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CONVERGENCE OF DOUBLE TRIGONOMETRIC SERIES OBTAINED BY
TERMWISE INTEGRATION

Dzagnidze O.

Abstract. It is shown that for every 2π periodic in each variable function f of two vari-

ables, summable on the square [0, 2π]2, termwise integrating its double trigonometric Fourier

series on the rectangle [0, x] × [0, y] gives a uniformly converging on [0, 2π]2 to the integral∫ x
0

∫ y
0 f(t, τ) dt dτ series. A series sum

∞∑
m,n=1

bmn/mn is found, where bmn is the Fourier

coefficient at the product sinmx sinny.
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1. Among many problems considered by Bernard Riemann there was the problem
of representation of a function by a trigonometric series (1854). To solve this problem,
Riemann considered the series with bounded coefficients

c0 +
∑
|n|≥1

cne
inx, (1)

and by twice integrating it formally he obtained an everywhere continuous function

F (x) = c0
x2

2
+

∑
|n|≥1

1

n2
cne

inx .

Riemann introduced the second symmetric derivative (later called a derivative in the
Schwarz sense) which is written in the form

F (′′)(x) = lim
h→0

F (x+ 2h) + F (x− 2h)− 2F (x)

4h2
,

for the function F , and in the form

F (′′)(x) = lim
h→0

[
c0 +

∑
|n|≥1

cne
inx

(
sinnh

nh

)2]
while for series (1). F (′′)(x) is called the sum of series (1) in the Riemann sense.

2. Riemann’s idea about a formally integrated series was used by Lebesgue, who
performed the operation of single formal integration of series (1) and obtained the
series

c0x− i
∑
|n|≥1

1

n
cne

inx . (2)
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If series (2) converges to the function ℓ(x) in the neighborhood of some point x0 and
ℓ(x) has, at the point x0, the symmetric derivative

ℓ(′)(x0) = lim
h→0

1

2h
[ℓ(x0 + h)− ℓ(x0 − h)],

then ℓ(′)(x0) is called the sum of series (1) in the Lebesgue sense at the point x0, which
according to series (1) is written in the following form

ℓ(′)(x0) = lim
h→0

[
c0 +

∑
|n|≥1

cne
inx0

sinnh

nh

]
.

Despite the well-known fact that there exists a summable function,the Fourier series of
which diverges everywhere (Kolmogorov’s example), the sum of the Fourier series S[f ]
in the Riemann and Lebesgue sense will be equal to the values of f for every function
f almost at all points.This fact was established by Lebesgue by means of the following
theorem proved by him in 1902.

Theorem L. If the Fourier series of a 2π periodic and summable function f on
[0, 2π] are, respectively,

f ∼ a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) and f ∼ c0 +
∞∑

|n|≥1

cne
inx,

then the following equalities are fulfilled uniformly on [0, 2π], respectively,

∫ x

0

f(t)dt =


a0
2

∫ x

0

dt+
∞∑
n=1

∫ x

0

(an cosnt+ bn sinnt) dt,

∞∑
n=1

bn
n

+
a0
2
x+

∞∑
n=1

1

n
(an sinnx− bn cosnx)

and

∫ x

0

f(t)dt =


c0

∫ x

0

dt+
∞∑

|n|≥1

∫ x

0

cne
intdt,

i
∑
|n|≥1

cn
n

+ c0x− i
∞∑

|n|≥1

1

n
cne

ix.

Moreover, the following equalities are fulfilled, too:

∑
|n|≥1

cn
n

= −i
∞∑
n=1

bn
n

,
∞∑
n=1

bn
n

=
1

2π

∫ 2π

0

(π − x)f(x) dx.

3. Our objectives are: 1) to investigate the existence of an analogous theorem to
the Lebesgue theorem L for double Fourier series; 2) to consider the convergence in the
Lebesgue sense of double Fourier series, keeping in mind the fact that there exists a
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2π periodic in each variable and everywhere continuous function of two variables, the
Fourier series of which diverges everywhere [1]. Hence the following theorems are valid.

