to be twice differentiable
at the point x0, it is necessary and sufficient that (f ′

x̂i
(x))′x̂j

(x0) be finite

for all i = 1, . . . , n and j = 1, . . . , n.

If a matrix with elements (f ′
x̂i

(x))′x̂j
(x0) is called of the second order an-

gular gradient of the function f at the point x0, symbolically ang grad(2)f(x0),
then Theorem 1.1.1 can be reformulated in the form of

Theorem 1.1.2 ([2], [5]). For the function f to be twice differentiable
at the point x0, it is necessary and sufficient that a finite ang grad (2)f(x0)
exist.

Using Theorem 2.3.1 from Chapter II, we obtain

Theorem 1.1.3. For the function f to be twice differentiable at the
point x0, it is necessary and sufficient that Dx̂i

Dx̂j
f(x0) be finite for all

i = 1, . . . , n and j = 1, . . . , n.

2. It is known that the finiteness of a strong gradient of the function F
at the point x0 is the sufficient condition for the differentiability of F at x0.
This means that for the differentiability at the point x0 of the differential
df(x) it is sufficient that (f ′

x̂i
(x))′[xj ](x

0) be finite for all i = 1, . . . , n and

j = 1, . . . , n.
If the matrix with elements (f ′

x̂i
(x))′[xj ]

(x0) is denoted by str grad (2)f(x0),

then we will have

Proposition 1.1.1. For the function f to be twice differentiable at the
point x0, it is sufficient that str grad (2)f(x0) be finite.

Next, the function F is called twice continuously differentiable at the
point x0 if the differential df(x) has continuous partial derivatives at x0.

Thus we have the following proposition in which by grad (2)f(x) is de-
noted the matrix with elements (f ′

x̂i
(x))′xj

(x), i = 1, . . . , n and j = 1, . . . , n.

Proposition 1.1.2. For the function f to be twice continuously differ-
entiable at the point x0, it is necessary and sufficient that grad (2)f(x) be
continuous at x0.

1.2. The Sufficient Conditions of Twice Differentiability of
Functions of Two Variables

By Theorem 1.1.2, the function of two variable ϕ(x), x = (x1, x2) is
twice differentiable at the point x0 = (x0

1, x
0
2) if and only if ang grad (2)ϕ(x0)

is finite.
For twice differentiability of ϕ(x) at the point x0 it is sufficient that the

str grad (2)ϕ(x0) be finite or the grad (2)ϕ(x) be continuous at x0.
Here we will give another sufficient conditions of twice differentiability.

Recall that the function ϕ(x) is called twice differentiable at the point x0, if
angular partial derivatives ϕ′

x̂1
(x) and ϕ′

x̂1
(x) are finite in the neighborhood
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U(x0) and differentiable at the point x0. This, by virtue of Theorem 2.5.1
from Chapter II, means that for the function ϕ(x) to be twice differentiable
at the point x0, it is necessary and sufficient that the gradients

ang gradϕ′
x̂1

(x0) =
(
(ϕ′

x̂1
)′x̂1

(x0), (ϕ′
x̂1

)′x̂2
(x0)

)
(1)

and
ang gradϕ′

x̂2
(x0) =

(
(ϕ′

x̂2
)′x̂1

(x0), (ϕ′
x̂2

)′x̂2
(x0)

)
(2)

be finite.
Now let us prove the following

Theorem 1.2.1 ([2]). Let one component in each of the quantities
(
∂2

x̂1
ϕ(x), ∂x̂2

∂x̂1
ϕ(x)

)
and

(
∂x̂1

∂x̂2
ϕ(x), ∂2

x̂2
ϕ(x)

)
(3)

be continuous at the point x0 and the other component be finite at x0. Then
the function ϕ(x) is twice differentiable at the point x0, and∗

∂x̂1
∂x̂2

ϕ(x0) = ∂x̂2
∂x̂1

ϕ(x0). (4)

Proof. Since one component in the pair
(
∂x̂1

∂x̂1
ϕ(x), ∂x̂2

∂x̂1
ϕ(x)

)
(5)

is continuous and the other is finite at the point x0, the angular partial
derivative ∂x̂1

ϕ(x) is the function, differentiable at the point x0 (see Theo-
rem 3.6.4 of Chapter II).

Analogously we can prove that the function ∂x̂2
ϕ(x) is differentiable at

the point x0.
Thus the function ϕ(x) is twice differentiable at the point x0.
Further, according to Young’s theorem (see Theorem 3.3.2 below), from

the twice differentiability of the function ϕ(x) at the point x0 we obtain the
equality ∂x

1
∂x

2
ϕ(x0) = ∂x

2
∂x

1
ϕ(x0), which with regard for Theorem 1.1.1,

results in equality (4). �

§ 2. Properties of Bettazzi Derivative of Functions of Two
Variables

2.1. The Notion of Bettazzi Derivative

The notion of a derivative at the point x0 = (x0
1, x

0
2) for a function

of two variables ϕ(x1, x2) has been introduced by Bettazzi in terms of the
limit

lim
(h,k)→(0,0)

∆2
[x0]ϕ(h, k)

hk
, (1)

where

∆2
[x0]ϕ(h, k) =

= ϕ(x0
1 + h1, x

0
2 + h2) − ϕ(x0

1, x
0
2 + h2) − ϕ(x0

1 + h1, x
0
2) + ϕ(x0

1, x
0
2). (2)

∗That is, the mixed angular partial derivatives are equal.
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The expression ∆[x0]ϕ(h, k) can be interpreted as a function Φ(I) of a

closed segment I ⊂ R
2 with principal vertices at the points (x0

1, x
0
2) and

(x0
1 + h1, x

0
2 + h2). Under such interpretation, the limit

lim
(h,k)→(0,0)

Φ(I)

|hk| , (3)

was called a strong derivative at the point x0 of the function of segment
Φ(I), symbolically Φ′

s(x
0).

The author of the present work considers it rightful to call limit (1) the
Bettazzi derivative of the function ϕ(x1, x2) at the point x0, in honour of
its author Bettazzi (1884).

In the sequel, the above symbols will be retained, and the Bettazzi
derivative will be denoted by ϕ′

s(x
0). Consequently,

ϕ′
s(x

0) = lim
(h,k)→(0,0)

∆2
[x0]ϕ(h, k)

hk
. (4)

2.2. Properties of Bettazzi Derivative

1. It should be here noted that the function may have finite Bettazzi
derivative and have no partial derivatives at some point. Such is, for e.g.,
the function ω(x1, x2) = α(x1) + β(x2), where finite functions α and β are
assumed to have no derivatives. We have ∆2

[x0]ω(h, k) = 0 at every point

x0 = (x0
1, x

0
2). Therefore ω′

s(x
0) = 0 for all x0.

If the functions λ(x1) and µ(x2) have finite derivatives λ′(x0
1) and

µ′(x0
2), then the function ψ(x1, x2) = λ(x1) · µ(x2) has at the point (x0

1, x
0
2)

a finite Bettazzi derivative, and

ψ′
s(x

0
1, x

0
2) = λ′(x0

1) · µ(x0
2). (1)

In particular, this yields

(x1 · x2)
′
s(x

0
1, x

0
2) = 1 (2)

at every point (x0
1, x

0
2).

Proposition 2.2.1. Let the function ϕ(x1, x2) at the point x0 =
(x0

1, x
0
2) have a finite Bettazzi derivative ϕ′

s(x
0
1, x

0
2). Then we have the fol-

lowing statements:
1) the function ϕ(x1, x2) is continuous in the wide at the point (x0

1, x
0
2);

2) ∆2
[x0]ϕ(h, k), being the function of two variables (h, k), is continuous

at the point (0, 0).

Proof. First, from the finiteness of ϕ′
s(x

0) follows the equality

lim
(h,k)→(0,0)

∆2
[x0]ϕ(h, k) = 0, (3)

which means statement 1).
Second, we have the relations

∆2
[x0]ϕ(0, 0) = ∆2

[x0]ϕ(h, 0) = ∆2
[x0]ϕ(0, k) = 0. (4)
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Taking into account that ∆2
[x0]ϕ(0, 0) = 0, equality (3) means that the

function ∆2
[x0]ϕ(h, k) is continuous at the point (0, 0). Thus our proposition

is proved. �

2. The existence of a total differential and derivability by Bettazzi are
connected as follows.

Theorem 2.2.1 ([2]). If there exist finite ϕ′
x1

(x0
1, x

0
2), ϕ

′
x2

(x0
1, x

0
2) and

ϕ′
s(x

0
1, x

0
2), then there exists the total differential dϕ(x0

1, x
0
2).

Moreover, the existence of the finite ϕ′
s(x

0
1, x

0
2) does not follow from

the finiteness of str gradϕ(x0
1, x

0
2) and, all the more, from the existence of

dϕ(x0
1, x

0
2).

Proof. The left-hand side of the equality

ϕ′
s(x

0
1, x

0
2) = lim

(h,k)→(0,0)

∆2
[x0]ϕ(h, k)

|h| + |k| · |h| + |k|
hk

is finite, and
∣∣∣
|h| + |k|
hk

∣∣∣ =
1

|k| +
1

|h| → +∞, (h, k) → (0, 0).

Therefore equality 2.5.(12) from Chapter II is fulfilled. Hence by Theo-
rem 2.5.4 of Chapter II, dϕ(x0

1, x
0
2) exists.

Further, the function g(x1, x2) defined by equality 2.4.(9) has finite
str grad(0, 0) (see equality 3.2.(4) in Chapter II).

Moreover,

∆2
[(0,0)]g(h, k) = hk sin(hk)−1

and hence g′s(0, 0) does not exist. �

3. The theorem below deals with the representation of a function,
having a finite Bettazzi derivative.

Theorem 2.2.2 ([2]). Let the function ϕ(x1, x2) have at the point
x0 = (x0

1, x
0
2) a finite Bettazzi derivative ϕ′

s(x
0). Then there exists the

continuous at the point x0 function g(x1, x2) possessing the following two
properties:

ϕ(x1, x2) = g(x1, x2) + ϕ(x0
1, x2) + ϕ(x1, x

0
2) − ϕ(x0

1, x
0
2), (5)

g′s(x
0) = ϕ′

s(x
0). (6)

In addition, if the function ϕ(x1, x2) is separately partial continuous at
the point x0, then the function ϕ(x1, x2) is continuous at the point x0.

Proof. In equality 2.1.(2) we put x1 = x0
1 + h1, x2 = x0

2 + k and write it as

ϕ(x1, x2) = g(x1, x2) + ϕ(x0
1, x2) + ϕ(x1, x

0
2) − ϕ(x0

1, x
0
2), (7)

where the function g(x1, x2) is defined by the equality

g(x1, x2) = ∆2
[x0]ϕ(x1 − x0

1, x2 − x0
2). (8)
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The function g(x1, x2) is continuous at the point x0, by statement (2)
of Proposition 2.2.1.

To define g′s(x
0), we have to find ∆2

[x0]g(h, k). We have

∆2
[x0]g(h, k)=g(x

0
1 + h, x0

2 + k)−g(x0
1, x

0
2 + k)−g(x0

1 + h, x0
2)+g(x

0
1, x

0
2).

But by equality (4),

g(x0
1, x

0
2 + k) = g(x0

1 + h, x0
2) = g(x0

1, x
0
2) = 0.

Therefore

∆2
[x0]g(h, k) = g(x0

1 + h, x0
2 + k).

From Equality (8) we now find that

g(x0
1 + h, x0

2 + k) = ∆2
[x0]ϕ(h, k).

The last two equalities yield

∆2
[x0]g(h, k) = ∆2

[x0]ϕ(h, k).

By the assumption, ϕ′
s(x

0) is finite. So, there exists the finite g′s(x
0), and

equality (6) holds.
The second part of the theorem follows from equality (5). �

From Theorems 2.2.1 and 2.2.2 we arrive at

Theorem 2.2.3 ([2]). If the function ϕ(x1, x2) has at the point x0 =
(x0

1, x
0
2) finite ϕ′

s(x
0), then the following two statements are valid:

1) separately partial continuity of the function ϕ(x1, x2) at the point x0

implies continuity of the function ϕ(x1, x2) at the point x0;
2) separately partial differentiability of the function ϕ(x1, x2) at the

point x0 implies its differentiability at the point x0.

40. Interconnection between the Bettazzi derivative and mixed partial
derivative consists in the following.

Theorem 2.2.4 ([2]). Let the function ϕ(x1, x2) in the neighborhood
U(x0) of the point x0 = (x0

1, x
0
2) have at least one finite mixed derivative.

Then for ϕ′
s(x

0) to exist, it is necessary and sufficient that this mixed partial
derivative have limit at the point x0. If this limit exists, then ϕ′

s(x
0) is equal

to it.

Proof. For clarity, we suppose that in U(x0) there exists finite
∂x

2
∂x

1
ϕ(x1, x2). We introduce the function µ(x2) = ϕ(x0

1+h, x2)−ϕ(x0
1, x2)

which by the Lagrange formula takes the form µ(x2) = hϕ′
x1

(x0
1 + θ1h, x2),

where 0 < θ1 < 1. Moreover, the difference µ(x0
2 + k)− µ(x0

2) is equal both
to ∆2

[x0]ϕ(h, k) and to k · µ′(x0
2 + θ2k) = hk∂x

2
∂x

1
ϕ(x0

1 + θ1h, x
0
2 + θ2k),

0 < θ2 < 1. Hence

∆2
[x0]ϕ(h, k) = hk∂x

2
∂x

1
ϕ(x0

1 + θ1h, x
0
2 + θ2k), (9)

which implies the statement of the theorem. �
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Corollary 2.2.1. Let the function ϕ(x1, x2) have in the neighborhood
of the point x0 = (x0

1, x
0
2) the both finite mixed partial derivatives. If they

have limits at the point x0, then there exists ϕ′
s(x

0), and the both limits are
equal to it.

