CONVERGENCE OF DOUBLE TRIGONOMETRIC SERIES OBTAINED BY TERMWISE INTEGRATION

Dzagnidze O.

Abstract

It is shown that for every 2π periodic in each variable function f of two variables, summable on the square $[0,2 \pi]^{2}$, termwise integrating its double trigonometric Fourier series on the rectangle $[0, x] \times[0, y]$ gives a uniformly converging on $[0,2 \pi]^{2}$ to the integral $\int_{0}^{x} \int_{0}^{y} f(t, \tau) d t d \tau$ series. A series sum $\sum_{m, n=1}^{\infty} b_{m n} / m n$ is found, where $b_{m n}$ is the Fourier coefficient at the product $\sin m x \sin n y$.

Keywords and phrases: Double trigonometric Fourier series, integration.
AMS subject classification: 42B05.

1. Among many problems considered by Bernard Riemann there was the problem of representation of a function by a trigonometric series (1854). To solve this problem, Riemann considered the series with bounded coefficients

$$
\begin{equation*}
c_{0}+\sum_{|n| \geq 1} c_{n} e^{i n x}, \tag{1}
\end{equation*}
$$

and by twice integrating it formally he obtained an everywhere continuous function

$$
F(x)=c_{0} \frac{x^{2}}{2}+\sum_{|n| \geq 1} \frac{1}{n^{2}} c_{n} e^{i n x}
$$

Riemann introduced the second symmetric derivative (later called a derivative in the Schwarz sense) which is written in the form

$$
F^{(\prime \prime)}(x)=\lim _{h \rightarrow 0} \frac{F(x+2 h)+F(x-2 h)-2 F(x)}{4 h^{2}},
$$

for the function F, and in the form

$$
F^{(\prime \prime)}(x)=\lim _{h \rightarrow 0}\left[c_{0}+\sum_{|n| \geq 1} c_{n} e^{i n x}\left(\frac{\sin n h}{n h}\right)^{2}\right]
$$

while for series (1). $F^{(\prime \prime)}(x)$ is called the sum of series (1) in the Riemann sense.
2. Riemann's idea about a formally integrated series was used by Lebesgue, who performed the operation of single formal integration of series (1) and obtained the series

$$
\begin{equation*}
c_{0} x-i \sum_{|n| \geq 1} \frac{1}{n} c_{n} e^{i n x} . \tag{2}
\end{equation*}
$$

If series (2) converges to the function $\ell(x)$ in the neighborhood of some point x_{0} and $\ell(x)$ has, at the point x_{0}, the symmetric derivative

$$
\ell^{(\prime)}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{1}{2 h}\left[\ell\left(x_{0}+h\right)-\ell\left(x_{0}-h\right)\right],
$$

then $\ell^{(\prime)}\left(x_{0}\right)$ is called the sum of series (1) in the Lebesgue sense at the point x_{0}, which according to series (1) is written in the following form

$$
\ell^{(\prime)}\left(x_{0}\right)=\lim _{h \rightarrow 0}\left[c_{0}+\sum_{|n| \geq 1} c_{n} e^{i n x_{0}} \frac{\sin n h}{n h}\right] .
$$

Despite the well-known fact that there exists a summable function, the Fourier series of which diverges everywhere (Kolmogorov's example), the sum of the Fourier series $S[f]$ in the Riemann and Lebesgue sense will be equal to the values of f for every function f almost at all points.This fact was established by Lebesgue by means of the following theorem proved by him in 1902.