Theorem 1. For the exponential series of a 2π periodic in each variable and
summable function f on [0, 2π]2

f ∼ c00 +
∑
|m|≥1

cm0e
imx +

∑
|n|≥1

c0ne
iny +

∑
|m|≥1, |n|≥1

cmne
i(mx+ny), (3)

the equality∫ x

0

∫ y

0

f(t, τ) dt dτ = c00xy + iy
∑
|m|≥1

1

m
cm0(1− eimx) + ix

∑
|n|≥1

1

n
c0n(1− einy)

−
∑

|m|≥1, |n|≥1

1

mn
cmn(1− eimx)(1− einy)

is fulfilled uniformly on [0, 2π]2.
Corollary 1. The equality ∑

|m|≥1, |n|≥1

cmn

mn
= −

∞∑
m,n=1

bmn

mn
(4)

is valid, where bmn is the Fourier coefficient at sinmx sinny from the relation

f ∼ 1

4
a00 +

1

2

∞∑
m=1

(am0 cosmx+ dm0 sinmx) +
1

2

∞∑
n=1

(a0n cosny + c0n sinny)

+
∞∑

m,n=1

(amn cosmx cosny + bmn sinmx sinny

+ cmn cosmx sinny + dmn sinmx cosny). (5)

4. The left-hand side of equality (4) will be known if we know the right-hand side
of the same equality.

The study of this issue showed that in order to find the right-hand side of equality
(4) it is necessary to prove an analogue of Theorem 1 for series (5). In this context,
the following statement is true.

Theorem 2. If f is a 2π periodic in each variable and summable function on
[0, 2π]2, then for series (5) the equality∫ x

0

∫ y

0

f(t, τ) dt dτ =
1

4
a00xy +

1

2
y

∞∑
m=1

∫ x

0

(am0 cosmt+ dm0 sinmt) dt

+
1

2
x

∞∑
n=1

∫ y

0

(a0n cosnτ + c0n cosnτ) dτ

+
∞∑

m,n=1

∫ x

0

∫ y

0

[amn cosmt cosnτ + bmn sinmt sinnτ

+ cmn cosmt sinnτ + dmn sinmt cosnτ ] dt dτ
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is fulfilled uniformly on [0, 2π]2.
Corollary 2. The equality

∞∑
m,n=1

bmn

mn
= −1

4
(A00 + a00π

2)− 1

2

∞∑
m=1

1

m
βm +

π

2

∞∑
m=1

1

m
dm0

−1

2

∞∑
n=1

1

n
δn +

π

2

∞∑
n=1

1

n
c0n, (6)

is fulfilled, where

βm =
1

π2

∫ 2π

0

∫ 2π

0

yf(x, y) sinmxdx dy, δn =
1

π2

∫ 2π

0

∫ 2π

0

xf(x, y) sinny dx dy,

F (x, y) =

∫ x

0

∫ y

0

f(t, τ) dt dτ − y

∫ x

0

(
1

2π

∫ 2π

0

f(t, y)dy

)
dt− x

∫ y

0

(
1

2π

∫ 2π

0

f(x, τ)dx

)
dτ,

A00 =
1

π2

∫ 2π

0

∫ 2π

0

F (x, y) dx dy.

Corollary 3. The series
∞∑

m,n=1

(
cmn

mn
sinmx− bmn

mn
cosmx

)
and

∞∑
m,n=1

(
dmn

mn
sinny − bmn

mn
cosny

)
are convergent on the segments 0 ≤ x ≤ 2π and 0 ≤ y ≤ 2π.

5. The sum of Fourier series (3) in the Lebesgue sense can be characterized for
various classes of functions. We have the following theorem as an example.

Theorem 3. If a 2π periodic in each variable and summable on [0, 2π]2 function
f has a continuity point (x0, y0), then the sum of (3) in the Lebesgue sense is equal to
f(x0, y0).

Corollary 4. For Fefferman’s function (see [1]), series (3) converges in the Lebesgue
sense to f(x, y) at all points (x, y).
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