§ 3. On Mixed Partial Derivatives of Second Order

3.1. Preliminaries

Let the function f(x) be defined in the δ-neighborhood U(x0, δ) of the
point x0 = (x0

1, . . . , x
0
n) ∈ Rn. Suppose that the function f has at every

point x ∈ U(x0, δ) a finite partial derivative with respect to the variable xi,
symbolically f ′

xi
, or ∂xi

f(x). Obviously, f ′
xi

is finite function in U(x0, δ),
and it is quite possible that it has partial derivative with respect to xj at
the point x ∈ U(x0, δ), symbolically f ′′

xixj
(x), or ∂xj

∂xi
f(x). It is called a

second order partial derivative at the point x of the function f with respect
first to xi and then to xj , or briefly, of a second order partial derivative at
the point x with respect to variables xi, xj .

If j = i, then it is called a second order partial derivative of the function
f with respect to xi at the point x, symbolically f ′′

x2
i

, or ∂2
xi
f(x) (here

∂2
xi
f(x) = ∂xi

∂xi
f(x)).

If j 6= i, then it is called a second order mixed partial derivative of the
function f at the point x with respect to variables∗ xi, xj .

They say that the function f at the point x has partial derivative of
arbitrary order with respect to xk, if for arbitrary values p = 1, 2, . . . the
p-th order partial derivatives of the function f at the point x with respect

to xk are finite, symbolically ∂p
xk
f(x), or ∂pf

∂p
xk

(x).

Possibly, the function f at the point x ∈ U(x0, δ) has the second order
mixed partial derivative with respect to variables xj , xi (first to xj and then
to xi), symbolically f ′′

xj,xi
(x), or ∂xi

∂xj
f(x).

The basic problem for mixed partial derivatives of second order involves
the question: what properties of the function f at the point x guarantee
the fulfilment of the equality

∂xi
∂xj

f(x) = ∂xj
∂xi

f(x)? (1)

The property expressed by equality (1) is sometimes called either sym-
metry of mixed partial derivatives of second order of the function f at the
point x, or permutability of a sequence in which we take partial derivatives
with respect to the variables xi and xj .

Various examples show that there exist functions, at some points x for
which inequality

∂xi
∂xj

f(x) 6= ∂xj
∂xi

f(x). (2)

hold.

∗As is seen, a sequence of partial derivatives is fixed symbolically by the sign
“comma” between variables.
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Here we consider two examples: first, when one hand-side of relation
(2) exists and the other does not; second, both hand-sides of relation (2)
are finite and different (The second example has another properties as well;
see Corollaries 3.1.1 and 3.1.2, and also Remark 3.3.1 below).

Example 3.1.1. Consider the function ϕ(x1, x2) = α(x1) + β(x2),
where α(x1) has a finite derivative for all x1, and the finite function β(x2)
has derivative nowhere. Then ∂x

2
∂x

1
ϕ(x1, x2) = ∂x

2
α′(x1) = 0 for all

(x1, x2), and the set for the existence of a mixed partial derivative
∂x

1
∂x

2
ϕ(x1, x2) is empty, since a set for the existence of a partial deriv-

ative ∂x
2
ϕ(x1, x2) = β′(x2) is empty.

The following example is well know.

Example 3.1.2. Let us prove that for the function

ψ(x1, x2) =





x1 · x2

x2
1 − x2

2

x2
1x

2
2

for x2
1 + x2

2 > 0

0 for x1 = 0 = x2

, (3)

the inequality

∂x
2
∂x

1
ψ(0, 0) 6= ∂x

1
∂x

2
ψ(0, 0) (4)

holds.

Note at once that ψ(x1, 0) = ψ(0, x2) = ψ(0, 0) = 0.
To find the left-hand side of inequality (4), we have first to find a partial

derivative of the function ψ(x1, x2) with respect to x1 at the point (0, x2),
symbolically ∂x

1
ψ(0, x2). The latter is the function of x2, and we have to

find its derivative at the point x2 = 0, i.e., (∂x
1
ψ(0, x2))

′(0).

Analogously, the right-hand side of inequality (4) is (∂x
2
ψ(x1, 0))′(0).

We start with the finding of the left-hand side of inequality (4) by using
the just mentioned sequence. We have

∂x
1
ψ(0, x2) = lim

x1→0

ψ(x1, x2) − ψ(0, x2)

x1 − 0
.

Here x1 6= 0, and hence the quantities ψ(x1, x2) are specified by the upper
line of equality (3), due to x2

1 + x2
2 > 0.

Moreover, ψ(0, x2) = 0. Hence for x2 6= 0 we have

∂x
1
ψ(0, x2) = lim

x1→0

ψ(x1, x2)

x1
= lim

x1→0
x2 ·

x2
1 − x2

2

x2
1x

2
2

= x2
−x2

2

x2
2

= −x2.

However, if x2 = 0, then ∂x
1
ψ(0, 0) is the derivative of the function

ψ(x1, 0) = 0 at the point x1 = 0. Thus

∂x
1
ψ(0, x2) =

{
−x2 for x2 6= 0

0 for x2 = 0
. (5)

Next, ∂x
2
∂x

1
ψ(0, 0) means the derivative d

dx2
∂x

1
ψ(0, x2) at x2 = 0, and

when calculating it we assume that x2 6= 0 under the corresponding limiting
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sign. Therefore, taking into account (5), we have

∂x
2
∂x

1
ψ(0, 0) = lim

x1→0

∂x
1
ψ(0, x2) − ∂x

1
ψ(0, 0)

x2 − 0
=

= lim
x2→0

−x2 − 0

x2
= lim

x2→0
(−1) = −1

and hence

∂x
2
∂x

1
ψ(0, 0) = −1. (6)

Analogously we obtain the equalities

∂x
2
ψ(x1, 0) =

{
x1 for x1 6= 0

0 for x1 = 0
(7)

and

∂x
1
∂x

2
ψ(0, 0) = 1. (8)

Consequently, inequality (4) is established.

Corollary 3.1.1. For the function ψ(x1, x2) defined by equality (3) the
gradψ(x1, x2) is continuous everywhere. In particular, there exists every-
where the total differential dψ(x1, x2).

Proof. The continuity of the function gradψ(x1, x2) at all the points (x1, x2)
6= (0, 0) follows from the equalities

ψ′
x
1
(x1, x2) =

x2(x
4
1 − x4

2 + 4x2
1x

2
2)

(x2
1 + x2

2)
2

for x2
1 + x2

2 > 0, (9)

ψ′
x2

(x1, x2) =
x1(x

4
1 − x4

2 − 4x2
1x

2
2)

(x2
1 + x2

2)
2

for x2
1 + x2

2 > 0. (10)

Taking into account the equality ψ′
x1

(0, 0) = 0, we obtain the continuity

of the partial derivative ψ′
x1

(x1, x2) at the point (0, 0) from the following

estimates:

∣∣ψ′
x1

(x1, x2)
∣∣ ≤ |x2|(x4

1 + x4
2 + 2x2

1x
2
2 + 2x2

1x
2
2)

(x2
1 + x2

2)
2

≤

≤ |x2| [(x2
1 + x2

2)
2 + x4

1 + x4
2]

(x2
1 + x2

2)
2

≤

≤ |x2| [(x2
1 + x2

2)
2 + (x2

1 + x2
2)

2]

(x2
1 + x2

2)
2

= 2|x2| → 0 as x2 → 0.

Thus

lim
(x1,x2)→(0,0)

ψ′
x1

(x1, x2) = ψ′
x1

(0, 0) = 0, (11)

which means that the partial derivative ψ′
x1

(x1, x2) is continuous at the

point (0, 0).
The continuity of the partial derivative ψ′

x2
(x1, x2) at the point (0, 0)

can be proved analogously.
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The existence of the total differential dψ(x1, x2) at all points (x1, x2)
follows from the continuity everywhere of the function gradψ(x1, x2). �

Corollary 3.1.2. The function ψ(x1, x2) defined by equality (3) pos-
sesses the following properties:

1) it is not twice differentiable at the point (0, 0), i.e., it has no total
differential of second order at the point (0, 0);

2) at every point (x1, x2) 6= (0, 0) it has total differential of arbitrary
order;

3) at all points (x1, x2) 6= (0, 0) the equality

∂x
2
∂x

1
ψ(x1, x2) = ∂x

1
∂x

2
ψ(x1, x2), (x1, x2) 6= (0, 0) (12)

holds.

Proof. 1) Were the function ψ(x1, x2) twice differentiable at the point (0, 0),
the equality ∂x

2
∂x

1
ψ(0, 0) = ∂x

1
∂x

2
ψ(0, 0) would hold, by Young’s theorem

(see Theorem 3.3.2 below). But this contradicts inequality (4).
2) The function ψ(x1, x2) has at the points (x1, x2) 6= (0, 0) total dif-

ferential of arbitrary order because its partial derivatives of any orders are
continuous at the points (x1, x2) 6= (0, 0) (see equalities (9) and (10)).

3) As far as the function ψ(x1, x2) has total differential of arbitrary
order, in particular of second order, at all points (x1, x2) 6= (0, 0), equality
(12) holds at the points (x1, x2) 6= (0, 0), by the same Young’s theorem. �

3.2. Inequality of Mixed Partial Derivatives

As we see, the function ψ(x1, x2) defined by equality 3.1.(3) has ev-
erywhere the continuous gradient and satisfies inequality 3.1.(2) at a single
point (0, 0).

There naturally arises the problem: for the function having everywhere
continuous gradient, how rich may be a set of those points at which inequal-
ity 3.1.(2) is fulfilled?

In connection with this problem we have Tolstov’s two statements in
which by K is denoted the unit square {(x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1}.

Theorem 3.2.1 ([29], Proposition II). There exists the function
F (x1, x2) with the continuous in K gradient and possessing everywhere in
K the both mixed partial derivatives for which the inequality

∂x
1
∂x

2
F (x1, x2) 6= ∂x

2
∂x

1
F (x1, x2) (1)

is fulfilled at almost all points (x1, x2) ∈ K.

Theorem 3.2.2 ([29], Proposition I). For every positive number
η < 1

2 there exists the function Ψ(x1, x2) with the continuous in K gradient
and possessing in K the both mixed partial derivatives. Moreover, there
exists a measurable set Q ⊂ K of plane measure η2, such that at every point
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(x1, x2) ∈ Q the inequality

∂x
1
∂x

2
Ψ(x1, x2) 6= ∂x

2
∂x

1
Ψ(x1, x2) (2)

holds, while the mixed partial derivatives outside the set Q coincide∗.

3.3. The Sufficient Conditions for Equality of Mixed Partial
Derivatives of Functions of Two Variables

1. Theorem 3.3.1 ([27]). If the function F (x, y) has everywhere in
the domain G finite partial derivatives ∂2

x
1
F , ∂x

1
∂x

2
F , ∂x

2
∂x

1
F and ∂2

x
2
F ,

then almost everywhere in G the equality

∂x
2
∂x

1
F = ∂x

1
∂x

2
F (1)

holds.

Remark 3.3.1. Under the conditions of Theorem 3.3.1 one cannot,
in general, state that equality (1) is fulfilled everywhere in G. This can be
illustrated by an example of the function ψ(x1, x2) given by equality 3.1.(3).

Indeed, equalities 3.1.(9) and 3.1.(10) show that all partial derivatives
of second order are finite at every point (x1, x2) 6= (0, 0), and mixed partial
derivatives coincide at such points. First, mixed partial derivatives are
finite at the point (0, 0), by equalities 3.1.(6) and 3.1.(8). Second, ∂2

x
1
ψ(0, 0)

means the derivative (∂x
1
ψ(x1, 0))′(0). Therefore the condition x1 6= 0 must

be fulfilled in ∂x
1
ψ(x1, 0), but this by virtue of equality 3.1.(9) implies that

∂x
1
ψ(x1, 0) = 0. Hence ∂2

x
1
ψ(0, 0) = (0)′(0) = 0.

Just in the similar way we obtain the equality ∂2
x
2
ψ(0, 0) = 0.

Consequently, the function ψ(x1, x2) satisfies the conditions of Theo-
rem 3.3.1 at every point (x1, x2) ∈ R2. Despite this fact, inequality 3.1.(4),
as is seen, holds.

The above-formulated Tolstov’s theorem is, in fact, a generalization of
the classical “local” Young’s theorem on the validity of inverting the order
of taking partial derivatives at those points, at which partial derivatives F ′

x

and F ′
y have total differentials.

Here is the Young’s theorem.

Theorem 3.3.2 ([30], pp. 141-2; [11], p. 427). Let the function
f(x1, x2) have finite partial derivatives ∂x

1
f(x1, x2) and ∂x

2
f(x1, x2) in the

neighborhood of the point x0 = (x0
1, x

0
2), and let these partial derivatives be

the functions, differentiable at the point x0. Then the equality

∂x
2
∂x

1
f(x0) = ∂x

1
∂x

2
f(x0), (2)

∗This statement somewhat differs from that proposed by the author. It is said in
[29] that the plane measure of the set Q is positive. But upon proving this theorem it is

stated that the plane measure of the set Q is equal to (λ−3

λ−2
)2 and outside the set Q the

mixed partial derivatives coincide, where 3 < λ < 4 (see [29], p. 33).
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holds.

This Young’s theorem can be formulated in short as follows: the twice
differentiable at the point x0 function f leads to equality (2).

