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ON THE DERIVABILITY AND REPRESENTATIONS OF QUATERNION
FUNCTIONS
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Abstract. For the quaternion functions of a quaternion variable we introduce the notion
of a Q-derivative. In particular, it is proved that the elementary functions introduced by
Hamilton possess such a derivative. The Q-derivation rules are established, and the necessary
and sufficient conditions are found for the existence of a Q-derivative. The properties of
quaternion functions are investigated with respect to two complex variables, and both their
integral representation and their representation by power series are given.

Keywords and phrases: Quaternion, Q-derivative, angular partial derivative.

AMS subject classification (2000): 30C35.

1. Introduction. The important theory of holomorphic (analytic) functions of
one complex variable with comprehensive applications to various problems of natural
sciences gave a serious impetus to the search for analogous theories for functions of
three and more real variables.

It turned out that an analogous theory, following Frobenius’ theorem [4], did not
exist for functions of three real variables.

To find an analogous theory for functions of four real variables, in 1843 Hamilton
introduced quaternions in the consideration. The quaternion units i0, i1, i2 and i3
introduced by Hamilton are subject to the conditions: i0 = 1, i21 = i22 = i23 = −1,
i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2. The quaternions z =
x0 + x1i1 + x2i2 + x3i3 with norm |x| = (x2

0 + x2
1 + x2

2 + x3
3)

1
2 are assigned to each point

(x0, x1, x2, x3) from the real four-dimensional space R4. The space R4 is thus identified
with the body of quaternions Q.

It is natural to construct the theory of quaternion functions f(z) = u0(z)+u1(z)i1+
u2(z)i2 +u3(z)i3, where uk(z) are real functions, using the scheme by which the theory
of holomorphic functions of one complex variable is constructed provided that such a
scheme exists. There are three well known methods of construction of the theory of
holomorphic functions of one complex variable. These methods are nor applicable to
the quaternion functions.

Here for the quaternion functions of a quaternion variable we give the notion of a
Q-derivative which all elementary functions have. The rules of Q-derivation are estab-
lished and the necessary and sufficient conditions for the existence of a Q-derivative
are found similarly to the case of complex functions of one complex variable. The no-
tions and conditions of C2-differentiability and C2-holomorphy for quaternion functions
are given with respect to two complex variables. The integral representation and the
representation by power series are discussed for C2-holomorphic functions.
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2. The Notion of a Q-Derivative

Definition 2.1. A quaternion function f(z), z = x0 + x1i1 + x2i2 + x3i3, defined
in the neighborhood of a point z0 = x0

0 + x0
1i1 + x0

2i2 + x0
3i3 is called Q-derivable at

z0 if there exist two numerical sequences of quaternions Ak(z
0) and Bk(z

0) such that∑
k

Ak(z
0)Bk(z

0) is finite and the equality

f(z0 + h)− f(z0) =
∑

k

Ak(z
0) · h ·Bk(z

0) + ω(z0, h)

is valid, where lim
h→0

|ω(z0,h)|
|h| = 0. Moreover, the quaternion

∑
k

Ak(z
0)Bk(z

0) is called the

Q-derivative of the function f at the point z0 and we write

f ′(z0) =
∑

k

Ak(z
0)Bk(z

0).

Theorem 2.2. The following equalities are valid:

(zn)′ = nzn−1, n = 0, 1, 2, . . . , (ez)′ = ez, (sin z)′ = cosz, (cos z)′ = − sin z.

3. The Q-Derivation Rule. The equalities (c · f(z))′ = c · f ′(z) and (f(x) ·
c)′ = f ′(x) · c are obvious when there exists a derivative f ′(z), where c is a constant
quaternion.

Proposition 3.1. If there exist f ′(z) and ϕ′(z), then

(f + ϕ)′(z) = f ′(z) + ϕ′(z).

Proposition 3.2. Let there exist f ′(z) and ϕ′(z). Then

(f · ϕ)′(z) = f ′(z)ϕ(z) + f(z)ϕ′(z).

Corollary 3.3. If f1, f2, . . . , fn are Q-derivable functions at a point z, then

(f1 · f2 · · · fn)′(z) = f ′1 · f2 · · · fn + f1 · f ′2 · f3 · · · fn + · · ·+ f1 · f2 · · · fn−1 · f ′n.
Corollary 3.4. If a function f is Q-derivable at a point z, then for n = 1, 2, . . .

