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ON SOME NEW PROPERTIES OF QUATERNION FUNCTIONS

O. Dzagnidze UDC 517.5

Abstract. Quaternions discovered by W. R. Hamilton made a great contribution to the progress
in noncommutative algebra and vector analysis. However, the analysis of quaternion functions has
not been duly developed. The matter is that the notion of a derivative of quaternion functions of a
quaternion variable has not been known until recently. The author has succeeded in improving the
situation. The present work contains an account of the results obtained by him in this direction. The
notion of an H-derivative is introduced for quaternion functions of a quaternion variable. The existence
of an H-derivative of elementary functions is established retaining the well-known formulas for the
corresponding functions from complex (real) analysis. The rules on the H-differentiation of a sum, a
product, and an inverse function are formulated and proved. Necessary and sufficient conditions for
the existence of an H-derivative are established. The notions of C2-differentiation and C

2-holomorphy
are introduced for quaternion functions of a quaternion variable. Three equivalent conditions are
found, each of them being a necessary and sufficient one for C

2-differentiation. Representations by an
integral and a power series are given for C

2-holomorphic functions. It is proved that the harmonicity
of functions f(z), z · f(z), and f(z) · z is the necessary and sufficient condition for a function f to be
Fueter-regular.
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1. Introduction

The highly important theory of holomorphic (analytic) functions of a complex variable with com-
prehensive applications to various problems of natural sciences proved to be a serious motive for
finding analogous theories for functions of three and more real variables. It turned out that, following
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Frobenius (see [80, p. 117]), such analogous theories did not exist at all for functions of three real
variables.

Pursuing the purpose of finding a similar theory for functions of four real variables, W. R. Hamilton
(1805–1865)1 made a truly brilliant discovery by introducing quaternions in science ( [1, 16, 17, 29]).
He dedicated the last twenty two years of his life to the construction of the quaternion theory (see [116,
p. 212]).

In 1837, J. Bolyai (1802–1860) in Leipzig submitted his remarkable work that forestalled Hamilton’s
finding to the prize competition, but the jury passed a negative decision. That unfortunate event badly
affected the psychological health of Bolyai (see [16, 17]).

1.1. Fundamental properties of quaternion numbers (see [24, 80]). The quaternion (con-
stant) units i0, i1, i2, i3 introduced by Hamilton obey the conditions i0 = 1, i21 = i22 = i23 = i1i2i3 = −1,
and the multiplication table

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2. (1.1)

The diagram below helps memorize this “multiplication table”: the product of any two numbers from
the set {i1, i2, i3} is equal to the third number with sign “+” if the direction of rotation from the
first multiplier to the second is clockwise and with sign “−” in the opposite case. We see that the
multiplication of quaternions is not commutative: the product depends on the order of factors.

Fig. 1.

Quaternions are numbers of the form

a+ bi1 + ci2 + di3, (1.2)

where a, b, c, and d are real numbers.
The addition and multiplication rules for two quaternions

q = a+ bi1 + ci2 + di3, (1.3)

q′ = a′ + b′i1 + c′i2 + d′i3, (1.4)

are respectively

q + q′ = (a+ a′) + (b+ b′)i1 + (c+ c′)i2 + (d+ d′)i3 = q′ + q, (1.5)

qq′ = (aa′ − bb′ − cc′ − dd′) + (ab′ + ba′ + cd′ − dc′)i1
+ (ac′ + ca′ + db′ − bd′)i2 + (ad′ + da′ + bc′ − cb′)i3. (1.6)

It is easy to verify that the real number aa′ − bb′ − cc′ − dd′ is the real part of the products of qq′ and
q′q.

1The name William Rowan Hamilton, professor of the Dublin University, President of the Irish Academy of Sciences
in 1837–1846, is well known in mechanics, physics, and astronomy not only in connection with quaternions. The great
scientist never ceased his tireless search for a higher form of complex numbers. His efforts were crowned with success
and on October 16, 1843, while walking to attend the session of the Academy of Sciences in Dublin, he stopped on the
Brougham bridge and cut with a knife the multiplication formulas of quaternions on the stone balustrade (see [29, p. 29]
and [86]). A few years after 1843, the memorial plaque [71, p. 515] was installed at the place on the bridge across the
channel, where Hamilton experienced a sudden inspiration.
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Although multiplication of quaternions does not satisfy the commutativity property, it is associative:

(q1q2)q3 = q1(q2q3). (1.7)

The quaternion

q = a− bi1 − ci2 − di3 (1.8)

is said to be conjugate to the quaternion (1.3).
It is obvious that the sum of conjugate quaternions is a real number. The products qq and qq are

also real:

qq = qq = a2 + b2 + c2 + d2. (1.9)

The number (a2 + b2 + c2 + d2)1/2 is called the modulus of the quaternion q and is denoted by |q|.
So,

qq = qq = |q|2. (1.10)

Hence, using Eqs. (1.7) and (1.12), we have

|q1q2|2 = (q1 · q2)(q1 · q2) = q1 · q2 · q2 · q1 = q1(q2 · q2)q1 = q1|q2|2q1 = |q2|2q1q1 = |q2|2|q1|2.
Therefore

|q1q2| = |q1| |q2|. (1.10′)

A straightforward calculation shows that the conjugate to the sum is equal to the sum of conjugates,

q1 + q2 = q1 + q2. (1.11)

while the conjugate to the product is equal to the product of conjugates taken in reverse order:

q1q2 = q2 · q1. (1.12)

Since the product of quaternions depends on the order of cofactors, we must separately consider
the following two equations:

q2x = q1, (1.13)

xq2 = q1; (1.14)

here q2 �= 0. A solution of Eq. (1.13) is called the left quotient of q1 and q2 and is denoted by xl, while
a solution of Eq. (1.14) is called the right quotient xr. It is easy to obtain the formulas

xl =
1

|q2|2 q2 · q1, (1.15)

xr =
1

|q2|2 q1 · q2. (1.16)

Taking q1 = 1, we see that each quaternion q2 �= 0 has the inverse quaternion q2/|q2|2, which is denoted
by q−1

2 . Therefore,

q−1
2 =

1

|q2|2 q2. (1.17)

The uniqueness of solutions of Eqs. (1.13) and (1.14) can also be formulated as follows: if ab1 = ab2
or b1a = b2a for a �= 0, then b1 = b2.