Remark 3.3.2. Tolstov’s Theorem 3.3.1 does not follow from Young’s
Theorem 3.3.2. Indeed, the function F (x1, x2) from Tolstov’s Theorem B
(see Introduction in Chapter II) satisfies equality (1) almost everywhere in
the square Q, by Theorem 3.3.1. Moreover, suppositions of Theorem 3.3.2
are not fulfilled at the points of the set E ⊂ Q.

2. Here we indicate two more theorems on the equality of mixed par-
tial derivatives.

Let the function of two variables Φ(x, y) be defined in the domain G ⊂
R2, and suppose that Φ(x, y) in G has finite partial derivatives p(x, y) =
Φ′

x(x, y) and q(x, y) = Φ′
y(x, y).

The following two theorems are valid.

Theorem 3.3.3 ([26]). Let the functions p(x, y) and q(x, y) be con-
tinuous in G, and let one of them, say p(x, y), satisfy the conditions:

A) for some summable function ϕ(x) the inequality
∣∣∣
p(x, y + k) − p(x, y)

k

∣∣∣ ≤ ϕ(x) (3)

is fulfilled;
B) almost everywhere in G there exists the finite partial derivative

p′y(x, y).
Then almost everywhere in G there exists the finite partial derivative

q′x(x, y), and for almost all point (x, y) ∈ G the equality

q′x(x, y) = p′y(x, y) (4)

is valid.

Theorem 3.3.4 ([26]). If in the neighborhood of the point M(x0, y0)
there exists the finite partial derivative p′y(x, y) which is continuous with
respect to the variable x at the point M , then there exists the finite q′x(x0, y0),
and the equality

p′y(x0, y0) = q′x(x, y) (5)

is valid.



CHAPTER IV

On Double Indefinite Integral and Absolutely

Continuous Functions of Two Variables

In the present chapter we prove the finiteness of a strong gradient, in
particular, the existence of a total differential, almost everywhere both for
an indefinite double integral and for an absolutely continuous function of
two variables.

For the function of two variables, summable on a rectangle, we introduce
the notion of an Lebesgue’s intense points and prove that almost each point
is an Lebesgue’s intense point for every summable function.

The strong gradient at the Lebesgue’s intense points is finite, in partic-
ular, the total differential exists both for an indefinite double integral and
for an absolutely continuous function of two variables.

For an indefinite integral with a parameter we prove the theorem which
contains C. de la Vallée Poussin’s theorem on differentiation of an integral
with respect to the parameter and Lebesgue’s theorem on differentiation of
an indefinite integral.

The problem on double differentiability of an indefinite double integral
is investigated and the sufficient conditions for an Lebesgue’s intense point
are established.

§ 1. Differentiability of an Indefinite Double Integral

1.1. Partial and Mixed Partial Derivatives of an Indefinite
Integral

Let the function of two variables f(x, y) be summable on the rectangle
Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}. Consider for the function f the
indefinite double integral

F (x, y) =

x∫

a

y∫

c

f(t, τ) dt dτ. (1)

The finite at every point (x, y) ∈ Q function F (x, y) we can, by Fubini’s
theorem, write as

F (x, y) =

x∫

a

( y∫

c

f(t, τ) dτ

)
dt, (2)

99
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F (x, y) =

y∫

c

( x∫

a

f(t, τ) dt

)
dτ. (3)

If we apply Lebesgue’s theorem to equality (2), then a set of those x’s,
for which

F ′
x(x, y) =

y∫

c

f(t, τ) dτ, (4)

will depend on the parameter y. G. P. Tolstov studied this situation in
detail and proved the following

Theorem 1.1.1 ([29], § 7; [28], p. 90). For every function f ∈ L(Q)
there exist measurable sets e1 ⊂ [a, b] with |e1| = b − a and e2 ⊂ [c, d] with
|e2| = d − c such that defined by equality (1) the function F (x, y) has the
following properties:

1) at every point (x, y) with x ∈ e1 and c ≤ y ≤ d there exists finite
F ′

x(x, y) and

F ′
x(x, y) =

y∫

c

f(x, τ) dτ ; (5)

2) at every point (x, y) with a ≤ x ≤ b and y ∈ e2 there exists finite
F ′

y(x, y) and

F ′
y(x, y) =

x∫

a

f(t, y) dt; (6)

3) there exists a measurable set E ⊂ Q with |E| = |Q| such that at every
point (x, y) ∈ E hold the equalities

F ′′
x,y(x, y) = f(x, y) = F ′′

y,x(x, y) (7)

with finite terms∗.

From statements 1) and 2) of Theorem 1.1.1 it follows that the functions
of two variables F ′

x and F ′
y are finite almost everywhere on the Q. Namely,

the function F ′
x is finite on the set E1 = {(x, y) ∈ Q : x ∈ e1, c ≤ y ≤ d}

with |E1| = |Q|, and the function F ′
y is finite on the set E2 = {(x, y) ∈ Q :

a ≤ x ≤ b, y ∈ e2} with |E2| = |Q|.
Proposition 1.1.1. The functions F ′

x and F ′
y are summable on the Q.

Proof. Since f ∈ L(Q),

b∫

a

d∫

c

|f(t, τ)| dt dτ ≡ I(f)

is finite.

∗We have introduced the symbols F ′′

x,y = ∂y ∂x F and F ′′

y,x = ∂x ∂y F .
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The estimates

|F ′
x(x, y)| ≤

y∫

c

|f(x, τ)| dτ ≤
d∫

c

|f(x, τ)| dτ

obtained from equality (5), show that

b∫

a

|F ′
x(x, y)|dx ≤ I(f)

whence
b∫

a

d∫

c

|F ′
x(x, y)|dx dy ≤ (d− c) I(f) < +∞.

Hence F ′
x ∈ L(Q). Analogously, F ′

y ∈ L(Q). The embeddings F ′′
x,y ∈

L(Q) and F ′′
y,x ∈ L(Q) follow from equalities (7). �

1.2. Differentiability of an Indefinite Double Integral

If the function ϕ(x) is summable on the [a, b], and

Φ(x) =

b∫

a

ϕ(t) dt, (1)

then according to Lebesgue’s theorem (1903), there exists the measurable
set e ⊂ [a, b] with |e| = b − a such that the equality Φ′(x) = ϕ(x), or what
is the same, the equality

lim
h→0

1

h

x+h∫

x

ϕ(t) dt = ϕ(x) (2)

is fulfilled for all x ∈ e.
All Lebesgue’s points of the function ϕ on the [a, b] belong to the set e.

In particular, all points of continuity of the function ϕ on the [a, b] belong
to the set e, if ϕ(x) has such a point on the [a, b].

The following problems are quite natural.
I. Does the indefinite double integral

F (x, y) =

x∫

a

y∫

c

f(t, τ) dt dτ, (3)

corresponding to the summable on the rectangle Q = {(x, y) ∈ R2 : a ≤
x ≤ b, c ≤ y ≤ d} function f , have or have no a total differential almost
everywhere?

II. If F (x, y) has a total differential, then at what points and how the
set of such points is connected with the function f?
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The answer to Problem I will be given here, and Problem II will be
considered in Section 4.

We proceed to formulating and proving the following

Lemma 1.2.1 ([3]). For every function f ∈ L(Q) there exists the
measurable set E ⊂ Q with |E| = |Q| such that at every point (x, y) ∈ E
the equalities

lim
h→0

|k|≤c|h|

1

h

x+h∫

x

y+k∫

y

f(t, τ) dt dτ = 0, (4)

lim
k→0

|h|≤l|k|

1

k

x+h∫

x

y+k∫

y

f(t, τ) dt dτ = 0 (5)

are fulfilled, no matter how the constants c > 0 and l > 0 are.

Proof. Without restriction of generality, we can assume that h > 0 and
k > 0. For every constant c > 0 under k ≤ ch we have

∣∣∣∣
1

h

x+h∫

x

y+k∫

y

f(t, τ) dt dτ

∣∣∣∣ ≤
1

h

x+h∫

x

y+ch∫

y

|f(t, τ)| dt dτ =

= ch

(
1

h · ch

x+h∫

x

y+ch∫

y

|f(t, τ)| dt dτ
)
. (6)

By virtue of the Lebesgue’s theorem ([21], p. 118), there exists the
measurable set E1 ⊂ Q with |E1| = |Q|, such that the expression in the
brackets appearing in (6) has a finite limit at every point (x, y) ∈ E1, equal
to |f(x, y)|. Therefore equality (4) is fulfilled at the points (x, y) ∈ E1.

Equality (5) is likewise fulfilled at every point (x, y) of a specific set
E2 ⊂ Q with |E2| = |Q|.

It is now clear that equalities (4) and (5) together can be fulfilled at
every point (x, y) ∈ E, where E = E1 ∩ E2, |E| = |Q|. �

Theorem 1.2.1 ([3]). Indefinite integral (3) has a total differential at
almost all points (x, y) ∈ Q for every function f ∈ L(Q).

Proof. To prove this theorem, it is necessary and sufficient to prove that the
quantitiesDx̂F (x, y) andDŷF (x, y) are finite at almost all points (x, y) ∈ Q,
by Theorem 2.5.3 of Chapter II.

Let us, for example, prove Dx̂F (x, y) is finite at almost all (x, y) ∈ Q.
To this end, we consider the expression

F (x+ h, y + k) − F (x, y + k)

h
−

y∫

c

f(x, τ)dτ =
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=
1

h

x+h∫

x

y+k∫

c

f(t, τ) dt dτ −
y∫

c

f(x, τ) dτ =

=
1

h

x+h∫

x

( y∫

c

[
f(t, τ) − f(x, τ)

]
dτ

)
dt+

1

h

x+h∫

x

y+k∫

y

f(t, τ)dt dτ ≡

≡ Ih(x, y) + Jh,k(x, y). (7)

By Lemma 1.2.1, there exists the measurable set E ⊂ Q with |E| = |Q|,
such that at every point (x, y) ∈ E the equality

lim
h→0

|k|≤|h|

Jh,k(x, y) = 0. (8)

is fulfilled.
Now we show that the equality

lim
h→0

Ih(x, y) = 0 (9)

is fulfilled at almost all points (x, y) ∈ Q. Towards this end, we make use
of the sets e1 and e2 and also the sets E1 and E2 from Theorem 1.1.1.

On the set E1 we have the equality 1.1.(5). Hence the equality

lim
h→0

F (x+ h, y) − F (x, y)

h
=

y∫

c

f(x, τ)dτ, (x, y) ∈ E1 (10)

is fulfilled. It is clear that under h→ 0 the difference

F (x+ h, y) − F (x, y)

h
−

y∫

c

f(x, τ) dτ =

=
1

h

( x+h∫

a

y∫

c

−
x∫

a

y∫

c

)
−

y∫

c

f(x, τ) dτ =

=
1

h

x+h∫

x

y∫

c

f(t, τ) dt dτ − 1

h

x+h∫

x

y∫

c

f(x, τ) dτ =

=
1

h

x+h∫

x

( y∫

c

f(t, τ) dτ −
y∫

c

f(x, τ)dτ

)
dt =

=
1

h

x+h∫

x

( y∫

c

[
f(t, τ) − f(x, τ)

]
dτ

)
dt = Ih(x, y)

tends to zero.
It is now clear that equalities (8) and (9) are fulfilled simultaneously at

the points (x, y) ∈ E∗, where E∗ = E ∩ E1 and |E∗| = |Q|. By equality
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(7), all this means that at the points (x, y) ∈ E∗ the quantity Dx̂F (x, y) is
finite, and at these points

Dx̂F (x, y) =

y∫

c

f(t, τ)dτ, (x, y) ∈ E∗, |E∗| = |Q|. (11)

The finiteness of the quantity DŷF (x, y) at the points (x, y) ∈ E∗∗ =
E ∩ E2, |E∗∗| = |Q| is established analogously, and

DŷF (x, y) =

x∫

a

f(t, y) dt, (x, y) ∈ E∗∗, |E∗∗| = |Q|. (12)

Obviously, at the points (x, y) of the set M = E∗ ∩ E∗∗, |M | = |Q|,

D̂F (x, y) =
(
Dx̂F (x, y), DŷF (x, y)

)
(13)

is finite (see equality 2.3.(4) in Chapter II), and

dF (x, y) = Dx̂F (x, y)dx +DŷF (x, y)dy (14)

(see equality 2.5.(11) in Chapter II). �

From here, we obtain the following

Theorem 1.2.2. The indefinite double integral

Ψ(x, y) =

x∫

a

y∫

c

ψ(t, τ) dt dτ (15)

for every R-integrable on the Q function ψ has the total differential almost
everywhere on the Q.

Theorem 1.2.3 ([4], [5]). At every point (x0, y0) ∈ Q of differentia-
bility of the indefinite integral (3) with f ∈ L(Q) we have

lim
h→0
k→0

1

|h| + |k|

x0+h∫

x0

y0+k∫

y0

f(t, τ) dt dτ = 0. (16)

In particular, equality (16) is fulfilled at almost all points (x0, y0) ∈ Q.