(fn)′ = f ′ · fn−1 + f · f ′ · fn−2 + · · ·+ fn−1 · f ′.
Proposition 3.5. If there exist ϕ′(z) and ϕ 6= 0 in a neighborhood of a point z,

then at z there holds the equality

(
1

ϕ

)′
(z) = − 1

ϕ(z)
· ϕ′(z) · 1

ϕ(z)
.

Corollary 3.6. For z 6= 0 we have (zm)′ = mzm−1, m = −1,−2, . . . , and
(

1
c−z

)′
=

1
(c−z)2

(c 6= z).
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Corollary 3.7. If there exist f ′(z), ϕ′(z) and ϕ 6= 0 in a neighborhood of a point
z, then (

f · 1

ϕ

)′
(z) = f ′(z) · 1

ϕ(z)
− f(z)

1

ϕ(z)
· ϕ′(z) · 1

ϕ(z)
,

(
1

ϕ
· f

)′
(z) = − 1

ϕ(z)
· ϕ′(z) · 1

ϕ(z)
f(z) +

1

ϕ(z)
· f ′(z) .

Corollary 3.8. If there exists f ′, then

(fn)′ = fn−1 · f ′ + fn−2 · f ′ · f + fn−3 · f ′ · f 2 + · · ·+ f ′ · fn−1,

(fn)′ = f ′ · fn−1 + f · f ′ · fn−2 + f 2 · f ′ · fn−3 + · · ·+ fn−1 · f ′.

4. The Q-Derivative of the Logarithm. A quaternion w is called the logarithm
of a finite quaternion z 6= 0 if the equality z = ew is fulfilled and we write w = ln z.

To define the Q-derivative w′ = (ln z)′, we have

1 =

(
1 +

w

2!
+

w2

3!
+ · · ·

)
· w′ +

(
1

2!
+

w

3!
+

w2

4!
+ · · ·

)
· w′ · w

+

(
1

3!
+

w

4!
+

w2

5!
+ · · ·

)
· w′ · w2 + · · · .

5. Necessary and Sufficient Conditions for Q-Derivability. Here we will
give the assertions on the relations between the Q-derivability and the differentiability
of quaternion functions.

Theorem 5.1. If a quaternion function F of a quaternion variable is Q-derivable
at a point z, then f is differentiable at z and its angular partial derivatives [1] f ′x̂0

, f ′x̂1
,

f ′x̂2
, f ′x̂3

are related to the derivative f ′(z) =
∑
k

Ak(z)Bk(z) through the equalities

f ′x̂0
(z) =

∑

k

Ak(z)Bk(z) = f ′(z), f ′x̂1
(z) =

∑

k

Ak(z)i1Bk(z), (1)

f ′x̂2
(z) =

∑

k

Ak(z)i2Bk(z), f ′x̂3
(z) =

∑

k

Ak(z)i3Bk(z). (2)

Theorem 5.2. Let a quaternion function f of a quaternion variable be differen-
tiable at a point z. Assume that its finite angular partial derivatives f ′x̂0

, f ′x̂1
, f ′x̂2

, f ′x̂3

existing at z admit representations (1)–(2). Then the function f has the Q-derivative
f ′(z) at the point z and f ′(z) =

∑
k Ak(z)Bk(z).

Theorem 5.3. If a function f is Q-derivable at a point z and f ′(z) =
∑
k

Ak(z)Bk(z),

then its differential df(z) = f ′x̂0
(z) dz0 + f ′x̂1

(z) dx1 + f ′x̂2
(z) dx2 + f ′x̂3

(z) dx3 admits the
representation df(z) =

∑
k Ak(z) dz Bk(z), where dz = dx0 + i1dx1 + i2dx2 + i3dx3.
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6. The C2-Differentiability and C2-Holomorphy of Quaternion Functions
6A. C2-Differentiability of quaternion functions.
Definition 6.1. A quaternion function f(z) = f1(z) + f2(z) i2, z = (z1, z2) =

z1 + z2i2, is called C2-differentiable at the point z0 = (z0
1 , z

0
2) = z0

1 + z0
2i2 if there exist

quaternion numbers d1 + d′1i2 and d2 + d′2i2 such that the condition

lim
z→z0

f(z)− f(z0)−
2∑

k=1

(zk − z0
k)(dk + d′ki2)

‖z − z0‖ = 0

is fulfilled.