Furthermore, each point (x0, x1, x2, x3) of the real four-dimensional Euclidean space R4 is associated

with the quaternion z = x0 + x1i1 + x2i2 + x3i3 with norm |z| = (x20 + x21 + x22 + x23)
1/2. Hence the

space R
4 is identified with the quaternion division algebra H.
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1.2. On quaternion functions. The property of a quaternion function f(z) = u0(z) + u1(z)i1 +
u2(z)i2 + u3(z)i3, where uk(z) are real functions, to possess a finite limit, or to be continuous, or to
have a finite partial derivative with respect to a real variable xn is equivalent to the same properties
of all functions um(z).

It is natural to construct the theory of quaternion functions using the scheme by which the theory of
holomorphic functions of one complex variable is constructed provided that this scheme is realizable.

We can indicate the following three methods of construction of the theory of holomorphic functions
of one complex variable.

1.3. Derivative method. This method is based on the notion of a derivative as the limit of a ratio
of the increment of a function to the increment of an independent variable.

Due to the noncommutativity of multiplication of quaternions, such an approach to a quaternion
function f(z) leads to two different notions of the derivative: the right derivative A(z) in the form of
two equivalent equalities [84]

lim
h→0

[
f(z + h)− f(z)

] · h−1 = A(z), Δf = Ah+ ε1, ε1 → 0, h → 0, (1.18)

and the left derivative B(z), which is expressed by the equivalent equalities

lim
h→0

h−1 · [f(z + h)− f(z)
]
= B(z), Δf = hB + ε2, ε2 → 0, h → 0, (1.19)

if the corresponding limits exist.
It turns out that only the functions ϕ(z) = az + b possess the right derivative, only the functions

ψ(z) = za + b possess the left derivative, and the functions χ(z) = rz + b have the unilateral equal
derivatives A = B, where a and b are any quaternion numbers and r is a real number (see [99]).
Subsequently, the same result was also established in works of other authors (see, e.g., [5, 25, 64]).

We also mention the following remarkable formula established in [64] under the assumption c2+d2 >
0:

(a+ bi1 + ci2 + di3)
n = an + bni1 + cni2 + dni3, (1.20)

where the real numbers an, bn, cn, and dn are defined by the equalities

an =
1

2

[
(a− i1

√
Δ)n + (a+ i1

√
Δ)n

]
,

bn =
b√
Δ

· 1
2

[
(a− i1

√
Δ)n − (a+ i1

√
Δ)n

]
· i1,

cn =
c√
Δ

· 1
2

[
(a− i1

√
Δ)n − (a+ i1

√
Δ)n

]
· i1,

dn =
d√
Δ

· 1
2

[
(a− i1

√
Δ)n − (a+ i1

√
Δ)n

]
· i1

(1.21)

and

Δ = b2 + c2 + d2.

1.4. Polynomial method. Consider the polynomial p(x, y) =
∑

m,n
Am,nx

myn of two real variables

x and y with complex coefficients Am,n = αm,n + iβm,n, i
2 = −1.

By virtue of the equalities

x =
1

2
(z + z), y =

1

2
i (z − z)

we obtain the polynomial p∗(z, z) of the complex variables z = x+ iy and z = x− iy.
The polynomial p∗(z, z) is a function of only one variable z if and only if the well-known Cauchy–

Riemann condition are fulfilled.
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However, a similar approach to polynomials of real variables x0, x1, x2, and x3 with quaternion
coefficients does not yield a desired result (see [129]). The matter is that the real coordinates xk of the
quaternion z = x0 + x1i1 + x2i2 + x3i3 are expressed through z by the Hausdorff formulas (see [74]):

x0 =
1

4
(z − i1zi1 − i2zi2 − i3zi3), x1 =

1

4i1
(z − i1zi1 + i2zi2 + i3zi3),

x2 =
1

4i2
(z + i1zi1 − i2zi2 + i3zi3), x3 =

1

4i3
(z + i1zi1 + i2zi2 − i3zi3)

(1.22)

without using the conjugate quaternion z = x0 − x1i1 − x2i2 − x3i3.
Note that alongside with these Hausdorff formulas we can also apply, as is easy to verify, the

formulas

x0 =
1

2
(z + z), x1 =

1

2
(i1z − zi1),

x2 =
1

2
(i2z − zi2), x3 =

1

2
(i3z − zi3)

(1.23)

which, in contrast to the case of complex-valued functions, are not essential.

1.5. Gradient method. Looman [91] and Menchoff [100] proved that a continuous function f(z)
in a domain G is holomorphic in G if and only if f(z) satisfies in G the Cauchy–Riemann condition

f ′
x(z) + if ′

y(z) = 0, z = x+ iy

(see also [117, p. 75]). Later, Tolstov showed that the assertion of Looman and Menshoff remains
valid if the continuity of the function f(z) is replaced by its boundedness in G (see [133]). Hence it is
clear that the Cauchy–Riemann condition is very important for the function f(z), z = x + iy, to be
holomorphic in the domain G.

Fueter developed a similar method for quaternion functions based on conditions of differential nature
that were analogous to the Cauchy–Riemann conditions for functions of one complex variable.

In [54], Fueter introduced the following definition.
A quaternion function f(z) of the quaternion variable z = x0 + x1i1 + x2i2 + x3i3 that possesses

continuous partial derivatives f ′
x0
, f ′

x1
, f ′

x2
, and f ′

x3
in a domain G ⊂ H is said to be right-regular in G

(notation f ∈ F+(G)) if the condition

∂rf

∂z
= 0 (1.24)

is fulfilled in G; similarly, f(z) is said to be left-regular if the condition

∂lf

∂z
= 0 (1.25)

is fulfilled in G; here the quaternion gradient operators ∂r/∂z and ∂l/∂z are defined by the equalities

∂r

∂z
=

∂

∂x0
+

∂

∂x1
i1 +

∂

∂x2
i2 +

∂

∂x3
i3, (1.26)

∂l

∂z
=

∂

∂x0
+ i1

∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
. (1.27)

If f ∈ F+(G) ∩ F−(G), then, according to Fueter, the function f is said to be regular in G (notation
f ∈ F (G)).