Proof. At the point (x0, y0) ∈ Q of differentiability of the function F (x, y),
Dx̂F (x0, y0) and DŷF (x0, y0) are finite. In particular, F ′

x(x0, y0) and
F ′

y(x0, y0) are finite. Hence the equality

lim
h→0
k→0

F (x0+h, y0+k)−F (x0, y0+k)−F (x0+h, y0)+F (x0, y0)

|h|+|k| =0. (17)

is fulfilled by Theorem 2.5.4 from Chapter II.
If for the defined by (3) function F (x, y) we calculate the numerator of

the equality (17), then we will get equality (16).
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The fulfilment of equality (16) almost everywhere on the Q for every
function f ∈ L(Q) follows from Theorem 1.2.1. �

Theorem 1.2.4 ([5]). Let indefinite integral (3) for f ∈ L(Q) have
in the neighborhood of the point (x0, y0) ∈ Q finite F ′

x(x, y), F ′
y(x, y) and

F ′′
x,y(x, y). Then for the function F (x, y) to be differentiable at the point

(x0, y0), it is necessary and sufficient that

lim
h→0
k→0

hk

|h| + |k|F
′′
x,y(x0 + θ1h, y0 + θ2k) = 0, 0 < θ1, θ2 < 1. (18)

If in addition, F ′′
x,y(x, y) = f(x, y) in the neighborhood of the point

(x0, y0), then for the differentiability of the function F (x, y) at (x0, y0) it is
necessary and sufficient that

lim
h→0
k→0

hk

|h| + |k|f(x0 + θ1h, y0 + θ2k) = 0, 0 < θ1, θ2 < 1. (19)

Proof. Substituting the function ϕ by F , the assumption of Theorem 2.5.4
from Chapter II is fulfilled. Therefore equality (17) is the necessary and
sufficient condition for the function F (x, y) to be differentiable at the point
(x0, y0). But the numerator in (17) can be written as F ′′

x,y(x0 +θh, y0 +θk),
by equality 2.2.(9) from Chapter III. �

§ 2. Differentiability of an Absolutely Continuous Function of
Two Variables

We intend to prove the theorem for absolutely continuous functions of
two variables, which will be analogous to the classical Lebesgue’s theorem
(1903).

2.1. The Notion of an Absolutely Continuous Function of a
Two-Dimensional Segment

In the sequel, under a segment will be meant a closed non-degenerated
two-dimensional segment, or an empty set.

Let on the rectangle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d} there
is a real-valued function of segment Φ. This means that to every segment
I = {(t, τ) ∈ Q : x1 ≤ t ≤ x2, y1 ≤ τ ≤ y2} ⊂ Q there corresponds the
unique real number Φ(I), and for an empty set ∅ we assume that Φ(∅) = 0.

A function of the segment Φ is said to be continuous on the Q, if for
an arbitrarily small number ε > 0 there exists a number δ = δ(ε,Φ) > 0,
such that for every segment I ⊂ Q with the property |I| < δ the inequality
|Φ(I)| < ε is fulfilled. This fact is written as

lim
|I|→0

Φ(I) = 0. (1)
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Two segments I1 ⊂ Q and I1 ⊂ Q are said to be non-overlapping
(without common inner point) if I◦1 ∩ I◦2 = ∅, where by E0 is denoted the
interior of the set E ⊂ R2.

A function of the segment Φ is said to be additive onQ, if for every finite
system of pairwise non-overlapping (having pairwise no common interior
points) segments I1 ⊂ Q, . . . , Ip ⊂ Q the equality

Φ
( p⋃

k=1

Ik

)
=

p∑

k=1

Φ(Ik) (2)

is fulfilled.

Definition 2.1.1. A function of the segment Φ is called an absolutely
continuous function on the rectangle Q, if to every number ε > 0 there
corresponds the number η = η(ε,Φ) > 0, such that for every finite system
of pairwise non-overlapping segments I1 ⊂ Q, . . . , Ip ⊂ Q with the property
|I1| + · · · + |Ip| < η the inequality

q∑

k=1

|Φ(Ik)| < ε (3)

is fulfilled.

Obviously, an absolutely continuous function of a segment on the Q is
continuous on the Q.

2.2. The Connection Between Functions of a Point and of a
Two-Dimensional Segment

With every function ϕ(x, y) of a point defined on the Q, we can connect
the function of the segment Φ(I), I ⊂ Q. This can be done as follows.
Taking arbitrary segment I = {(x, y) ∈ Q : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2} ⊂ Q,
we compare the number Φ(I) by the rule

Φ(I) = ϕ(x2, y2) − ϕ(x1, y2) − ϕ(x2, y1) + ϕ(x1, y1). (1)

Note that such an comparison is not perfect. The matter is that the
right-hand side of equality (1) remains invariable when replacing the func-
tion ϕ(x, y) by the function ψ(x, y) = ϕ(x, y)+α(x)+β(y), where α(x) and
β(y) are arbitrary finite functions on the [a, b] and [c, d], respectively.

This fact shows that for the definition an absolutely continuous on the
Q function ϕ(x, y) of a point, there is no need to be satisfied with the
absolute continuity on the Q of the corresponding function of the segment
Φ(I). This defect can be corrected as follows.

Definition 2.2.1 ([24], p. 246). A function ϕ(x, y) of a point defined
on the Q is said to be absolutely continuous on the Q, if the corresponding
function of the segment Φ(I) defined by equality (1) is absolutely continuous
on the Q, and the functions ϕ(x, c) and ϕ(a, y) are absolutely continuous
on [a, b] and [c, d], respectively.
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Hence equality (1) provides us with the function of the segment by
means of the function of a point.

The converse is also possible, i.e. to get the function of a point through
the function of a segment. Indeed, let there be a function of the segment
Ψ(I), I ⊂ Q. We take any point (x, y) ∈ Q, where a < x ≤ b, c < y ≤ d.
Suppose

ψ(x, y) = Ψ(Ix,y) for Ix,y =
{
(t, τ) ∈ Q : a < t ≤ x, c < τ ≤ y

}
,

ψ(x, c) = 0 for a ≤ x ≤ b,

ψ(a, y) = 0 for c ≤ y ≤ d,

(2)

The defined in such a way function ψ(x, y) satisfies equality (1) with
the left-hand side Ψ(I), I ⊂ Q.

Obviously, the absolutely continuous on the Q function ϕ(x, y) is uni-
formly continuous, in particular, continuous on the Q.

2.3. Representation of an Absolutely Continuous Function of a
Point and Summability of Its Partial Derivatives

To every absolutely continuous on the Q function Φ(x, y), there corre-
sponds a triple of functions ϕ ∈ L(Q), g ∈ L([a, b]), h ∈ L([c, d]) such that
the equality ([24], p. 246)

Φ(x, y) =

x∫

a

y∫

c

ϕ(t, τ) dt dτ +

x∫

a

g(t) dt+

y∫

c

h(τ) dτ + Φ(a, c) (1)

holds, and vice versa.
Applying statement (1) from Theorem 1.1.1 to the double integral from

equality (1) and Lebesgue’s theorem (1903) to the first ordinary integral,
we establish the existence of a measurable set e∗1 ⊂ [a, b] with |e∗1| = b − a,
such that the function Φ′

x(x, y) is finite at every point (x, y) with x ∈ e∗1
and c ≤ y ≤ d, and

Φ′
x(x, y) =

y∫

c

ϕ(x, τ) dτ + g(x), x ∈ e∗1, c ≤ y ≤ d. (2)

Analogously, applying statement (2) from Theorem 1.1.1 to the double
integral and Lebesgue’s theorem to the second ordinary integral, we estab-
lish the existence of a measurable set e∗2 ⊂ [c, d] with |e∗2| = d − c, such
that the function Φ′

y(x, y) is finite at every point (x, y) with a ≤ x ≤ b and
y ∈ e∗2, and

Φ′
y(x, y) =

x∫

a

ϕ(t, y) dt+ h(y), a ≤ x ≤ b, y ∈ e∗2. (3)
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Finally, there exists the measurable set E∗ ⊂ Q with |E∗| = |Q|, such
that at every point (x, y) ∈ E∗ we have

Φ′′
x,y(x, y) = ϕ(x, y) = Φ′′

y,x(x, y), (4)

with finite terms.
The following proposition is obvious.

Proposition 2.3.1. For the absolutely continuous on the Q function
Φ(x, y), defined by equality (1), the functions Φ′

x, Φ′
y and Φ′′

x,y = Φ′′
y,x,

defined by equalities (2)–(4), belong to the space L(Q).

2.4. Differentiability of an Absolutely Continuous Function of
Two Variables

Every absolutely continuous on the Q function Φ(x, y) admits a repre-
sentation of type 2.3.(1). For an indefinite double integral in the right-hand
side of equality 2.3.(1) we prove, by using Theorem 1.2.1 that a total dif-
ferential exists almost everywhere on the Q. The remaining two functions
of one variable are absolutely continuous and therefore have almost every-
where a total differential∗. All this can be summarized in the form of the
following

Theorem 2.4.1 ([2]). Every absolutely continuous on the Q func-
tion Φ(x, y) has a total differential almost everywhere on the Q. Its partial
and mixed partial derivatives, given on the corresponding sets by equalities
2.3.(3)–2.3.(4), are summable on the Q functions.

Remark 2.4.1. Theorems 1.2.1 and 2.4.1 are the analogues of the clas-
sical Lebesgue’s theorem for functions of two variables. One more analogue
of that Lebesgue’s theorem will be given in Section 5, in the form of equal-
ity (4).

Remark 2.4.2. The function ψ(x, y) defined on the rectangle Q =
[a, b] × [c, d] is said to be separately absolutely continuous on the Q, if ψ
is absolutely continuous on [a, b] for every fixed y ∈ [c, d] and absolutely
continuous on [c, d] for every fixed x ∈ [a, b].

Tolstov ([28], p. 50) constructed an example of a separately absolutely
continuous function in the form of a repeated integral, which is discontinuous
almost everywhere on the Q.

∗Assume F (x, y) = α(x) for (x, y) ∈ Q. Then we have the relations

F (x0 + h, y0 + k) − F (x0, y0) − α′(x0)h

|h| + |k|
=

α(x0 + h) − α(x0) − α′(x0)h

|h| + |k|
=

=
o(h)

|h| + |k|
→ 0, as (h, k) → (0, 0).
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§ 3. The Finiteness of a Strong Gradient of an Indefinite
Integral and of an Absolutely Continuous Function

3.1. Separately Strong Differentiability of an Indefinite Integral

As is already known (see Ch.II, 3.3), the property of the function to
have a total differential at the given point is weaker than the property to
have a finite strong gradient at the same point.

It is also stated that an indefinite double integral has a total differential
almost everywhere (see Theorem 1.2.1).

Proceeding from these two statements, there naturally arises a question:
whether an indefinite double integral has a finite almost everywhere strong
gradient?

The answer is positive: the indefinite double integral is almost ev-
erywhere separately strong partial differentiable one (see Ch. II, Defini-
tion 3.1.4).

Theorem 3.1.1 ([2]). Let the function f(x, y) be summable on the rec-
tangle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}. Then the corresponding
indefinite integral

F (x, y) =

x∫

a

y∫

c

f(t, τ) dtdτ (1)

possesses the following properties:
1) for almost every x0 ∈ [a, b] and for every y0 ∈ [c, d] the F ′

[x](x0, y0)

is finite, and

F ′
[x](x0, y0) =

y0∫

c

f(x0, τ) dτ ; (2)

2) for every x0 ∈ [a, b] and for almost every y0 ∈ [c, d] the f ′
[y](x0, y0) is

finite, and

F ′
[y](x0, y0) =

x0∫

a

f(t, y0) dt; (3)

3) at almost every point (x0, y0) ∈ Q the str gradF (x0, y0) is finite.

In proving this theorem we use the following Tolstov’s lemma.

Lemma 3.1.1 ([28] Lemma 15 and Remark on page 89). For
(x, y) ∈ Q, let

Φ(x, y) =

x∫

a

ϕ(t, y) dt, (4)

where it is assumed that:
A) for almost every fixed x ∈ [a, b] the function ϕ(x, y) with respect to

y is continuous on the [c, d];
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B) there exists the summable on the [a, b] function M(x), such that the
inequality

∣∣ϕ(x, y)
∣∣ ≤ M(x) (5)

is fulfilled for almost every x ∈ [a, b] and for all y ∈ [c, d].
Then for every arbitrarily small number η > 0 there exists a perfect set

E ⊂ [a, b] with |E| > b− a− η, such that the equality

lim
h→0

1

h

[
Φ(x+ h, y) − Φ(x, y)

]
= ϕ(x, y) (6)

is fulfilled uniformly with respect to (x, y), where x ∈ E and c ≤ y ≤ d.

On the base of that lemma we prove

Lemma 3.1.2 ([2]). Under the conditions of Lemma 3.1.1, there exists
a measurable set e ⊂ [a, b] with |e| = b− a, such that at every point (x0, y0)
with x0 ∈ e and y0 ∈ [c, d] the Φ′

[x](x0, y0) is finite, and

Φ[x](x0, y0) = ϕ(x0, y0). (7)

Proof. It follows from Lemma 3.1.1 that for almost every fixed x ∈ [a, b] the
equality

lim
h→0

1

h

[
Φ(x+ h, y) − Φ(x, y)

]
= ϕ(x, y) (8)

is fulfilled uniformly with respect to y ∈ [c, d]. This means that for almost
every fixed such x and for any arbitrarily small number ε > 0 there exists
h0 = h0(ε, x) > 0, such that

∣∣∣
Φ(x+ h, y) − Φ(x, y)

h
− ϕ(x, y)

∣∣∣ < ε (9)

for c ≤ y ≤ d and 0 < h < h0.
Let e denote a set of all x’s from [a, b], for each of which equality (8) and

condition A) from Lemma 3.1.1 are fulfilled simultaneously. The equality
|e| = b− a is obvious.