In that case, the sum
2∑

k=1

(zk − z0
k)(dk + d′ki2) is called the C2-differential of the

quaternion function f(z) at the point z0.
Theorem 6.2. For a quaternion function f(z) = f1(z)+f2(z)i2 to be C2-differentiable

at a point z0 it is necessary and sufficient that one of the following conditions be ful-
filled:

(i) the complex functions f1(z) and f2(z) are C2-differentiable at the point z0;

(ii) the equalities

∂f

∂x̂0

(z0) + i1
∂f

∂x̂1

(z0) = 0,
∂f

∂x̂2

(z0) + i1
∂f

∂x̂3

(z0) = 0

are fulfilled;

(iii) the equality

df(z0) = dz1
∂f

∂ẑ1

(z0) + dz2
∂f

∂ẑ2

(z0)

is true; here ∂f
∂ẑ1

= ∂f1

∂ẑ1
+ ∂f2

∂ẑ1
i2 , ∂f

∂ẑ2
= ∂f1

∂ẑ2
+ ∂f2

∂ẑ2
i2 and for a complex function

g(z1, z2) of two complex variables the formal angular partial derivatives with re-
spect to z1 and z2 are introduced by the equalities [2]

∂g

∂ẑ1

=
1

2

(
∂g

∂x̂0

− i1
∂g

∂x̂1

)
,

∂g

∂ẑ2

=
1

2

(
∂g

∂x̂2

− i1
∂g

∂x̂3

)
.

6B. C2-Holomorphy of quaternion functions.
The conditions of Theorem 6.2 as to the C2-differentiability of a quaternion function

allow us to introduce
Definition 6.3. A quaternion function f(z) = f1(z)+f2(z)i2 is called C2-holomorphic

at a point z0 or in a domain D ⊂ C2 if f is C2-differentiable in a neighborhood of z0

or at each point of the domain D.
Proposition 6.4. For a quaternion function f(z) to be C2-holomorphic at a point

z0 or in a domain D ⊂ C2 it is necessary and sufficient that conditions (i)–(iii) from
Theorem 6.2 be fulfilled, each separately, in a neighborhood of the point z0 or at each
point of the domain D.
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Proposition 6.5. The C2-holomorphy at a point or in a domain of the quaternion
function f(z) = f1(z) + f2(z)i2 is equivalent to the simultaneous C2-holomorphy at a
point or in a domain of the complex functions f1(z) and f2(z).

7. Integral Representations of C2-Holomorphic Quaternion Functions

Theorem 7.1. Let a quaternion function f(z) = f1(z)+f2(z)i2 be C2-holomorphic
in a domain D ⊂ C2 which is the Cartesian product of the 1-connected domains D1 ⊂ C
and D2 ⊂ C. Then at every point z = (z1, z2) ∈ D we have the integral representation

f(z1, z2) = − 1

4π2

∫

Γ1

∫

Γ2

dζ1 dζ2

(ζ1 − z1)(ζ2 − z2)
f(ζ1, ζ2),

where Γ1 and Γ2 are any closed paths in D1 and D2, respectively, containing within
themselves the points z1 and z2.

Theorem 7.2. If a quaternion function f(z1, z2) = f1(z1, z2) + f2(z1, z2)i2 is C2-
holomorphic in the Cartesian product of the 1-connected domains D1 ⊂ C and D2 ⊂ C,
then its partial derivatives f ′z1

(z1, z2) and f ′z2
(z1, z2) are also C2-holomorphic quaternion

functions in D1 ×D1 ⊂ C2.

8. Representations of C2-Holomorphic Quaternion Functions by Power
Series

Theorem 8.1. Let a quaternion function f(z) = f1(z)+f2(z)i2 be C2-holomorphic
in the domain D ⊂ C2 which is the Cartesian product of 1-connected domains D1 ⊂ C
and D2 ⊂ C. Then at every point z0 = (z0

1 , z
0
2) ∈ D from the neighborhood of a point

z0 = (z0
1 , z

0
2) ∈ D we have the representation by a power series

f(z1, z2) =
∞∑

m,n=0

(z1 − z0
1)

m(z2 − z0
2)

n · cmn ,

where the quaternion coefficients cmn of the function f are given by the equalities

cmn = − 1

4π2

∫

Γ1

∫

Γ2

dζ1 dζ2

(ζ1 − z0
1)

m+1(ζ2 − z0
2)

n+1
f(ζ1, ζ2),

m!n!cmn =

(
∂m+nf(z1, z2)

∂zm
1 ∂zn

2

)
z1=z0

1

z2=z0
2

.
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