Theorem L. If the Fourier series of a 2π periodic and summable function f on [$0,2 \pi]$ are, respectively,

$$
f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad \text { and } \quad f \sim c_{0}+\sum_{|n| \geq 1}^{\infty} c_{n} e^{i n x}
$$

then the following equalities are fulfilled uniformly on $[0,2 \pi]$, respectively,

$$
\int_{0}^{x} f(t) d t=\left\{\begin{array}{l}
\frac{a_{0}}{2} \int_{0}^{x} d t+\sum_{n=1}^{\infty} \int_{0}^{x}\left(a_{n} \cos n t+b_{n} \sin n t\right) d t \\
\sum_{n=1}^{\infty} \frac{b_{n}}{n}+\frac{a_{0}}{2} x+\sum_{n=1}^{\infty} \frac{1}{n}\left(a_{n} \sin n x-b_{n} \cos n x\right)
\end{array}\right.
$$

and

$$
\int_{0}^{x} f(t) d t=\left\{\begin{array}{l}
c_{0} \int_{0}^{x} d t+\sum_{|n| \geq 1}^{\infty} \int_{0}^{x} c_{n} e^{i n t} d t \\
i \sum_{|n| \geq 1} \frac{c_{n}}{n}+c_{0} x-i \sum_{|n| \geq 1}^{\infty} \frac{1}{n} c_{n} e^{i x}
\end{array}\right.
$$

Moreover, the following equalities are fulfilled, too:

$$
\sum_{|n| \geq 1} \frac{c_{n}}{n}=-i \sum_{n=1}^{\infty} \frac{b_{n}}{n}, \quad \sum_{n=1}^{\infty} \frac{b_{n}}{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\pi-x) f(x) d x .
$$

3. Our objectives are: 1) to investigate the existence of an analogous theorem to the Lebesgue theorem L for double Fourier series; 2) to consider the convergence in the Lebesgue sense of double Fourier series, keeping in mind the fact that there exists a
2π periodic in each variable and everywhere continuous function of two variables, the Fourier series of which diverges everywhere [1]. Hence the following theorems are valid.

Theorem 1. For the exponential series of a 2π periodic in each variable and summable function f on $[0,2 \pi]^{2}$

$$
\begin{equation*}
f \sim c_{00}+\sum_{|m| \geq 1} c_{m 0} e^{i m x}+\sum_{|n| \geq 1} c_{0 n} e^{i n y}+\sum_{|m| \geq 1,|n| \geq 1} c_{m n} e^{i(m x+n y)}, \tag{3}
\end{equation*}
$$

the equality

$$
\begin{aligned}
\int_{0}^{x} \int_{0}^{y} f(t, \tau) d t d \tau & =c_{00} x y+i y \sum_{|m| \geq 1} \frac{1}{m} c_{m 0}\left(1-e^{i m x}\right)+i x \sum_{|n| \geq 1} \frac{1}{n} c_{0 n}\left(1-e^{i n y}\right) \\
& -\sum_{|m| \geq 1,|n| \geq 1} \frac{1}{m n} c_{m n}\left(1-e^{i m x}\right)\left(1-e^{i n y}\right)
\end{aligned}
$$

is fulfilled uniformly on $[0,2 \pi]^{2}$.
Corollary 1. The equality

$$
\begin{equation*}
\sum_{|m| \geq 1,|n| \geq 1} \frac{c_{m n}}{m n}=-\sum_{m, n=1}^{\infty} \frac{b_{m n}}{m n} \tag{4}
\end{equation*}
$$

is valid, where $b_{m n}$ is the Fourier coefficient at $\sin m x \sin n y$ from the relation

$$
\begin{gather*}
f \sim \frac{1}{4} a_{00}+\frac{1}{2} \sum_{m=1}^{\infty}\left(a_{m 0} \cos m x+d_{m 0} \sin m x\right)+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{0 n} \cos n y+c_{0 n} \sin n y\right) \\
+\sum_{m, n=1}^{\infty}\left(a_{m n} \cos m x\right. \\
\cos n y+b_{m n} \sin m x \sin n y \tag{5}\\
\left.\quad+c_{m n} \cos m x \sin n y+d_{m n} \sin m x \cos n y\right) .
\end{gather*}
$$

4. The left-hand side of equality (4) will be known if we know the right-hand side of the same equality.

The study of this issue showed that in order to find the right-hand side of equality (4) it is necessary to prove an analogue of Theorem 1 for series (5). In this context, the following statement is true.