Let us take an arbitrary point (x0, y0) with x0 ∈ e and c ≤ y0 ≤ d.
Since the function of one variable ϕ(x0, y) is continuous at the point y0,
for the same ε there exists the number δ = δ(ε, x0, y0) > 0, such that the
condition |y − y0| < δ implies

∣∣ϕ(x0, y) − ϕ(x0, y0)
∣∣ < ε. (10)

From estimates (9) and (10) follows the equality

lim
h→0
y∈y0

1

h

[
Φ(x0 + h, y) − Φ(x0, y)

]
= ϕ(x0, y0), (11)

which is equivalent to (7). �
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Proof of Theorem 3.1.1. We write the function F (x, y) defined by equality
(1) as

F (x, y) =

x∫

a

ϕ(t, y) dt, (12)

where

ϕ(t, y) =

y∫

c

f(t, τ) dτ. (13)

By virtue of Fubini’s theorem, from the assumption f ∈ L(Q) follows

that for almost all t from the [a, b] the integral
d∫
c

f(t, τ) dτ is finite. Thus

the function ϕ(t, y) for such t is continuous with respect to y on the [c, d].
Hence for almost all t from the [a, b] the function ϕ(t, y) is continuous with
respect to y on the [c, d].

Consequently, condition A) of Lemma 3.1.1 is fulfilled.
The fulfilment of condition B) follows, by Fubini’s theorem, from the

relations

∣∣ϕ(t, y)
∣∣ ≤

y∫

c

∣∣f(t, τ)
∣∣ dτ ≤

d∫

c

∣∣f(t, τ)
∣∣ dt ≡ M(t) ∈ L

(
[c, d]

)
.

Thus the conditions of Lemma 3.1.1 are fulfilled. Therefore we have
equality (7) in which the function Φ is replaced by F and the value ϕ(x0, y0)

by
y0∫
c

f(x0, τ)dτ .

So, statement 1) of Theorem 3.1.1 takes place at every point (x0, y0)
with x0 ∈ e and c ≤ y0 ≤ d.

Statement 2) of Theorem 3.1.1 is established analogously, and statement
3) of the same theorem is the consequence of statements 1) and 2). �

Remark 3.1.1. The extension of Theorem 3.1.1 to the n-dimensional
case has been obtained in [9].

3.2. Corollaries from the Finiteness of a Strong Gradient of an
Indefinite Integral

On the base of Theorem 3.1.1 we obtain the following

Theorem 3.2.1 ([2]). For every summable on the rectangle Q =
{(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d} function f(x, y) the following
statements are valid:

1) there exists a measurable set e1 ⊂ [a, b] with |e1| = b − a, such that

at every point (x0, y0) with x0 ∈ e1 and y0 ∈ [c, d] the integral
y0∫
c

f(x0, τ)dτ
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is finite, and

lim
h→0
y→y0

1

h

x0+h∫

x0

y∫

c

f(t, τ) dt dτ =

y0∫

c

f(x0, τ) dτ ; (1)

2) there exists a measurable set e2 ⊂ [c, d] with |e2| = d − c, such that

at every point (x0, y0) with x0 ∈ [a, b] and y0 ∈ e2 the integral
x0∫
a

f(t, y0) dt

is finite, and

lim
k→0
x→x0

1

k

y0+k∫

y0

x∫

a

f(t, τ)dtdτ =

x0∫

a

f(t, y0) dt; (2)

3) equalities (1) and (2) are fulfilled simultaneously at the points
(x0, y0) ∈ E, where E = e1 × e2, |E| = |Q|.

To formulate this and the subsequent theorems in short, we introduce
the following measurable sets:

A) E1 =
⋃

x0∈e1

m(x0), |E1| = |Q|, (3)

where the measurable set e1 ⊂ [a, b] with |e1| = b − a is adopted from
statement 1) of Theorem 3.2.1, and the vertical closed interval m(x0) is
defined by the equality

m(x0) =
{
(x0, y) : c ≤ y ≤ d

}
; (4)

B) E2 =
⋃

y0∈e2

n(y0), |E2| = |Q|, (5)

where the measurable set e2 ⊂ [c, d] with |e2| = d − c is adopted from
statement 2) of Theorem 3.2.1, and the horizontal closed interval n(y0) is
defined by the equality

n(y0) =
{
(x, y0) : a ≤ x ≤ b

}
. (6)

Now Theorem 3.2.1 can be rephrased as follows.

Theorem 3.2.2 ([2], Remark 6.2). For every function f ∈ L(Q),
equalities (1) and (2) take place at the points (x0, y0) ∈ E1 and (x0, y0) ∈ E2,
respectively. Equalities (1) and (2) are fulfilled simultaneously at the points
(x0, y0) ∈ E3, where E3 = E1 ∩E2, |E3| = |Q|.

Theorem 3.2.3 ([2]). For every function f ∈ L(Q) the following
statements take place:

1) at the points (x0, y0) ∈ E1 the equality

lim
(h,k)→(0,0)

1

h

x0+h∫

x0

y0+k∫

y0

f(t, τ) dt dτ = 0 (7)
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holds;
2) at the points (x0, y0) ∈ E2 the equality

lim
(h,k)→(0,0)

1

k

x0+h∫

x0

y0+k∫

y0

f(t, τ) dt dτ = 0 (8)

is valid;
3) equalities (7) and (8) are fulfilled simultaneously at the points

(x0, y0) ∈ E3, where E3 = E1 ∩E2, |E3| = |Q|;
4) at the points (x0, y0) ∈ E3 the equality

lim
(h,k)→(0,0)

h+ k

hk

x0+h∫

x0

y0+k∫

y0

f(t, τ) dt dτ = 0 (9)

holds.

Proof. In the left-hand side of equality (1), the integral on the segment [c, y]
represent as a sum of integrals on the segments [c, y0] and [y0, y0 + k].

To the first double integral with the coefficient h−1 we apply equality
1.2.(2) and the limit in this case will be equal to the right-hand side of
equality (1). This means that equality (7) is fulfilled.

Equality (8) can be proved in a similar way.
Statement 3) follows from statements 1) and 2), and equality (9) is

obtained from equalities (7) and (8). �

Remark 3.2.1 ([2]). If S(x, y) ∈ L(Q) is the Saks’ function ([10], p. 96;
[21], p. 133), then the expression

1

hk

x+h∫

x

y+k∫

y

S(t, τ)dtdτ (10)

has the strong upper limit +∞ at every point (x, y) ∈ Q. At the same time,
Theorem 3.2.3 shows that tending off expression (10) to +∞ is subordinate
to equalities (7) and (8) at the points (x0, y0) ∈ E1 ∩ E2, i.e.,

1

hk

x0+h∫

x0

y0+k∫

y0

S(t, τ)dtdτ = o
( 1

max(h, k)

)
. (11)

3.3. The Finiteness of a Strong Gradient of an Absolutely
Continuous Function

Since a derivative of an arbitrary function of one variable can be in-
terpreted as a strong partial derivative (see 3.1 of Chapter II), equalities
2.3.(1)-2.3.(4) and Theorem 3.1.1 allow us to formulate the following result.
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Theorem 3.3.1 ([2]). To every absolutely continuous on the rectangle
Q function Φ(x, y) there corresponds a triple of functions ϕ ∈ L(Q), g ∈
L([a, b]) and h ∈ L([c, d]), such that the following statements take place:

1) for almost every x0 ∈ [a, b] and for every y0 ∈ [c, d] there exists the
finite Φ′

[x](x0, y0), and

Φ′
[x](x0, y0) =

y0∫

c

ϕ(x0, y) dy + g(x0); (1)

2) for every x0 ∈ [a, b] and for almost every y0 ∈ [c, d] there exists the
finite Φ′

[y](x0, y0), and

Φ′
[y](x0, y0) =

x0∫

a

ϕ(x, y0) dx+ h(y0); (2)

3) at almost every point (x0, y0) ∈ Q the str gradΦ(x0, y0), Φ′′
x,y(x0, y0)

and Φ′′
y,x(x0, y0) are finite, and

Φ′′
x,y(x0, y0) = ϕ(x0, y0) = Φ′′

y,x(x0, y0). (3)

§ 4. Lebesgue’s Intense Points and Finiteness at These Points of
a Strong Gradient of an Indefinite Integral

To the Lebesgue’s theorem on a regular derivative for an indefinite
double integral ([21], p. 118) there corresponds the notion of the Lebesgue’s
point in the weak sense, or more exactly, we call the point (x0, y0) ∈ Q the
Lebesgue’s point in the weak of the function f ∈ L(Q), Q = {(x, y) ∈ R2 :
a ≤ x ≤ b, c ≤ y ≤ d}, if

1

|I|

∫∫

I

∣∣f(x, y) − f(x0, y0)
∣∣dxdy → 0, I ∈ J(x0, y0) (∗)

no matter how regularity contracting to the point (x0, y0) ∈ Q the standard∗

system J(x0, y0) of rectangles or disks, containing the point (x0, y0).
A set of such points is sometimes denoted by L(f). It is well known

that |L(f)| = |Q| (see, for e.g., [21], p. 118; [10], p. 39; [15], p. 343; [23],
p. 12; [18]).

On the base of Jessen–Marcinkiewicz–Zygmund theorem ([12], [21],
p. 148), relation (∗) remains valid for the standard non-regular system
{I(x0, y0)} under the condition that the function f belongs to a narrow
(compared with L(Q)) class L ln+ L.

Consequently, in the first case the function f ∈ L(Q) is arbitrary, and
contracting to the point (x0, y0) ∈ Q the standard system J(x0, y0) is reg-
ular. In the second case, the standard system J(x0, y0) is arbitrary, and on
the function f we impose the condition f ∈ L ln+ L.

∗A system of rectangles is standard one if the sides of each of rectangle are parallel
to the coordinate axes.
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Just this the author meant by saying “the Lebesgue’s point in the weak”.

4.1. Lebesgue’s Intense Points of Summable Functions of Two
Variables∗

Definition 4.1.1 ([2]). Let the function f(x, y) belong to the space
Lp(Q) for some p ≥ 1.

The point (x0, y0) ∈ Q is called jointly Lebesgue’s intense point (of p-th
degree) of the function f , symbolically (x0, y0) ∈ intLp

x,y(f), if the following
two conditions are fulfilled:

lim
(h,k)→(0,0)

1

h

x0+h∫

x0

∣∣∣∣

y0+k∫

c

f(x, y) dy −
y0∫

c

f(x0, y) dy

∣∣∣∣
p

dx = 0, (1)

lim
(h,k)→(0,0)

1

k

y0+k∫

y0

∣∣∣∣

x0+h∫

a

f(x, y) dx−
x0∫

a

f(x, y0) dx

∣∣∣∣
p

dy = 0. (2)

When equality (1) is fulfilled, then the point (x0, y0) is called Lebesgue’s
intense point with respect to the variable x (of p-th degree) of the function
f , symbolically (x0, y0) ∈ intLp

x(f).
When equality (2) is fulfilled, then the point (x0, y0) is called Lebesgue’s

intense point with respect to the variable y (of p-th degree) of the function
f , symbolically (x0, y0) ∈ intLp

y(f).

Theorem 4.1.1 ([2]). Let the function f(x, y) belong to the space
Lp(Q) for some p ≥ 1. Then the following statements take place:

1) there exists a measurable set e∗1 ⊂ [a, b] with |e∗1| = b−a, such that the
set of all points (x0, y0) with x0 ∈ e∗1 and y0 ∈ [c, d] forms the set intLp

x(f),
| intLp

x(f)| = |Q|;
2) there exists a measurable set e∗2 ⊂ [c, d] with |e∗2| = d−c, such that the

set of all points (x0, y0) with x0 ∈ [a, b] and y0 ∈ e∗2 forms the set intLp
y(f),

| intLp
y(f)| = |Q|.

3) the set of all points (x0, y0) with x0 ∈ e∗1 and y0 ∈ e∗2 forms the set
intLp

x,y(f), | intLp
x,y(f)| = |Q|.

Proof. 1) By Fubini’s theorem, there exists the measurable set E0 ⊂ [a, b]
with |E0| = b− a, such that for every x0 ∈ E0 the integral

d∫

c

∣∣f(x0, y)
∣∣ dy (3)

is finite.

∗In [2], there occurs “in the strong sense”.
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Let (Qn(y))∞n=1 be a set of all polynomials with rational coefficients.
To the function |f(x, y) −Qn(y)|p ∈ L(Q) we apply statement 1) of Theo-
rem 3.2.1. According to that statement, there exists the measurable set
En ⊂ [a, b] with |En| = b−a, such that at every point (x0, y0) with x0 ∈ En

and y0 ∈ [c, d] the equality

lim
(h,k)→(0,0)

1

h

x0+h∫

x0

y0+k∫

c

∣∣f(x, y) −Qn(y)
∣∣p dxdy =

y0∫

c

∣∣f(x0, y) −Qn(y)
∣∣p dy

holds.

Introduce the set E∗ =
∞⋂

n=1
En. We have |E∗| = b− a and the equality

lim
(h,k)→(0,0)

1

h

x0+h∫

x0

y0+k∫

c

∣∣f(x, y) −Qn(y)
∣∣p dxdy =

=

y0∫

c

∣∣f(x0, y) −Qn(y)
∣∣p dy (4)

is fulfilled for (x0, y0) with xo ∈ E∗, y0 ∈ [c, d] and n = 1, 2, . . .
For every point x0 ∈ E0 with finite integral (3) and for every num-

ber ε > 0 there exists the polynomial Qm(y), m = m(x0, ε) with rational
coefficients, such that

d∫

c

∣∣f(x0, y) −Qm(y)
∣∣p dy < ε.

