Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

CONVERGENCE OF DOUBLE TRIGONOMETRIC SERIES OBTAINED BY TERMWISE INTEGRATION

Dzagnidze O.

Abstract. It is shown that for every 2π periodic in each variable function f of two variables, summable on the square $[0, 2\pi]^2$, termwise integrating its double trigonometric Fourier series on the rectangle $[0, x] \times [0, y]$ gives a uniformly converging on $[0, 2\pi]^2$ to the integral $\int_0^x \int_0^y f(t, \tau) dt d\tau$ series. A series sum $\sum_{m,n=1}^\infty b_{mn}/mn$ is found, where b_{mn} is the Fourier coefficient at the product sin $mx \sin ny$.

Keywords and phrases: Double trigonometric Fourier series, integration.

AMS subject classification: 42B05.

1. Among many problems considered by Bernard Riemann there was the problem of representation of a function by a trigonometric series (1854). To solve this problem, Riemann considered the series with bounded coefficients

$$c_0 + \sum_{|n|\ge 1} c_n e^{inx},\tag{1}$$

and by twice integrating it formally he obtained an everywhere continuous function

$$F(x) = c_0 \frac{x^2}{2} + \sum_{|n| \ge 1} \frac{1}{n^2} c_n e^{inx}.$$

Riemann introduced the second symmetric derivative (later called a derivative in the Schwarz sense) which is written in the form

$$F^{(\prime\prime)}(x) = \lim_{h \to 0} \frac{F(x+2h) + F(x-2h) - 2F(x)}{4h^2},$$

for the function F, and in the form

$$F^{(\prime\prime)}(x) = \lim_{h \to 0} \left[c_0 + \sum_{|n| \ge 1} c_n e^{inx} \left(\frac{\sin nh}{nh} \right)^2 \right]$$

while for series (1). $F^{(\prime\prime)}(x)$ is called the sum of series (1) in the Riemann sense.

2. Riemann's idea about a formally integrated series was used by Lebesgue, who performed the operation of single formal integration of series (1) and obtained the series

$$c_0 x - i \sum_{|n| \ge 1} \frac{1}{n} c_n e^{inx}$$
 (2)

If series (2) converges to the function $\ell(x)$ in the neighborhood of some point x_0 and $\ell(x)$ has, at the point x_0 , the symmetric derivative

$$\ell^{(\prime)}(x_0) = \lim_{h \to 0} \frac{1}{2h} \left[\ell(x_0 + h) - \ell(x_0 - h) \right],$$

then $\ell^{(\prime)}(x_0)$ is called the sum of series (1) in the Lebesgue sense at the point x_0 , which according to series (1) is written in the following form

$$\ell^{(l)}(x_0) = \lim_{h \to 0} \left[c_0 + \sum_{|n| \ge 1} c_n e^{inx_0} \frac{\sin nh}{nh} \right].$$

Despite the well-known fact that there exists a summable function, the Fourier series of which diverges everywhere (Kolmogorov's example), the sum of the Fourier series S[f] in the Riemann and Lebesgue sense will be equal to the values of f for every function f almost at all points. This fact was established by Lebesgue by means of the following theorem proved by him in 1902.

Theorem L. If the Fourier series of a 2π periodic and summable function f on $[0, 2\pi]$ are, respectively,

$$f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \quad and \quad f \sim c_0 + \sum_{|n| \ge 1}^{\infty} c_n e^{inx},$$

then the following equalities are fulfilled uniformly on $[0, 2\pi]$, respectively,

$$\int_0^x f(t)dt = \begin{cases} \frac{a_0}{2} \int_0^x dt + \sum_{n=1}^\infty \int_0^x (a_n \cos nt + b_n \sin nt) dt, \\ \sum_{n=1}^\infty \frac{b_n}{n} + \frac{a_0}{2} x + \sum_{n=1}^\infty \frac{1}{n} (a_n \sin nx - b_n \cos nx) \end{cases}$$

and

$$\int_0^x f(t)dt = \begin{cases} c_0 \int_0^x dt + \sum_{|n|\ge 1}^\infty \int_0^x c_n e^{int} dt, \\ i \sum_{|n|\ge 1} \frac{c_n}{n} + c_0 x - i \sum_{|n|\ge 1}^\infty \frac{1}{n} c_n e^{ix}. \end{cases}$$

Moreover, the following equalities are fulfilled, too:

$$\sum_{|n| \ge 1} \frac{c_n}{n} = -i \sum_{n=1}^{\infty} \frac{b_n}{n} \,, \quad \sum_{n=1}^{\infty} \frac{b_n}{n} = \frac{1}{2\pi} \int_0^{2\pi} (\pi - x) f(x) \, dx.$$

3. Our objectives are: 1) to investigate the existence of an analogous theorem to the Lebesgue theorem L for double Fourier series; 2) to consider the convergence in the Lebesgue sense of double Fourier series, keeping in mind the fact that there exists a

 2π periodic in each variable and everywhere continuous function of two variables, the Fourier series of which diverges everywhere [1]. Hence the following theorems are valid.