Fueter’s definitions were subsequently refined by Schuler [119] who weakened the assumption of the
continuity of first-order partial derivatives of the function f(z) to the differentiability (according to
Stolz) of f .

If we introduce into consideration the Laplace operator

Δ =
∂2

∂x20
+

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
, (1.28)
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then we obtain the equality

Δf = ∂r(∂rf) = ∂l(∂lf), (1.29)

which can be easily verified. Hence it follows that functions that are right- or left-regular in a domain
G ⊂ H in the Fueter sense are also harmonic, i.e. satisfy the Laplace equation Δf = 0.

Hence we can conclude that functions ψn(z) = zn, which are important for analysis, do not belong
to the union F+(G) ∪ F−(G). For example, Δ(z2) = −4 since

z2 = (x20 − x21 − x22 − x23) + 2x0x1i1 + 2x0x2i2 + 2x0x3i3.

Even the function ψ1(z) = z, although it is harmonic, does not belong to this union.
Thus, the following problem arises: Is it possible to indicate for quaternion functions a differentiation

property satisfied by power functions ψn(z) = zn (n = 0, 1, 2, . . .)? The commutativity property of
these power functions is obvious.

This problem is solved positively for the basic Hamilton elementary functions

zn, n = 0, 1, 2, . . . , (1.30)

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · , (1.31)

cos z = 1− z2

2!
+

z4

4!
− · · · , (1.32)

sin z = z − z3

3!
+

z5

5!
+ · · · , (1.33)

and for the logarithmic function ln z.
In the present work, for quaternion functions of a quaternion variable we give the notion of an

H-derivative, which exists for all functions mentioned above.
We recall here the opinion of Shilov on the existence of a theory of functions of a quaternion variable

(see [124, p. 385]). It concerned the dream of Hamilton to create a theory of a quaternion variable,
but the hopes that had been put on quaternions did not come true.

In Secs. 3 and 6 we establish the rule of H-derivation and the necessary and sufficient condition
of existence of an H-derivative, which is an analog of the Cauchy–Riemann condition for a complex
function of one complex variable.

Furthermore, the notion and the condition of C2-differentiability and C
2-holomorphy (C2-analyticity)

of quaternion functions with respect to two independent complex variables are given (see Sec. 7).
In addition, an integral representation and a representation by a power series are obtained for C

2-
holomorphic quaternion functions.

The property of a quaternion function to be right- or left-regular according to Fueter is characterized
through the C

2-holomorphy of its two complex components, which are functions with respect to two
independent complex variables.

Further, we proved that a function f is Fouter-regular if and only if the functions f(z), f(z) · z and
z · f(z) are harmonic. It is established that if f and f2 are harmonic functions, then the equality

3∑

k=0

(f ′
xk
)2 = 0

is fulfilled. In the complex case, the last equality implies that either of the functions f and f is
holomorphic.

Some relations between the functions zn, cos z, sin z, and ez are established (see Sec. 13) using the
variable imaginary unit quaternion Iz with property I2z = −1 (see [71, p. 349]).

The concluding part of the paper (Sec. 14) is dedicated to the applications of quaternions.
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2. H-Derivative and Its Existence for Elementary Functions

The theory of holomorphic (analytic) functions of one complex variable is based on the notion of
a derivative of a complex function with respect to its complex argument. Every elementary function
of a complex variable has such a derivative. These derivatives are generalizations of the derivatives of
the corresponding functions from real analysis. Quaternions, the appearance of which gave a mighty
stimulus to the progress of algebra, are generalizations of complex values a+bi with i2 = −1. However,
the development of the analysis of quaternion functions was hampered by the lack of the notion of
a derivative with good properties. Recently, the author has succeeded in improving the situation by
obtaining the results to be discussed below.

Definition 2.1. A quaternion function f(z), where z = x0 + x1i1 + x2i2 + x3i3, defined in some
neighborhood G ⊂ H of a point z0 = x00 + x01i1 + x02i2 + x03i3, is said to be H-differentiable at z0 if
there exist two sequences of quaternions Ak(z

0) and Bk(z
0) such that

∑

k

Ak(z
0)Bk(z

0) is finite and

the increment f(z0 + h)− f(z0) of the function f(z) can be represented as follows:

f(z0 + h)− f(z0) =
∑

k

Ak(z
0) · h · Bk(z

0) + ω(z0, h), (2.1)

where

lim
h→0

|ω(z0, h)|
|h| = 0 (2.2)

and z0+h ∈ G. In this case, the quaternion
∑

k

Ak(z
0)Bk(z

0) is called the H-derivative of the function

f at the point z0 and is denoted by f ′(z0). Thus,

f ′(z0) =
∑

k

Ak(z
0)Bk(z

0). (2.3)

The uniqueness of the H-derivative follows from the fact that the right-hand side of (2.3), if it exists,
is just the partial derivative f ′

x0
(z0) of f(z) at z0 with respect to its real variable.

In the sequel, the symbol o(h) will denote any function ω(z0, h) satisfying (2.2).

Remark 2.2. Note that the same definition still makes good sense for any mapping between Banach
algebras. Moreover, all the proofs of our results remain valid (except for Proposition 3.4, which still
remains valid if we take ϕ to be invertible in a neighborhood of z0) since in that case only those
properties of H are required, which any Banach algebra has.

We will show that the basic elementary functions are H-differentiable.