Hence
y0∫

c

∣∣f(x0, y) −Qm(y)
∣∣p dy < ε (5)

for all y0 ∈ [c, d].
Consider now the set e∗1 = E∗ ∩ E0, |e∗1| = b − a. Let x0 ∈ e∗1 and

y0 ∈ [c, d]. We have

∣∣∣∣

y0+k∫

c

f(x, y) dy −
y0∫

c

f(x0, y) dy

∣∣∣∣ ≤
y0+k∫

c

∣∣f(x, y) −Qm(y)
∣∣ dy+

+

y0∫

c

∣∣f(x0, y) −Qm(y)
∣∣ dy +

y0+k∫

y0

∣∣Qm(x, y)
∣∣ dy ≡ f1 + f2 + f3.
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Next,

( x0+h∫

x0

∣∣∣∣

y0+k∫

c

f(x, y) dy −
y0∫

c

f(x0, y) dy

∣∣∣∣
p

dx

)1/p

≤

≤
( x0+h∫

x0

(
f1 + f2 + f3

)p
dx

)1/p

≤
( x0+h∫

x0

fp
1 dx

)1/p

+ h1/p · (f2 + f3).

Thus

(
1

h

x0+h∫

x0

∣∣∣∣

y0+k∫

c

f(x, y) dy −
y0∫

c

f(x0, y) dy

∣∣∣∣
p

dx

)1/p

≤

≤
(

1

h

x0+h∫

x0

fp
1 dx

)1/p

+ f2 + f3.

But

fp
1 =

( y0+k∫

c

∣∣f(x, y) −Qm(y)
∣∣ dy

)p

≤

≤
(
y0 + k − c

)p−1

y0+k∫

c

∣∣f(x, y) −Qm(y)
∣∣p dy,

f2 =

y0∫

c

∣∣f(x0, y) −Qm(y)
∣∣ dy≤

(
y0 − c

) p−1

p

( y0∫

c

∣∣f(x0, y) −Qm(y)
∣∣p dy

)1/p

,

f3 =

y0+k∫

y0

∣∣Qm(y)
∣∣ dy ≤ k

p−1

p

( y0+k∫

y0

∣∣Qm(y)
∣∣p dy

)1/p

.

For all y0 ∈ [c, d], the last integral is less than the number ε, if values
of k are sufficiently small.

Therefore taking into account (4) and (5), we have

1

h

x0+h∫

x0

∣∣∣∣

y0+k∫

c

f(x, y) dy −
y0∫

c

f(x0, y) dy

∣∣∣∣
p

dx ≤

≤ 2ε
[
(y0 + k − c)p−1 + (y0 − c)p−1 + kp−1

]
≤ 6ε(d− c)p−1.

Thus we have established statement 1). Statement 2) is established
analogously. Statement 3) is the consequence of the previous two state-
ments. �
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4.2. The Finiteness of a Strong Gradient of an Indefinite
Integral at Lebesgue’s Intense Points

Taking into account Theorems 3.1.1 and 3.2.1, from Theorem 4.1.1 for
the case p = 1 we obtain the following

Theorem 4.2.1 ([2]). Let the function f(x, y) ∈ L(Q). Then the
corresponding indefinite integral

F (x, y) =

x∫

a

y∫

c

f(t, τ) dtdτ (1)

possesses the following properties:
1) at every point (x0, y0) ∈ intLx(f) the F ′

[x](x0, y0) is finite and

F ′
[x](x0, y0) =

y0∫

c

f(x0, τ) dτ, (2)

or what is the same,

lim
h→0
k→0

1

h

x0+h∫

x0

y0+k∫

c

f(t, τ) dtdτ =

y0∫

c

f(x0, τ) dτ ; (3)

2) at every point (x0, y0) ∈ intLy(f) the F ′
[y](x0, y0) is finite and

F ′
[y](x0, y0) =

x0∫

a

f(t, y0) dt, (4)

or what is the same,

lim
h→0
k→0

1

k

y0+k∫

y0

x0+h∫

a

f(t, τ) dtdτ =

x0∫

a

f(t, y0) dt; (5)

3) at every point (x0, y0) ∈ intLx,y(f) the str gradF (x0, y0) is finite, in
particular, there exists dF (x0, y0).

Definition 4.2.1. One-dimensional segment

m∗(x0) =
{
(x0, y) : x0 ∈ e∗1, c ≤ y ≤ d

}
, (6)

where e∗1 is adopted from statement 1) of Theorem 4.1.1, is called a vertical
Lebesgue’s segment of the function f(x, y) ∈ L(Q), corresponding to x0.

In just the same way, one-dimensional segment

n∗(y0) =
{
(x, y0) : a ≤ x ≤ b, y0 ∈ e∗2

}
, (7)

is called a horizontal Lebesgue’s segment of the function f(x, y) ∈ L(Q),
corresponding to y0.
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If we introduce measurable sets

E∗
1 =

⋃

x0∈e∗

1

m∗(x0), E∗
2 =

⋃

y0∈e∗

2

n∗(y0), E∗
3 = E∗

1 ∩ E∗
2 , (8)

then Theorem 4.1.1 can be formulated as follows.

Theorem 4.2.2. For every function f(x, y) ∈ Lp(Q) with p ≥ 1 the
following statements are valid:

1) intLp
x(f) = E∗

1 , |E∗
1 | = |Q|;

2) intLp
y(f) = E∗

2 , |E∗
2 | = |Q|;

3) intLp
x,y(f) = E∗

3 , |E∗
3 | = |Q|.

It is clear that intLp
x(f) consists of vertical, while intLp

y(f) of horizontal
Lebesgue’s segments.

Further, Theorem 4.1.1 shows that for every function f(x, y) ∈ L(Q)
almost all vertical segments from Q are the vertical Lebesgue’s segments.
Just the same can be said about the horizontal Lebesgue’s segments.

Now Theorem 3.2.3 can be strengthened as follows.

Theorem 4.2.3 ([2]). For every function f(x, y) ∈ Lp(Q) with p ≥ 1
the following statements are valid:

1) at every point (x0, y0) ∈ intLp
x(f) the equality

lim
(h,k)→(0,0)

1

h

x0+h∫

x0

∣∣∣∣

y0+k∫

y0

f(x, y)dy

∣∣∣∣
p

dx = 0 (9)

holds;
2) at every point (x0, y0) ∈ intLp

y(f) we have

lim
(h,k)→(0,0)

1

k

y0+k∫

y0

∣∣∣∣

x0+h∫

x0

f(x, y) dx

∣∣∣∣
p

dy = 0; (10)

3) at every point (x0, y0) ∈ intLp
x,y(f) equalities (9) and (10) are fulfilled

simultaneously.

Proof. The way of proving equality 4.1.(1) indicates that equality 4.1.(1)
remains valid, if we substitute c by an arbitrary value c1 from [c, d], in
particular, by y0. The same can be said about equality 4.1.(2). As a result
we obtain equalities (9) and (10). �

§ 5. The Differentiability of An Indefinite Integral with a
Parameter

1. The rule of derivation under the integral sign has been introduced
for the first time by Leibniz, when the integrand and its partial derivative
with respect to parameter are simultaneously continuous on a rectangle.
This rule is known as Leibniz’s rule for an integral.
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It is of interest that there exists the function ψ(x, y) with the property

d

dy

b∫

a

ψ(x, y) dx 6=
b∫

a

∂

∂y
ψ(x, y) dx,

although both integrals exist in the sense of Riemann.
C. de la Vallée Poussin (1916) generalized Leibniz’s rule to the L-integral

(Lebesgue integral) as follows.

Theorem 5.1 ([31], p. 110). Let the function f(x, y) be summable
with respect to x on the segment [a, b] for every fixed y ∈ [c, d]. Consider a
finite on the segment [c, d] function, the definite integral with a parameter
y,

ϕ(y) =

b∫

a

f(x, y) dx, y ∈ [c, d]. (1)

Assume that the following conditions are fulfilled:
1) the function f(x, y) is absolutely continuous with respect to the vari-

able y on the [c, d] for every x ∈ [a, b];
2) the partial derivative f ′

y(x, y) with respect to the variable y is the

summable function on the rectangle Q = {(x, y)∈R
2 :a≤x≤b, c≤y≤ d}.

Then for almost all y ∈ [c, d] the equality

ϕ′(y) =

b∫

a

f ′
y(x, y) dx (2)

holds.

2. Here we extend the statement of Theorem 5.1 under the same as-
sumptions 1) and 2). This extension in the form of equality (4) involves
generalization of the classical Lebesgue’s theorem.

Theorem∗ 5.2. Let assumptions 1) and 2) of Theorem 5.1 be fulfilled.
Then a finite on [a, b] × [c, d] function, an indefinite integral with a param-
eter y,

P (x, y) =

x∫

a

f(t, y) dt (3)

possesses the following properties:
1) for almost all x0 ∈ [a, b] and for all y0 ∈ [c, d] the equality

P ′
[x](x0, y0) = f(x0, y0) (4)

with finite terms holds;

∗ This result is published by the author for the first time.
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2) for all x0 ∈ [a, b] and for almost all y0 ∈ [a, b] the equality

P ′
[y](x0, y0) =

x0∫

a

∂

∂y
f(t, y0) dt (5)

with finite terms is fulfilled;
3) at almost all points (x0, y0) ∈ Q the str gradP (x0, y0) is finite, in

particular, there exists the total differential dP (x0, y0).

Proof. 1) Taking into account condition 1) of Theorem 5.1, we have the
following relations:

P (x0 + h, y0 + k) − P (x0, y0 + k)

h
=

1

h

x0+h∫

x0

f(t, y0 + k) dt =

=
1

h

x0+h∫

x0

[
f(t, y0 + k) − f(t, y0)

]
dt+

1

h

x0+h∫

x0

f(t, y0) dt =

=
1

h

x0+h∫

x0

( y0+k∫

y0

f ′
τ (t, τ)dτ

)
dt+

1

h

x0+h∫

x0

f(t, y0) dt ≡

≡ Ah,k(x0, y0) +Bh(x0, y0).

By assumption 2) of Theorem 5.1, we have f ′
τ ∈ L(Q). Therefore

Ah,k(x0, y0) =
1

h

x0+h∫

x0

y0+k∫

y0

f ′
τ (t, τ) dt dτ. (6)

The right-hand side of equality (6) tends to zero for almost all x0 ∈ [a, b]
and for all y0 ∈ [c, d], as (h, k) → (0, 0) (see Theorem 3.2.3).

Moreover, the finiteness of integral (1) for all y ∈ [c, d] implies the
finiteness of the indefinite integral with a parameter (see equality (3))

x∫

a

f(t, y) dt = P (x, y) (7)

for all (x, y) ∈ Q. Assumptions 1) and 2) of Theorem 5.1 result in the
equality

x∫

a

f(t, y) dt =

x∫

a

y∫

c

f ′
τ (t, τ) dtdτ +

x∫

a

f(t, c) dt (8)

for all (x, y) ∈ Q. By statement 1) from Tolstov’s Theorem 1.1.1 we have

∂

∂x

x∫

a

y∫

c

f ′
τ (t, τ) dtdτ =

y∫

c

f ′
τ (x, τ) dτ = f(x, y) − f(x, c) (9)
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for all (x, y) with x ∈ e1 and y ∈ [c, d], where |e1| = b− a.
Next, By Lebesgue’s theorem,

( x∫

a

f(t, c) dt

)′

= f(x, c) (10)

for all x ∈ e ⊂ [a, b], where |e| = b − a, and the set e depends on the
constant c.

Now from equalities (8) and (10) it follows that

( x∫

a

f(t, y) dt

)′

x

= f(x, y) (11)

for all (x, y) with x ∈ e ∩ e1 and y ∈ [c, d].
This means that expression Bh(x0, y0) for almost all x0 ∈ [a, b] and for

all y0 ∈ [c, d] tends to f(x0, y0), as h→ 0. Thus statement 1) is established.
2) Now

P (x0 + h, y0 + k) − P (x0 + h, y0)

k
=

1

k

x0+h∫

a

[
f(t, y0 + k) − f(t, y0)

]
dt =

=
1

k

x0+h∫

a

( y0+k∫

y0

f ′
τ (t, τ) dτ

)
dt =

1

k

y0+k∫

y0

x0∫

a

f ′
τ (t, τ) dt dτ+

+
1

k

y0+k∫

y0

x0+h∫

x0

f ′
τ (t, τ) dtdτ ≡ Ck(x0, y0) +Dh,k(x0, y0).

By statement 2) of Theorem 1.1.1, the equality

lim
k→0

Ck(x0, y0) =

x0∫

a

f ′
τ (t, y0) dt

holds for all x0 ∈ [a, b] and for almost all y0 ∈ [c, d] (analogous arguments
have been presented for Bh(x0, y0)).

Further, the equality

lim
(h,k)→(0,0)

Dh,k(x0, y0) = 0

for all x0 ∈ [a, b] and for almost all y0 ∈ [c, d] is analogous to that established
above for Ah,k(x0, y0).

Consequently, statement 2) holds.
3) The finiteness of the str gradP (x0, y0) for almost all (x0, y0) ∈ Q

follows from statements 1) and 2). Further, the existence of the total differ-
ential dP (x0, y0) at the same points (x0, y0) ∈ Q follows from the finiteness
of the str gradP (x0, y0).
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Finally, if in equality (3) we put x = b, then equality (5) for x0 = b
will take the form of equality (2) because the derivative of the function
of one variable is its strong partial derivative with respect to the same
variable, since this function can be considered as a function of two variables,
constant with respect to the introduced second variable. Thus equality (5)
is a generalization of equality (2).