Theorem 2. If f is a 2π periodic in each variable and summable function on $[0,2 \pi]^{2}$, then for series (5) the equality

$$
\begin{aligned}
& \int_{0}^{x} \int_{0}^{y} f(t, \tau) d t d \tau= \frac{1}{4} a_{00} x y+\frac{1}{2} y \sum_{m=1}^{\infty} \int_{0}^{x}\left(a_{m 0} \cos m t+d_{m 0} \sin m t\right) d t \\
&+\frac{1}{2} x \sum_{n=1}^{\infty} \int_{0}^{y}\left(a_{0 n} \cos n \tau+c_{0 n} \cos n \tau\right) d \tau \\
&+\sum_{m, n=1}^{\infty} \int_{0}^{x} \int_{0}^{y}\left[a_{m n} \cos m t \cos n \tau+b_{m n} \sin m t \sin n \tau\right. \\
&\left.\quad+c_{m n} \cos m t \sin n \tau+d_{m n} \sin m t \cos n \tau\right] d t d \tau
\end{aligned}
$$

is fulfilled uniformly on $[0,2 \pi]^{2}$.
Corollary 2. The equality

$$
\begin{gather*}
\sum_{m, n=1}^{\infty} \frac{b_{m n}}{m n}=-\frac{1}{4}\left(A_{00}+a_{00} \pi^{2}\right)-\frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m} \beta_{m}+\frac{\pi}{2} \sum_{m=1}^{\infty} \frac{1}{m} d_{m 0} \\
-\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \delta_{n}+\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n} c_{0 n} \tag{6}
\end{gather*}
$$

is fulfilled, where

$$
\begin{gathered}
\beta_{m}=\frac{1}{\pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} y f(x, y) \sin m x d x d y, \quad \delta_{n}=\frac{1}{\pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} x f(x, y) \sin n y d x d y \\
F(x, y)=\int_{0}^{x} \int_{0}^{y} f(t, \tau) d t d \tau-y \int_{0}^{x}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t, y) d y\right) d t-x \int_{0}^{y}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x, \tau) d x\right) d \tau \\
A_{00}=\frac{1}{\pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} F(x, y) d x d y
\end{gathered}
$$

Corollary 3. The series

$$
\sum_{m, n=1}^{\infty}\left(\frac{c_{m n}}{m n} \sin m x-\frac{b_{m n}}{m n} \cos m x\right) \text { and } \sum_{m, n=1}^{\infty}\left(\frac{d_{m n}}{m n} \sin n y-\frac{b_{m n}}{m n} \cos n y\right)
$$

are convergent on the segments $0 \leq x \leq 2 \pi$ and $0 \leq y \leq 2 \pi$.
5. The sum of Fourier series (3) in the Lebesgue sense can be characterized for various classes of functions. We have the following theorem as an example.

Theorem 3. If a 2π periodic in each variable and summable on $[0,2 \pi]^{2}$ function f has a continuity point $\left(x_{0}, y_{0}\right)$, then the sum of (3) in the Lebesgue sense is equal to $f\left(x_{0}, y_{0}\right)$.

Corollary 4. For Fefferman's function (see [1]), series (3) converges in the Lebesgue sense to $f(x, y)$ at all points (x, y).

Acknowledgement. The work is supported by Shota Rustaveli National Science Foundation Grant No FR/223/5-100/13.

REFERENCES

1. Fefferman Ch. On the divergence of multiple Fourier series. Bull. Amer. Math. Soc., 77 (1971), 191-195.

Received 11.05.2014; revised 11.10.2014; accepted 11.12.2014.
Author's address:
O. Dzagnidze
A. Razmadze Mathematical Institute of
Iv. Javakhishvili Tbilisi State University

6, Tamarashvili St., Tbilisi 0177
Georgia
E-mail: odzagni@rmi.ge