Proposition 2.3.
(zn)′ = nzn−1 for n = 0, 1, 2, . . . and for z ∈ H. (2.4)

Proof. First, we show that the following equality holds for n = 1, 2, . . .:

(z + h)n − zn = zn−1h+ zn−2hz + zn−3hz2 + · · ·+ zhzn−2 + hzn−1 + o(h). (2.5)

For n = 1 it is obvious. Assuming now that it is valid for n = k, we find

(z + h)k+1 − zk+1 = (z + h)(z + h)k − zk+1

= (z + h)(zk + zk−1h+ zk−2hz + · · ·+ zhzk−2 + hzk−1 + o(h)) − zk+1

= zk+1 + zkh+ zk−1hz + · · · + z2hzk−2 + zhzk−1 + hzk + o(h)) − zk+1

= zkh+ zk−1hz + zk−2hz2 + · · · + z2hzk−2 + zhzk−1 + hzk + o(h).

Then it follows from (2.3) and (2.5) that

(zn)′ = zn−1 · 1 + zn−2 · z + zn−3 · z2 + · · ·+ z · zn−2 + 1 · zn−1 = nzn−1. (2.6)
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Thus, we have proved by induction that (zn)′ = nzn−1 for all n = 0, 1, 2, . . .. �

In order to proceed further, we need the following lemma.

Lemma 2.4. The following equalities and estimates are valid for |h| < 1:

(z + h)2 − z2

2!
=

zh+ hz

2!
+A2,

(z + h)3 − z3

3!
=

z2h+ zhz + hz2

3!
+A3,

(z + h)4 − z4

4!
=

z3h+ z2hz + zhz2 + hz3

4!
+A4,

(z + h)5 − z5

5!
=

z4h+ z3hz + z2hz2 + zhz3 + hz4

5!
+A5,

and so on, where

A2 =
1

2!
h2, |A2| < |h|2, A2 = o(h);

A3 =
1

3!
(zh2 + hzh+ h2z + h3),

|A3| < 23

3!

( |z| |h|2 + |h|3)

<

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

23

3!
|h|2(1 + |h|) < 23

3!
|h|2 · 1

1− |h| for |z| < 1,

23

3!
|z| |h|2(1 + |h|) < 23

3!
|z| |h|2 · 1

1− |h| for |z| ≥ 1;

A4 =
1

4!

(
z2h2 + zhzh + zh2z + zh3 + hz2h+ hzhz + hzh2 + h2z2 + h2zh+ h3z + h4

)
,

|A4| < 24

4!

(
|z|2 |h|2 + |z| |h|3 + |h|4

)

<

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

24

4!
|h|2(1 + |h| + |h|2) < 24

4!
|h|2 · 1

1− |h| for |z| < 1,

24

4!
|z|2 |h|2(1 + |h|+ |h|2) < 24

4!
|z|2 |h|2 · 1

1− |h| for |z| ≥ 1;

A5 =
1

5!

(
z3h2 + z2hzh+ z2h2z + z2h3 + zhz2h+ zhzhz + zhzh2 + zh2z2 + zh2zh

+ zh3z + zh4 + hz3h+ hz2hz + hz2h2 + hzhz2 + hzhzh + hzh3z+

+ hzh3 + h2z3 + h2z2h+ h2zhz + h2zh2 + h3z2 + h3zh+ h4z + h5
)
,

|A5| < 25

5!

(
|z|3 |h|2 + |z|2 |h|3 + |z| |h|4 + |h|5

)
<

<

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

25

5!
|h|2(1 + |h|+ |h|2 + |h|3) < 25

5!
|h|2 · 1

1− |h| for |z| < 1,

25

5!
|z|3 |h|2(1 + |h|+ |h|2 + |h|3) < 25

5!
|z|3 |h|2 · 1

1− |h| for |z| ≥ 1,
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and so on,

|An| <

⎧
⎪⎪⎨

⎪⎪⎩

2n

n!
|h|2 · 1

1− |h| for |z| < 1,

2n

n!
|z|n−2|h|2 · 1

1− |h| for |z| ≥ 1.

Therefore

∞∑

n=3

|An| <

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|h|2 · 1

1− |h| ·
∞∑

n=3

2n

n!
for |z| < 1,

|h|2 · 1

1− |h| ·
∞∑

n=3

2n

n!
|z|n−2 for |z| ≥ 1

and the series
∞∑

n=3

2n

n!
and

∞∑

n=3

2n

n!
|z|n−2

converge by the ratio test (see [98]). Thus,

∞∑

n=3

|An| = o(h)

for any fixed finite quaternion z.

Proposition 2.5. The following equality holds:

(ez)′ = ez. (2.7)

Proof. The equality

ez = 1 + z +
z2

2!
+

z3

3!
+ · · ·

implies that, for any h ∈ H,

ez+h − zz = h+
(z + h)2 − z2

2!
+

(z + h)3 − z3

3!
+

(z + h)4 − z4

4!
+ · · · ,

and applying Lemma 2.4 to the right-hand side of this equality, we obtain

ez+h − ez

= h+
1

2!

(
zh+ hz

)
+

1

3!

(
z2h+ zhz + hz2

)
+

1

4!

(
z3h+ z2hz + zhz2 + hz3

)
+ · · · + o(h).

Therefore

ez+h − ez =
(
1 +

z

2!
+

z2

3!
+ · · ·

)
h+

( 1

2!
+

z

3!
+

z2

4!
+ · · ·

)
hz

+
( 1

3!
+

z

4!
+

z2

5!
+ · · ·

)
hz2 + · · ·+ o(h) (2.8)
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and hence

(ez)′ = 1 +
z

2!
+

z2

3!
+

z3

4!
+ · · ·

+
z

2!
+

z2

3!
+

z3

4!
+ · · ·

+
z2

3!
+

z3

4!
+ · · ·

+
z3

4!
+ · · ·

= 1 + 2
z

2!
+ 3

z2

3!
+ 4

z3

4!
+ · · ·

= 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · = ez. �

Proposition 2.6. The following equality holds:

(sin z)′ = cos z. (2.9)

Proof.

sin(z + h)− sin z = (z + h)− (z + h)3

3!
+

(z + h)5

5!
− · · · − z +

z3

3!
− z5

5!
+ · · ·

= h− (z + h)3 − z3

3!
+

(z + h)5 − z5

5!
− · · ·

= h− 1

3!
(z2h+ zhz + hz2) +

1

5!
(z4h+ z3hz + z2hz2 + zhz3 + hz4) + · · ·+ o(h).