Theorem 1. For the exponential series of a 2π periodic in each variable and summable function f on $[0, 2\pi]^2$

$$f \sim c_{00} + \sum_{|m| \ge 1} c_{m0} e^{imx} + \sum_{|n| \ge 1} c_{0n} e^{iny} + \sum_{|m| \ge 1, |n| \ge 1} c_{mn} e^{i(mx+ny)},$$
(3)

the equality

$$\int_0^x \int_0^y f(t,\tau) \, dt \, d\tau = c_{00} xy + iy \sum_{|m| \ge 1} \frac{1}{m} c_{m0} (1 - e^{imx}) + ix \sum_{|n| \ge 1} \frac{1}{n} c_{0n} (1 - e^{iny}) \\ - \sum_{|m| \ge 1, |n| \ge 1} \frac{1}{mn} c_{mn} (1 - e^{imx}) (1 - e^{iny})$$

is fulfilled uniformly on $[0, 2\pi]^2$.

Corollary 1. The equality

$$\sum_{m|\ge 1, |n|\ge 1} \frac{c_{mn}}{mn} = -\sum_{m,n=1}^{\infty} \frac{b_{mn}}{mn}$$
(4)

is valid, where b_{mn} is the Fourier coefficient at $\sin mx \sin ny$ from the relation

k

$$f \sim \frac{1}{4} a_{00} + \frac{1}{2} \sum_{m=1}^{\infty} (a_{m0} \cos mx + d_{m0} \sin mx) + \frac{1}{2} \sum_{n=1}^{\infty} (a_{0n} \cos ny + c_{0n} \sin ny) + \sum_{m,n=1}^{\infty} (a_{mn} \cos mx \cos ny + b_{mn} \sin mx \sin ny + c_{mn} \sin mx \cos ny).$$
(5)

4. The left-hand side of equality (4) will be known if we know the right-hand side of the same equality.

The study of this issue showed that in order to find the right-hand side of equality (4) it is necessary to prove an analogue of Theorem 1 for series (5). In this context, the following statement is true.

Theorem 2. If f is a 2π periodic in each variable and summable function on $[0, 2\pi]^2$, then for series (5) the equality

$$\int_{0}^{x} \int_{0}^{y} f(t,\tau) dt d\tau = \frac{1}{4} a_{00} xy + \frac{1}{2} y \sum_{m=1}^{\infty} \int_{0}^{x} (a_{m0} \cos mt + d_{m0} \sin mt) dt + \frac{1}{2} x \sum_{n=1}^{\infty} \int_{0}^{y} (a_{0n} \cos n\tau + c_{0n} \cos n\tau) d\tau + \sum_{m,n=1}^{\infty} \int_{0}^{x} \int_{0}^{y} [a_{mn} \cos mt \cos n\tau + b_{mn} \sin mt \sin n\tau + c_{mn} \cos mt \sin n\tau + d_{mn} \sin mt \cos n\tau] dt d\tau$$

is fulfilled uniformly on $[0, 2\pi]^2$. Corollary 2. The equality

$$\sum_{m,n=1}^{\infty} \frac{b_{mn}}{mn} = -\frac{1}{4} \left(A_{00} + a_{00} \pi^2 \right) - \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m} \beta_m + \frac{\pi}{2} \sum_{m=1}^{\infty} \frac{1}{m} d_{m0}$$
$$-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \delta_n + \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n} c_{0n},$$

$$\beta_m = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} yf(x,y) \sin mx \, dx \, dy, \quad \delta_n = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} xf(x,y) \sin ny \, dx \, dy,$$

$$F(x,y) = \int_0^x \int_0^y f(t,\tau) \, dt \, d\tau - y \int_0^x \left(\frac{1}{2\pi} \int_0^{2\pi} f(t,y) dy\right) \, dt - x \int_0^y \left(\frac{1}{2\pi} \int_0^{2\pi} f(x,\tau) dx\right) d\tau,$$

$$A_{00} = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} F(x,y) \, dx \, dy.$$

Corollary 3. The series

$$\sum_{m,n=1}^{\infty} \left(\frac{c_{mn}}{mn} \sin mx - \frac{b_{mn}}{mn} \cos mx \right) \quad \text{and} \quad \sum_{m,n=1}^{\infty} \left(\frac{d_{mn}}{mn} \sin ny - \frac{b_{mn}}{mn} \cos ny \right)$$

are convergent on the segments $0 \le x \le 2\pi$ and $0 \le y \le 2\pi$.

5. The sum of Fourier series (3) in the Lebesgue sense can be characterized for various classes of functions. We have the following theorem as an example.

Theorem 3. If a 2π periodic in each variable and summable on $[0, 2\pi]^2$ function f has a continuity point (x_0, y_0) , then the sum of (3) in the Lebesgue sense is equal to $f(x_0, y_0)$.

Corollary 4. For Fefferman's function (see [1]), series (3) converges in the Lebesgue sense to f(x, y) at all points (x, y).

Acknowledgement. The work is supported by Shota Rustaveli National Science Foundation Grant No FR/223/5-100/13.

REFERENCES

1. Fefferman Ch. On the divergence of multiple Fourier series. Bull. Amer. Math. Soc., 77 (1971), 191-195.

Received 11.05.2014; revised 11.10.2014; accepted 11.12.2014.

Author's address:

O. Dzagnidze A. Razmadze Mathematical Institute of Iv. Javakhishvili Tbilisi State University 6, Tamarashvili St., Tbilisi 0177 Georgia E-mail: odzagni@rmi.ge (6)