Lebesgue’s theorem can be obtained analogously from equality (4), if
the function f in equality (3) will be assumed to be independent of the
variable y. �

§ 6. The Finiteness and the Continuity of Strong Partial
Derivatives of an Indefinite Integral

6.1. Points of Finiteness of Strong Partial Derivatives of an
Indefinite Integral

Using Definition 8.1 from Chapter I, we proceed to formulating and
proving the following

Lemma 6.1.1 ([2]). Let the function f(x, y) ∈ L(Q) be measurable
with respect to y on [c, d] for every x ∈ [a, b] and partial continuous at x0 with
respect to x, uniformly with respect to y on [c1, d1], where c ≤ c1 < d1 ≤ d.
Then the following statements take place:

1) there exists a number δ = δ(x0) > 0 such that for all x’s with |x −
x0| < δ the integral

d1∫

c1

f(x, τ) dτ (1)

is finite. Hence the integral

y∫

c1

f(x, τ) dτ (2)

is likewise finite for |x− x0| < δ and c1 ≤ y ≤ d1;
2) the finite function of two variables

ψ(x, y) =

y∫

c1

f(x, τ) dτ, |x− x0| < δ, c1 ≤ y ≤ d1 (3)

is continuous at all points (x0, y0) with c1 < y0 < d1.

Proof. 1) By equality 8.(1) of Chapter I, there exists a number δ=δ(x0)> 0
such that under |x − x0| < δ and τ ∈ [c1, d1] the relations −1 < f(x, τ) −
f(x0, τ) < 1 are fulfilled, and hence

f(x0, τ) − 1 < f(x, τ) < f(x0, τ) + 1. (4)
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Since f ∈ L(Q), the integral
d1∫
c1

f(x, τ) dτ is finite for almost all x ∈ [a, b],

in particular, for almost all x’s with |x − x0| < δ. If such x suppose in (4),

then the integral
d1∫
c1

f(x0, τ)dτ will be finite. This in its turn, with regard

tight-hand of estimates (4), guarantees that integral (1) is finite for all x’s
with |x − x0| < δ. This, in particular, imply that integral (2) is finite for
|x− x0| < δ and c1 ≤ y ≤ d1.

2) If we take any number ε > 0, then for ε∗ = ε/(d1 − c1) there exists
δ∗ = δ∗(ε, x0) > 0 such that

f(x0, τ) − ε∗ < f(x, τ) < f(x0, τ) + ε∗ under |x− x0| < δ∗, τ ∈ [c1, d1],
(5)

by equality 8.(1) from Chapter I.
To show that the function ψ(x, y) is continuous at all points (x0, y0)

with c1 < y0 < d1, we use Theorem 5.1.2 from Chapter I. We have

ψ(x0 + h, y0 + k) − ψ(x0, y0 + k) =

y
0
+k∫

c1

[
f(x0 + h, τ) − f(x0, τ)

]
dτ, (6)

ψ(x0, y0 + k) − ψ(x0, y0) =

y
0
+k∫

y
0

f(x0, τ) dτ. (7)

Since for some η1 = η1(y0) > 0 the points y0 + k belong to the segment
[c1, d1] under |k| < η1 and c1 < y0 < d1, an absolute value of the integral
in equality (6) is less, by virtue of (5), than ε∗(d1 − c1) = ε under |h| < δ∗

and |k| < η1.
An absolute value of the integral in equality (7) is less, by an absolutely

continuity of the integral
t∫

c1

f(x0, τ)dτ , than ε under |k| < η2, where η2 =

η2(x0, ε) > 0. �

Remark 6.1.1. In what follows, under the symbol F will be meant the
function defined by equality 4.2.(1), where Q = {(x, y) ∈ R2 : a≤x≤ b, c ≤
y ≤ d}.

Theorem 6.1.1 ([2]). Let the function f(x, y) ∈ L(Q) be measurable
with respect to y on [c, d] for every x ∈ [a, b] and partial continuous with
respect to x at the point x0, uniformly with respect to y on [c1, d1], where
c ≤ c1 < d1 ≤ d. Then the function F ′

[x](x0, y) is finite under c1 < y < d1,

and

F ′
[x](x0, y) =

y∫

c1

f(x0, τ) dτ, c1 < y < d1. (8)
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Proof. Because of the fact that integral (2) is finite, the integral in equality
(8) is likewise finite, and we obtain (8) from the following equality:

F (x0 + h, y + k) − F (x0, y + k)

h
−

y∫

c1

f(x0, τ) dτ =

=
1

h

x0+h∫

x0

y+k∫

c1

[
f(t, τ) − f(x0, τ)

]
dtdτ +

y+k∫

y

f(x0, τ) dτ. �

The theorem below is proved analogously.

Theorem 6.1.2 ([2]). Let the function f(x, y) ∈ L(Q) be measurable
with respect to x on [a, b] for every y ∈ [c, d] and partial continuous with
respect to y at the point y0, uniformly with respect to x on [a1, b1], where
a ≤ a1 < b1 ≤ b. Then the function F ′

[y](x, y0) is finite under a1 < x < b1,

and

F ′
[y](x, y0) =

x∫

a1

f(t, y0) dt, a1 < x < b1. (9)

From the last two theorems we arrive at

Theorem 6.1.3 ([2]). Let the function f(x, y) ∈ L(Q) be partial con-
tinuous with respect to x at the point x0, uniformly with respect to y ∈ [c, d]
and partial continuous with respect to y at the point y0, uniformly with re-
spect to x ∈ [a, b]. Besides, we assume that the function f is measurable
with respect to each variable, when the other variable is given arbitrary fixed
value.

Then finite are:

1) F ′
[x](x0, y) =

y∫

c

f(x0, τ) dτ for c < y < d; (10)

2) F ′
[y](x, y0) =

x∫

a

f(t, y0)dt for a < x < b; (11)

3) str gradF (x0, y0) at (x0, y0) ∈ Q0, in particular∗, there exists
dF (x0, y0).

6.2. Points of Continuity of Strong Partial Derivatives of an
Indefinite Integral

Theorem 6.2.1 ([2]). Let the function f(x, y) ∈ L(Q) be continuous
on the rectangle r1 = [a1, b1]× [c, d], where a ≤ a1 < b1 ≤ b. Then F ′

[x](x, y)

∗ By the symbol E0 is denoted the interior of the set E.
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is continuous on the r01, and

F ′
[x](x, y) =

y∫

c

f(x, τ) dτ, (x, y) ∈ r01 . (1)

Proof. In Theorem 8.1 of Chapter I, in the capacity of Q we take r1. Now in
Theorem 6.1.1 in the capacity of x0 we can take arbitrary point of an open
interval (a1, b1). Therefore equality (1) follows from equality 6.1.(8). The
continuity of F ′

[x](x, y) on the r01 follows from statement 2) of Lemma 6.1.1,

upon substituting x0 and y0 by x ∈ (a1, b1) and y ∈ (c, d), respectively. �

The theorem below is proved analogously.

Theorem 6.2.2 ([2]). Let the function f(x, y) ∈ L(Q) be continuous
on the rectangle r2 = [a, b]× [c1, d1], where c ≤ c1 < d1 ≤ d. Then F ′

[y](x, y)

is continuous on the r02, and

F ′
[y](x, y) =

x∫

a

f(t, y) dt, (x, y) ∈ r02 . (2)

The following theorem is obtained from Theorems 6.2.1 and 6.2.2.

Theorem 6.2.3 ([2]). Let the function f(x, y) ∈ L(Q) be continuous
on the union [a1, b1] × [c, d] ∪ [a, b] × [c1, d1], where a ≤ a1 < b1 ≤ b and
c ≤ c1 < d1 ≤ d. Then the functions F ′

[x](x, y) and F ′
[y](x, y) at interior

points (x, y) ∈ r0 of the rectangle r = [a1, b1] × [c1, d1] are continuous and
we have the equalities

F ′
[x](x, y) =

y∫

c1

f(x, τ) dτ, F ′
[y](x, y) =

x∫

a1

f(t, y) dt, (x, y) ∈ r0. (3)

In particular, an indefinite integral F (x, y) is continuously differentiable
on the r0.

§ 7. Repeated and Mixed Partial Derivatives of an Indefinite
Integral

Theorem 7.1 ([2]). Let the function f ∈ L(Q) be continuous on the
rectangle r(x0, δ) = [x0−δ, x0+δ]×[c, d] ⊂ Q, where δ > 0. Assume that the
partial derivative f ′

x(x, y) is summable on the r(x0, δ), which with respect to
x is assumed to be partial continuous at x0, uniformly with respect to y ∈
[c, d], and measurable with respect to y on [c, d] for every x ∈ [x0−δ, x0 +δ].
Then (F ′

[x])
′(x0, y) is finite at all points (x0, y) with c < y < d and we have

(
F ′

[x]

)′
x
(x0, y) =

y∫

c

f ′
x(x0, τ) dτ. (1)
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Proof. To the function f ′
x(x, y), (x, y) ∈ r(x0, δ) we apply statement (1) of

Lemma 6.1.1. Thus f ′
x(x0, τ) ∈ L([c, d]).

By Theorem 6.2.1 the function F ′
[x](x, y) is continuous on the r0(x0, δ)

and
y∫

c

f(x, τ) dτ = F ′
[x](x, y), (x, y) ∈ r0(x0, δ). (2)

Denote the right-hand side of equality (2) by µ(x, y) and we have to
prove the equality

µ′
x(x, y) =

y∫

c

f ′
x(x0, τ) dτ, c < y < d. (3)

We have

µ(x0 + h) − µ(x0, y)

h
−

y∫

c

f ′
x(x0, τ) dτ =

=

y∫

c

[f(x0 + h, τ) − f(x0, τ)

h
− f ′

x(x0, τ)
]
dτ =

=

y∫

c

[
f ′

x(x0 + θh, τ) − f ′
x(x0, τ)

]
dτ,

where 0 < θ = θ(x0, h, τ) < 1. Taking now into account that the function
f ′

x(x, τ) is partial continuous with respect to x at the point x0, uniformly
with respect to τ ∈ [c, d], we can conclude that the theorem is complete. �

Corollary 7.1 ([2]). Let the function f ∈ L(Q) be continuous on the
r(x0, δ) = [x0−δ, x0 +δ]× [c, d] ⊂ Q, δ > 0, and suppose that on the r(x0, δ)
there exists a bounded partial derivative f ′

x(x, y) which is assumed to be
partial continuous with respect to x at x0, uniformly with respect to y ∈ [c, d]
and measurable with respect to y on [c, d] for every x ∈ [x0 − δ, x0 + δ].

Then equality (1) holds at all points (x0, y) with c < y < d.

Taking into account Theorem 8.1 of Chapter I and statement (2) of
Lemma 6.1.1, from Corollary 7.1 we obtain the following

Theorem 7.2 ([2]). Let the function f ∈ L(Q) and its partial deriv-
ative f ′

x(x, y) be continuous on the Q0. Then the function (F ′
[x])

′
x(x, y) is

continuous on the Q0, and

(
F ′

[x]

)′
x
(x, y) =

y∫

c

f ′
x(x, τ) dτ, (x, y) ∈ Q0. (4)

For the (F[x])
′
y is valid the following
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Theorem 7.3 ([2]). Let the function f ∈ L(Q) be continuous on the
r1 = [a1, b1] × [c, d], where a ≤ a1 < b1 ≤ b. Then (F ′

[x])
′
y is continuous on

the r01 and (
F ′

[x]

)′
y
(x, y) = f(x, y), (x, y) ∈ r01 . (5)

Proof. On the r01 , equality 6.2.(1) is valid, and we have to prove that the
function µ(x, y) given by equality (2) satisfies the equality µ′

y(x, y) = f(x, y)

at the points (x, y) ∈ r01 . This follows from the relations

µ′
y(x, y) = lim

k→0

1

k

y+k∫

y

f(x, τ) τ = f(x, y),

owing to the fact that the function f(x, y) is continuous on [c, d] for every
fixed x ∈ [a1, b1]. �

Now from Theorems 7.2 and 7.3 we obtain

Theorem 7.4 ([2]). Let the functions f ∈ L(Q) and f ′
x be continuous

on the Q0. Then (F ′
[x])

′
x and (F ′

[x])
′
y are continuous on the Q0, and hence

the function F ′
[x] is continuously differentiable on the Q0.

Obviously, there take place analogues of Theorems 7.1–7.3 about the
functions (F ′

[y])
′
y and (F ′

[y])
′
x. The analogue of Theorem 7.4 is the form of

Theorem 7.5 ([2]). Let the functions f ∈ L(Q) and f ′
y be continuous

on the Q0. Then (F ′
[y])

′
x and (F ′

[y])
′
y are continuous on the Q0, and hence

F ′
[y] is the function which is continuously differentiable on the Q0.

From Theorems 7.4 and 7.5 we have

Theorem 7.6 ([2]). Let the function f ∈ L(Q) have continuous on
the Q0 partial derivatives f ′

x and f ′
y. Then the functions F ′

[x] and F ′
[y] are

continuously differentiable on the Q0 and hence an indefinite integral F (x, y)
is twice continuously differentiable on the Q0.

§ 8. Twice Differentiability of an Indefinite Integral

8.1. Twice Differentiability on the Q0 of an Indefinite Integral

Theorem 8.1.1 ([2]). Let the function f ∈ L(Q) be differentiable on
the Q0, and let integrals

d∫

c

f ′
x(x, τ) dτ,

b∫

a

f ′
y(t, y) dt (1)

be finite for all x ∈ (a, b) and y ∈ (c, d), respectively. Then the functions
F ′

[x] and F ′
[y] are differentiable on the Q0. Hence the indefinite integral F is

twice differentiable on the Q0.
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Proof. By Theorem 6.2.3, the functions

F ′
[x](x, y) =

y∫

c

f(x, τ) dτ ≡ Φ(x, y)

and

F ′
[y](x, y) =

x∫

a

f(t, y) dt ≡ Ψ(x, y)

are continuous on the Q0.
Obviously,

Φ(x+ h, y + k) − Φ(x, y + k)

h
=

y+k∫

c

f(x+ h, τ) − f(x, τ)

h
dτ.