Therefore,

sin(z + h)− sin z = h+
(
− z2

3!
+

z4

5!

)
h+ zh

(
− z

3!
+

z3

5!

)
+ h

(
− z2

3!
+

z4

5!

)
+ · · ·+ o(h).

Hence

(sin z)′ = 1− z2

3!
+

z4

5!
+ z

(
− z

3!
+

z3

5!

)
− z2

3!
+

z4

5!
+ · · ·

= 1− z2

3!
+

z4

5!
− z2

3!
+

z4

5!
− z2

3!
+

z4

5!
+ · · ·

= 1− z2

2!
+

z4

4!
− · · · = cos z. �

Similarly, we can prove the following assertion.

Proposition 2.7. The following equality holds:

(cos z)′ = − sin z. (2.10)

3. Calculation of H-Derivatives

The rules for calculating H-derivatives are identical to those derived in a standard calculus course.

Proposition 3.1. Let f and ϕ be two functions defined in a neighborhood of z0 ∈ H. If both functions
f and ϕ are H-differentiable at z0, then

(i) both cf and fc are H-differentiable at z0 for all c ∈ H and

(cf)′(z0) = cf ′(z0), (fc)′(z0) = f ′(z0)c;
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(ii) f + ϕ is H-differentiable at z0 and

(f + ϕ)′(z0) = f ′(z0) + ϕ′(z0);

(iii) fϕ is H-differentiable at z0 and

(fϕ)′(z0) = f ′(z0)ϕ(z0) + f(z)ϕ′(z0).

Proof. The proof of (i) is obvious.
Since f and ϕ are H-differentiable at z0, there are representations

f(z0 + h)− f(z0) =
∑

k

AkhBk + o(h),

ϕ(z0 + h)− ϕ(z0) =
∑

k

CkhDk + o(h).

Then

(f + ϕ)(z0 + h)− (f + ϕ)(z0) =
[
f(z0 + h)− f(z0)

]
+

[
ϕ(z0 + h)− ϕ(z0)

]

=
∑

k

AkhBk +
∑

k

CkhDk + o(h),

and hence

(f + ϕ)′(z0) =
∑

k

AkBk +
∑

k

CkDk = f ′(z0) + ϕ′(z0).

This proves (ii).
Next, since

f(z0 + h)ϕ(z0 + h)− f(z0)ϕ(z0)

=
[
f(z0 + h)− f(z0)

]
ϕ(z0 + h) + f(z0)

[
ϕ(z0 + h)− ϕ(z0)

]

=
[∑

k

AkhBk + o(h)
]
ϕ(z0 + h) + f(z0)

[∑

k

CkhDk + o(h)
]

=
[∑

k

AkhBk + o(h)
]
·
[
ϕ(z0) +

∑

k

CkhDk + o(h)
]
+ f(z0)

[∑

k

CkhDk + o(h)
]

=
(∑

k

AkhBk

)
ϕ(z0) + f(z0)

∑

k

CkhDk + o(h),

it follows that

(fϕ)′(z0) =
(∑

k

AkBk

)
ϕ(z0) + f(z0)

∑

k

CkDk = f ′(z0)ϕ(z0) + f(z0)ϕ′(z0);

this proves (iii). �
The following two assertions are obtained immediately.

Corollary 3.2. If f1, f2, . . . , fn are H-differentiable functions at a point z0, then their product f1f2 · · · fn
is also H-differentiable at z0 and we have

(f1f2 · · · fn)′(z0)
= f ′

1(z
0)f2(z

0) · · · fn(z0) + f1(z
0)f ′

2(z
0)f3(z

0) · · · fn(z0) + · · ·+ f1(z
0) · · · fn−1(z

0)f ′
n(z

0). (3.1)

Corollary 3.3. If a function f is H-differentiable at a point z0, then fn is also H-differentiable at z0

for all n = 1, 2, . . . and we have

(fn)′(z0) = f ′(z0)fn−1(z0) + f(z0)f ′(z0)fn−2(z0) + · · ·+ fn−1(z0)f ′(z0). (3.2)
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Proposition 3.4. If a function ϕ is H-differentiable at a point z0 and if ϕ �= 0 in a neighborhood of
z0, then2 1/ϕ is also H-differentiable at z0 and

( 1

ϕ

)′
(z0) = − 1

ϕ(z0)
· ϕ′(z0) · 1

ϕ(z0)
. (3.3)

Proof. First, we prove that the equality

q−1
1 − q−1

2 = q−1
1 (q1 − q2)q

−1
2 (q1 − q2)q

−1
2 − q−1

2 (q1 − q2)q
−1
2 (3.4)

holds for any two nonzero quaternions q1 and q2. Indeed, since q−1
1 is the inverse of q1 and q−1

2 is the
inverse of q2, we obtain

q−1
1 (q1 − q2)q

−1
2 (q1 − q2)q

−1
2 − q−1

2 (q1 − q2)q
−1
2

= (1− q−1
1 q2)q

−1
2 (q1q

−1
2 − 1)− (q−1

2 q1 − 1)q−1
2 = (q−1

2 − q−1
1 )(q1q

−1
2 − 1)− (q−1

2 q1q
−1
2 − q−1

2 )

= (q−1
2 q1q

−1
2 − q−1

2 − q−1
2 + q−1

1 )− (q−1
2 q1q

−1
2 − q−1

2 ),

as desired. Setting ϕ(z0 + h) and ϕ(z0) in the equality, we obtain

1

ϕ(z0 + h)
− 1

ϕ(z0)

=

{
− 1

ϕ(z0)
+

1

ϕ(z0 + h)

[
ϕ(z0 + h)− ϕ(z0)

] 1

ϕ(z0)

}
· [ϕ(z0 + h)− ϕ(z0)

] 1

ϕ(z0)
.

Then we have

1

ϕ(z0 + h)
− 1

ϕ(z0)
= − 1

ϕ(z0)

[
ϕ(z0 + h)− ϕ(z0)

] 1

ϕ(z0)

+
1

ϕ(z0 + h)

[
ϕ(z0 + h)− ϕ(z0)

] 1

ϕ(z0)

[
ϕ(z0 + h)− ϕ(z0)

] 1

ϕ(z0)

= − 1

ϕ(z0)

[∑
CkhDk + o(h)

] 1

ϕ(z0)
+ o(h) = − 1

ϕ(z0)

[∑
CkhDk

] 1

ϕ(z0)
+ o(h).

Hence ( 1

ϕ

)′
(z0) = − 1

ϕ(z0)

[∑
CkDk

] 1

ϕ(z0)
= − 1

ϕ(z0)
· ϕ′(z0) · 1

ϕ(z0)
. �

Corollary 3.5. For z �= 0 we have

(zm)′ = mzm−1, m = −1,−2, . . . . (3.5)

Proof. Setting n = −m and applying Propositions 2.3 and 3.4, we obtain

(zm)′ =
( 1

zn

)′
= − 1

zn
(zn)′

1

zn
= − 1

zn
nzn−1 1

zn
= −nz−n−1 = mzm−1 . �

Corollary 3.6. For an arbitrary constant c, we have
( 1

c− z

)′
=

1

(c− z)2
, z �= c. (3.6)

Corollary 3.7. If quaternionic functions f and ϕ are H-differentiable at a point z0 and ϕ �= 0 in a

neighborhood of z0, then the functions f · 1
ϕ

and
1

ϕ
· f are also H-differentiable at z0 and we have

(
f · 1

ϕ

)′
(z0) = f ′(z0) · 1

ϕ(z0)
− f(z0)

1

ϕ(z0)
· ϕ′(z0) · 1

ϕ(z0)
(3.7)

2Recall that each nonzero quaternion q �= 0 has a unique inverse inverse determined by the formula (1.17).
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and
( 1

ϕ
· f

)′
(z0) = − 1

ϕ(z0)
· ϕ′(z0) · 1

ϕ(z0)
f(z0) +

1

ϕ(z0)
· f ′(z0). (3.8)

Proposition 3.8. Let a function f(z) be defined in some neighborhood of a point z0 ∈ H and let
a function F (w) be defined in some neighborhood of the point w0 = f(z0). Assume that f is H-
differentiable at z0 and F is H-differentiable at w0. If F ′(w0) =

∑

k

AkBk, then the composite Ff is

H-differentiable at z0 and we have

(Ff)′(z0) =
∑

k

Akf
′(z0)Bk. (3.9)

Proof. Let z be in the neighborhood of z0. We set w = f(z). Then

F (w) − F (w0) =
∑

k

Ak(w − w0)Bk + ω1(w
0, w),

f(z)− f(z0) =
∑

j

Cj(z − z0)Dj + ω2(z
0, z),

and using these presentations, we calculate

F (f(z))− F (f(z0)) =
∑

k

Ak(f(z)− f(z0))Bk + ω1(f(z
0), f(z))

=
∑

k

Ak

(∑

j

Cj(z − z0)Dj

)
Bk + o(h) + ω1(f(z

0), f(z))

=
∑

k

∑

j

AkCj(z − z0)DjBk + o(h) + ω1(f(z
0), f(z)).

But since
|ω1(f(z

0), f(z))|
|z − z0| =

|ω1(f(z
0), f(z))|

|w − w0| · |w − w0|
|z − z0| −−−→

z→z0
0,

we have

(Ff)′(z0) =
∑

k

∑

j

AkCjDjBk =
∑

k

Ak

(∑

j

CjDj

)
Bk =

∑

k

Akf
′(z0)Bk. �

For the particular case F (w) = wn, using (2.5), in addition to equality (3.2) we obtain the following
assertion.

Corollary 3.9. If a function f is H-differentiable, then

(fn)′ = fn−1 · f ′ + fn−2 · f ′ · f + fn−3 · f ′ · f2 + · · ·+ f ′ · fn−1. (3.10)

4. H-Derivative of the Quaternion Logarithm Function

A quaternion w is called the logarithm of a finite quaternion z �= 0 if z = ew; in this case we write
w = ln z.

In order to define the H-derivative w′ = (ln z)′, we first note that the H-derivative of the left-hand
side of the identity z = eln z exits and is equal to 1 by Proposition 2.3. Applying now Proposition 3.8
to the right-hand side and taking into account (2.8), we obtain

1 =
(
1 +

w

2!
+

w2

3!
+ · · ·

)
· w′ +

( 1

2!
+

w

3!
+

w2

4!
+ · · ·

)
· w′ · w

+
( 1

3!
+

w

4!
+

w2

5!
+ · · ·

)
· w′ · w2 + · · · . (4.1)
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Thus, the H-derivative w′ = (ln z)′ satisfies Eq. (4.1).

Remark 4.1. If ww′ and w′w were equal to each other, then we could write w ·w′, w2 ·w′, . . . instead
of w′ · w,w′ · w2, . . . , and then Eq. (4.1) would take the form

1 =
(
1 +

w

2!
+

w2

3!
+ · · ·

)
· w′ +

(w
2!

+
w2

3!
+ · · ·

)
· w′ +

(w2

3!
+

w3

4!
+

w4

5!
+ · · ·

)
· w′ + · · ·

=
(
1 + w +

w2

2!
+

w3

3!
+ · · ·

)
· w′ = ew · w′ = eln z · (ln z)′ = z · (ln z)′.

So, we can obtain the classical formula

(ln z)′ =
1

z
, (4.2)

which is well known in the case of a complex variable z.

5. Necessary and Sufficient Conditions of Continuity or Differentiability
of Functions of Several Real Variables. Criterion of Cn-Differentiability

A quaternion function f(z) = u0(z) + u1(z)i1 + u2(z)i2 + u3(z)i3 of a quaternion variable z =
x0 + x1i1 + x2i2 + x3i3 is continuous or differentiable at a point z0 = x00 + x01i1 + x02i2 + x03i3 (with
respect to the set of real variables (x0, x1, x2, x3)) if and only if all real functions uk(z) possess this
property at the point z0. Hence the corresponding results recently obtained by the author will be
formulated only for real functions of many real variables. We need these results for our further
discussion.