Since the function f is differentiable at every point (x, y) ∈ Q0,

f(x+ p, y + q) − f(x, y) = pf ′
x(x, y) + qf ′

y(x, y) + (|p| + |q|) · α,
where the function α, defined in the neighborhood of the point (x, y) has
zero limit at (x, y) and it is assumed to be equal to zero at (x, y). Therefore

Φ(x+ h, y + k) − Φ(x, y + k)

h
=

y+k∫

c

f ′
x(x, τ) dτ +

|h|
h

y+k∫

c

αdτ.

For every number ε > 0 there exists a rectangle, containing the point
(x, y), on which |α| < ε. Hence there exists finite

Φ′
[x](x, y) =

y∫

c

f ′
x(x, τ) dτ

(
= Φ′

x̂(x, y)
)
. (2)

Next,

Φ(x+ h, y + k) − Φ(x+ h, y)

k
=

1

k

y+k∫

y

f(x+ h, τ) dτ =

=
h

k

y+k∫

y

f(x+ h, τ) − f(x, τ)

h
dτ +

1

k

y+k∫

y

f(x, τ) dτ =

=
h

k

y+k∫

y

f ′
x(x, τ) dτ +

|h|
k

y+k∫

y

αdτ +
1

k

y+k∫

y

f(x, τ) dτ,

where we get

Φ′
ŷ(x, y) = f(x, y), (x, y) ∈ Q0. (3)

Thus the function Φ′
ŷ is continuous on the Q0.
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Consequently, the function Φ = F ′
[x] is differentiable on the Q0, by

Theorem 2.5.1, or Theorem 3.5.3 of Chapter II.
The differentiability on the Q0 of the function Ψ = F ′

[y] for which the

function Ψ′
x̂ = f is continuous on the Q0 and the function

Ψ′
[y](x, y) =

x∫

a

f ′
y(t, y) dt (4)

is finite on the Q0, is proved analogously.
Hence the function F ′

[y] is differentiable on the Q0.

Consequently, an indefinite double integral F is twice differentiable on
the Q0. �

8.2. Almost Everywhere Twice Differentiability of an Indefinite
Integral

Theorem 8.2.1 ([2]). Let the function f(x, y) ∈ L(Q) with respect to x
be absolutely continuous on the [a, b] for every y ∈ [c, d], and let f ′

x ∈ L(Q).
Then F ′

[x] is continuous on the Q0, the equality

F ′
[x](x, y) =

y∫

c

f(x, τ) dτ, (x, y) ∈ Q0 (1)

holds, and the following statements take place:
1) for almost all x0 ∈ (a, b) and for all y0 ∈ (c, d),

(
F ′

[x]

)′
[x]

(x0, y0) =

y0∫

c

f ′
x(x0, τ) dτ (2)

is finite;
2) for almost all (x0, y0) ∈ Q0,

(
F ′

[x]

)′
[y]

(x0, y0) = f(x0, y0) (3)

is finite;
3) str gradF ′

[x] is finite almost everywhere on the Q0;

4) F ′
[x], in particular, F ′

x is differentiable almost everywhere on the Q0.

Proof. First we will prove equality (1) and then establish that F ′
[x] is con-

tinuous on the Q0. Towards this end, we write the function F in terms
of

F (x, y) =

x∫

a

Φ(t, y) dt,
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where

Φ(t, y) =

y∫

c

f(t, τ) dτ =

y∫

c

t∫

t0

f ′
t(t, τ) dt dτ +

y∫

c

f(t0, τ) dτ

and t0 is chosen in (a, b) in such a way that f(t0, τ) ∈ L([c, d]). It becomes
clear that the function Φ is continuous and the equality F ′

x(x, y) = Φ(x, y)
is valid on the Q0. The continuity of F ′

x on the Q0 implies continuity of F ′
[x]

on the Q0 (see equality 3.1.(6) in Chapter II), and the equalities

F ′
[x](x, y) = F ′

x(x, y) = Φ(x, y) =

y∫

c

f(x, τ) dτ.

Hence equality (1) is proved.
Now common value of equality (1) we denote by ψ(x, y), for which we

have:

1) ψ′
[x](x0, y0) = lim

h→0
y→y0

ψ(x0 + h, y) − ψ(x0, y)

h
=

= lim
h→0
y→y0

1

h

x0+h∫

x0

y∫

c

f ′
x(x, τ) dτ dx.

But this limit is equal to the integral from equality (2) for almost all
x0 ∈ (a, b) and for all y0 ∈ (c, d), by equality 3.2.(1).

Thus statement 1) is established.

2) ψ′
[y](x0, y0) = lim

k→0
x→x0

ψ(x, yo + k) − ψ(x, y0)

k
=

= lim
k→0
x→x0

1

k

y0+k∫

y0

f(x, τ) dτ.

Let the point x0 ∈ (a, b) be such that f(x0, τ) ∈ L([c, d]) (almost every
point is such), and we write

1

k

y0+k∫

y0

f(x, τ) dτ =
1

k

y0+k∫

y0

f(x0, τ) dτ +
1

k

y0+k∫

y0

x∫

x0

f ′
t(t, τ) dt dτ.

Applying to the last equality the Lebesgue’s theorem and equality 3.2.(8),
we obtain statement 2).

3) The finiteness of the str gradF ′
[x](x, y) for almost all (x, y) ∈ Q0

follows from statements 1) and 2).
4) The differentiability of the function F ′

[x] almost everywhere on the

Q0 follows from statement 3) with regardof Theorem 3.4.1 ofChapter II. �

Just in the same way we can prove
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Theorem 8.2.2 ([2]). Let the function f(x, y) ∈ L(Q) with respect to y
be absolutely continuous on the [c, d] for every x ∈ [a, b], and let f ′

y ∈ L(Q).

Then F ′
[y] is continuous on the Q0, equality

F ′
[y](x, y) =

x∫

a

f(x, y) dt, (x, y) ∈ Q0 (4)

is valid, and the following statements take place:
1) for all x0 ∈ (a, b) and for almost all y0 ∈ (c, d),

(
F ′

[y]

)
[y]

(x0, y0) =

x0∫

a

f ′
y(t, y0) dt (5)

is finite;
2) for almost all (x0, y0) ∈ Q0,

(
F ′

[y]

)
[x]

(x0, y0) = f(x0, y0) (6)

is finite;
3) str gradF ′

y] is finite almost everywhere on the Q0;

4) F ′
[y], in particular, F ′

y is differentiable almost everywhere on the Q0.

Remark 8.2.1. Under the above-indicated assumptions, equalities (3)
and (6) are the strengthenings of relations 1.1.(7).

Theorems 8.2.1 and 8.2.2 yield (see Remark 2.4.2)

Theorem 8.2.3 ([2]). Let the function f ∈ L(Q) be separately ab-
solutely continuous on Q, and let f ′

x ∈ L(Q), f ′
y ∈ L(Q). Then for the

indefinite integral F of f equalities (1) and (4) with continuous on the Q0

terms are valid, and the following statements take place:
1) str gradF ′

[x] and str gradF ′
[y] are finite almost everywhere on the Q0;

2) F ′
[x] and F ′

[y] are differentiable almost everywhere on the Q0;

3) F is twice differentiable almost everywhere on the Q0;
4) for almost all (x0, y0) ∈ Q0 we have

(
F ′

[x]

)′
[y]

(x0, y0) = f(x0, y0) =
(
F ′

[y]

)′
[x]

(x0, y0). (7)

All the statements of Theorem 8.2.2 can be obtained under somewhat
different assumption (the same can be said regarding Theorem 8.2.1).

Theorem 8.2.4 ([2]). If the function f ∈ L(Q) with respect to y is
absolutely continuous on the [c, d] for every x ∈ [a, b], and for some constant
c = c(f) > 0 the relation

∫∫

Q

∣∣f(t, τ + k) − f(t, τ)
∣∣ dt dτ ≤ c · |k| (8)

is fulfilled, then all the statements of Theorem 8.2.2 are also fulfilled.



On the Continuity and Differentiability 133

Proof. It is sufficient to prove that the partial derivative f ′
y, existing almost

everywhere on the Q, is summable on the Q. To this end, we put in (8)
k = 1/n and have

∫∫

Q

n
∣∣∣f

(
t, τ +

1

n

)
− f(t, τ)

∣∣∣ dt dτ ≤ c, (9)

whence, by virtue of Fatou’s lemma (see, for e.g., [21], p. 29), we obtain
∫∫

Q

∣∣f ′
τ (t, τ)

∣∣ dt dτ =

∫∫

Q

lim
n→∞

n
∣∣∣f

(
t, τ +

1

n

)
− f(t, τ)

∣∣∣ dt dτ ≤

≤ lim
n→∞

∫∫

Q

n
∣∣∣f

(
t, τ +

1

n

)
− f(t, τ)

∣∣∣ dt dτ ≤ c. �

Thus f ′
y ∈ L(Q) and the theorem is complete. �

Remark 8.2.2. To illustrate Theorem 8.2.2, let us consider a function
of one variable ϕ(x) ∈ L([a, b]). Then ϕ(x) is absolutely continuous with
respect to y on an arbitrary [c, d] for every x ∈ [a, b], ϕ′

y = 0 on the Q, and
the corresponding indefinite double integral

Φ(x, y) =

x∫

a

y∫

c

ϕ(t) dt = (y − c)

x∫

a

ϕ(t) dt.

From this we obtain that

Φ′
[y](x, y) =

x∫

a

ϕ(t) dt,

(Φ′
[y])

′
[x](x0, y0)=

( x∫

a

ϕ(t)dt
)′

(x0)=ϕ(x0) for almost all x0 and for all y0,

(Φ′
[y])

′
[y](x0, y0) = 0 =

x0∫

a

ϕ′
y(t) dt for all (x0, y0),

str gradΦ′
[y](x0, y0) = (ϕ(x0), 0) for almost all x0 and for all y0.

§ 9. On the Sufficient Conditions of the Lebesgue’s Intense Point

Theorem 9.1. Under the assumptions of Theorem 6.2.1, every point
(x, y) ∈ r◦1 belongs to the set intLp

x(f).

Proof. For every point (x, y) ∈ r◦1 we have

F ′
x(x+ h, y + k) − F ′

x(x, y) =

y+k∫

c

f(x, τ) dτ −
y∫

c

f(x, τ) dτ, (1)
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whence

1

h

x+h∫

x

∣∣∣∣

y+k∫

c

f(x, τ) dτ −
y∫

c

f(x, τ) dτ

∣∣∣∣
p

dt =

=
1

h

x+h∫

x

∣∣F ′
x(x+ h, y + k) − F ′

x(x, y)
∣∣pdt. (2)

Because of the continuity of F ′
x on the r◦1 , we can make the right-hand

side of equality (2) arbitrarily small for sufficiently small h and k. Hence
equality 4.1.(1) is fulfilled for x0 = x and y0 = y. Thus the point (x, y)
belongs to the set intLp

x(f). �

The following theorem is proved analogously.

Theorem 9.2. Under the assumptions of Theorem 6.2.2, every point
(x, y) ∈ r◦2 belongs to the set intLp

y(f).

Next, we have the following

Theorem 9.3. Under the assumptions of Theorem 6.2.3, every point
(x, y) ∈ r◦ belongs to the set intLp

x,y(f).

Proof. By virtue of Theorems 9.1 and 9.2, every point (x, y) ∈ r◦ belongs
to the sets intLp

x(f) and intLp
y(f). Hence the point (x, y) ∈ r◦ belongs to

the set intLp
x,y(f). �

Theorem 9.3 yields

Theorem 9.4. Let the function f be continuous on the Q. Then each
point from the every neighborhood U(M) ⊂ Q0 of the arbitrary point M ∈
Q0, belongs to the set intLp

x,y(f) for all p ≥ 1.

From this theorem we can easily get

Theorem 9.5. Let the function f belong to the space Lp(Q) for some
p ≥ 1 and is continuous on the some rectangle R = [α, β]× [γ, δ] ⊂ Q. Then
for the values a = α and c = γ the equalities 4.1.(1) and 4.1.(2) are fulfilled
at every point (x0, y0) ∈ U(N) from the each neighborhood U(N) ⊂ R0 of
the arbitrary point N ∈ R0. Thus every point (x0, y0) ∈ U(N) belongs to
the set intLx,y(f |R), where by f |R is denoted restriction of the function f
on R, i.e., we consider f only on R (see 1.1 of Chapter I).

Corollary 9.1. Let an indefinite integral F , corresponding to the func-
tion f ∈ Lp(Q) for some p ≥ 1, possess a continuous at the point (x0, y0) ∈
Q0 partial derivative F ′

x for which the equality F ′
x(x, y) =

∫ y

c f(x, τ) dτ is
assumed to be fulfilled at every point (x, y) from some neighborhood of the
point (x0, y0). Then the point (x0, y0) belongs to the set intLp

x(f).
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Proof. Under this assumptions, equalities (1), (2) and 4.1.(1) are
fulfilled. �

Now from Corollary 9.1 we obtain

Corollary 9.2. Let the function f ∈ Lp(Q) with p ≥ 1 be measurable
with respect to y on the [c, d] for every x ∈ [a, b] and continuous with respect
to x at x0, uniformly with respect to y ∈ [c, d]. If the continuous at the point
(x0, y0) integral

y∫

c

f(x, τ) dτ, |x− x0| < δ, c < y0 < d

from equality 6.1.(3) coincides with F ′
x(x, y) in some neighborhood of the

point (x0, y0), then (x0, y0) ∈ intLp
x(f).
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