A function of many variables will not have the continuity or differentiability property only because
it has the same property with respect to each independent variable.

Functions with this drawback at individual points have been known since the late 19th century, and
on the massive set since the 20th century. Namely, the following statement is valid.

Statement A (see [134, pp. 432–433]). There exists a function of two variables that is discontinuous
at almost every point of the unit square and continuous with respect to every variable at every point
of that square.

These and similar problems were studied, for example, by Z. Piotrowski (see [114]).
Here the problem consists in finding out whether there exists or not any property of a function with

respect to an independent real variable and whether the fulfillment of this property for all independent
variables will be the necessary and sufficient condition for the continuity or differentiability of the
function itself.

In formulating the main results, we use the following notation: x = (x1, . . . , xn), x
0 = (x01, . . . , x

0
n),

x(x0k) = (x1, . . . , xk−1, x
0
k, xk+1, . . . , xn).

5.1. Continuity conditions. A function f is said to be strongly partial continuous with respect
to the variable xk at a point x0 if the equality

lim
x→x0

[
f(x)− f(x(x0k))

]
= 0 (5.1)

is fulfilled, and f is called separately strongly partial continuous at the point x0 if f is strongly partial
continuous at x0 with respect to every variable, i.e., Eq. (5.1) is fulfilled for all k = 1, 2, . . . , n.

Theorem 5.1 (see [37, 38] and [40, pp. 20–25]). For the continuity of the function f at the point x0,
it is necessary and sufficient that it possess separately strong partial continuity at x0.

The expression

f(x)− f(x(x0k)) for |xj − x0j | ≤ cj |xk − x0k|, j �= k,
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depending on the variables x1, . . . , xn, is called an angular partial increment of the function f at the
point x0 with respect to the variable xk, corresponding to the collection c = (c1, . . . , ck−1, ck+1, . . . , cn)
of positive constants.

The angular partial continuity of the function f at the point x0 with respect to the variable xk
means the fulfillment of the equality

lim
xk→x0

k

|xj−x0
j |≤cj|xk−x0

k|
j �=k

[
f(x)− f(x(x0k))

]
= 0 (5.2)

for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants.
The function f is called separately angular partial continuous at a point x0 if with respect to every

variable the function f possesses the property of angular partial continuity at the point x0, i.e., if
Eq. (5.2) is fulfilled for all k = 1, . . . , n and for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of
positive constants.

Theorem 5.2 (see [37, 38] and [40, pp. 25–27]). For the continuity of the function f at the point x0,
the necessary and sufficient condition is the separately angular partial continuity at x0.

If in the definition of angular partial continuity we set cj = 1 for all j �= k, then we have the
nonintense angular partial continuity at the point x0 of the function f with respect to the variable xk.

Theorem 5.3 (see [40, pp. 27–28]). For the continuity of the function f at the point x0, the necessary
and sufficient condition is the separately nonintense angular partial continuity of the function f at the
point x0.

5.2. Angular partial derivative and an angular gradient. The existence of all ordinary partial
derivatives, i.e., of ordinary gradients of the real function f at the point x0, does not imply the
differentiability of f at the point x0. Even the function, possessing a finite gradient at the point x0,
may be discontinuous at x0. Such are, for example, most of the functions of two variables at the point
(0, 0) as indicated in Piotrowski’s work [114].

It is remarkable that this fact can be realized at all points of a set whose plane measure is arbitrarily
near to the total measure.

Statement B (see [134, Sec. 4]). For every positive number μ < 1, there exists a function F defined
on the square

Q =
{
(x, y) ∈ R

2; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
,

possessing finite partial derivatives of all orders at all points of Q, and, simultaneously, being discon-
tinuous on a certain set E ⊂ Q of the plane measure μ2.

We say that a function F has an angular partial derivative with respect to the variable xk at the
point x0 (notation f ′

x̂k
(x0)) if for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive n − 1

constants, there exists the independent of c finite limit

f ′
x̂k
(x0) = lim

xk→x0
k

|xj−x0
j |≤cj|xk−x0

k|
j �=k

f(x)− f(x(x0k))

xk − x0k
. (5.3)

The existence of f ′
x̂k
(x0) implies the existence of the partial derivative f ′

xk
(x0) and the fulfillment

of the equality f ′
xk
(x0) = f ′

x̂k
(x0). To show this, we must set in (5.3) xj = x0j for all j �= k.

The existence of the angular partial derivative does not, in general, follow from the existence of the
ordinary partial derivative. If f ′

x̂k
(x0) is finite, then the function f with respect to the variable xk has

the property of angular partial continuity at the point x0.
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If there exist finite f ′
x̂k
(x0), k = 1, . . . , n, then we say that the function f possesses an angular

gradient at the point x0 and write

anggrad f(x0) =
(
f ′
x̂1
(x0), . . . , f ′

x̂n
(x0)

)
.

Theorem 5.4 (see [37, 39] and [40, pp. 60–64]). A function f is differentiable at the point x0 if and
only if anggrad f(x0) is finite. The total differential df(x0) of the differentiable at the point x0 function
f admits the following representation:

df(x0) =

n∑

k=1

f ′
x̂k
(x0) dxk .

Theorem 5.5 (see [39] and [40, p. 65]). A function f is differentiable at the point x0 if and only if
the nonintense angular partial derivative

Dx̂k
f(x0) = lim

xk→x0
k

|xj−x0
j |≤|xk−x0

k|
j �=k

f(x)− f(x(x0k))

xk − x0k

is finite for all k = 1, . . . , n.

Corollary 5.6 (see [39] and [40, p. 65]). The finiteness of all Dx̂k
f(x0) implies the finiteness of all

f ′
x̂k
(x0) and the fulfillment of the equalities

f ′
x̂k
(x0) = Dx̂k

f(x0), k = 1, . . . , n, (5.4)

df(x0) =
n∑

k=1

Dx̂k
f(x0) dxk. (5.5)

5.3. Strong partial derivatives and strong gradients. We say that a function f possesses the
strong partial derivative with respect to the variable xk at the point x0 (notation f ′

[xk]
(x0)) if there

exists a finite limit

f ′
[xk]

(x0) = lim
x→x0

f(x)− f(x(x0k))

xk − x0k
. (5.6)

We say that a function f has the strong gradient at the point x0 (notation strgrad f(x0)) if for
every k = 1, . . . , n there exist finite f ′

[xk]
(x0); in this case we write

strgrad f(x0) = (f ′
[xk]

(x0), . . . , f ′
[xn]

(x0)). (5.7)

If there exists strgrad f(x0), then there exists anggrad f(x0), and the equalities strgrad f(x0) =
anggrad f(x0) = grad f(x0) hold.

Consequently, we have the following assertion.

Theorem 5.7 (see [37, 39], and [40, p. 77]). The existence of the finite strgrad f(x0) implies the ex-
istence of the total differential df(x0) and

strgrad f(x0) = anggrad f(x0) = grad f(x0). (5.8)

If grad f(x) is continuous at the point x0, then we have the equality strgrad f(x0) = grad f(x0)
(see [40, p. 75]).

Moreover, the existence of the finite strgrad f(x0) does not imply, in general, the continuity of
grad f(x) at the point x0. However this fact can be essentially strengthened as follows.

Theorem 5.8 (see [40, p. 76]). There exists an absolutely continuous function of two variables that
has almost everywhere both a finite strong and a discontinuous gradient.
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Proposition 5.9 (see [37, 39] and [40, p. 77]). The finiteness of anggrad f(x0) or, equivalently, the
existence of df(x0) does not imply the existence of strgrad f(x0).

For example, the function λ(x1, x2) = |x1 · x2|2/3 is differentiable at the point x0 = (0, 0), but
strgradλ(x0) does not exist.

The differentiability of the function λ(x1, x2) = |x1 · x2|2/3 at the point x0 = (0, 0) is a simple
corollary of our next statement.

Proposition 5.10 (see [39] and [40, p. 66]). Assume that αj, j = 1, . . . , n, are positive numbers.
Then the condition

α1 + α2 + · · ·+ αn > 1 (5.9)

is necessary and sufficient for the everywhere continuous function

ϕ(x1, . . . , xn) = |x1|α1| · |x2|α2 · · · |xn|αn (5.10)

to be differentiable at the point x0 = (0, . . . , 0).

In particular, the function γ(x1, . . . , xn) = |x1| · · · |xn|)α is differentiable at the point x0 if and only
if α > 1/n.

If α1 + α2 + · · ·+ αn ≤ 1, then all Dx̂k
ϕ(x0) are denied the existence.

This result was later strengthened by G. G. Oniani who proved that the finiteness of a strong
gradient is an essentially stronger property than the differentiability.

Theorem 5.11 (see [109, 110]). For arbitrary n ≥ 2, there exists a continuous function f : [0, 1]n →
R such that the following conditions hold:

1. f is almost everywhere differentiable;
2. f is denied having almost everywhere a finite strong gradient.

The next theorem is an improvement of Theorem 5.11.

Theorem 5.12 (see [12, Theorem 4]). For arbitrary n ≥ 2m there exists a continuous function f :
[0, 1]n → R, which is almost everywhere differentiable but is everywhere denied having a finite strong
gradient.

As is known, functions of bounded variation in the Hardy or Arzela sense have the differentiability
property almost everywhere, i.e., have a finite angular gradient almost everywhere.

As to the existence of a strong gradient, the functions belonging to the Hardy and Arzela classes
behave differently.

Theorem 5.13 (see [11, 12]). Every function f : [0, 1]n → R of bounded variation in the Hardy sense
has a finite strong gradient almost everywhere.

Theorem 5.14 (see [12, Theorem 3]). For arbitrary n ≥ 2, there exists a continuous function f :
[0, 1]n → R of bounded variation in the Arzela sense that is denied having a finite strong gradient.

The results obtained by the author make it possible to classify functions according to the properties
of their gradients.

Theorem 5.15 (see [40, p. 80] and [43, p. 99]). The class of functions with continuous gradients at
a point x0 is strictly contained in the class of functions with finite strong gradients at the point x0, and
the latter class of functions is strictly contained in the class of functions with finite angular gradients
at the point x0. The latter class coincides with the class of differentiable functions at x0.

Remark 5.16. The notions of angular and strong gradients were generalized by L. Bantsuri who
introduced the notion of a gradient that respect to the basis and in particular established the relationship
between the differentiability and the existence of the gradient which he himself had introduced (see [9,
10] and [43, p. 99]).
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5.4. C
n-Differentiability criterion.

Theorem 5.17 (see [41]). A function f is C
n-differentiable at a point z ∈ C

n if and only if the
condition

f ′
x̂k
(z) + if ′

ŷk
(z) = 0 (5.11)

or, equivalently,

Dx̂k
f(z) + iDŷkf(z) = 0 (5.12)

holds for all k = 1, . . . , n, where z = (z1, . . . , zn) and zk = xk + yk.

This theorem implies the following classical assertion.

Hartog’s Main Theorem (see [41, p. 17]). A function f , holomorphic (analytic) with respect to
each variable in an open set G ⊂ C

n, is C
n-holomorphic (Cn-analytic) in G.

6. Necessary and Sufficient Conditions for the H-Differentiability
of Quaternion Functions

Now let us examine how the H-differentiability of a quaternion function f(z) = u0(z) + u1(z)i1 +
u2(z)i2 + u3(z)i3 of a quaternion variable z = x0 + x1i1 + x2i2 + x3i3 is related to the existence of a
differential df(z) (with respect to real variables x0, x1, x2, and x3).

Since partial angular derivatives are derivatives with respect to real variables (see Eq. (5.3)), the
conditions of differentiability for real, complex, and quaternion functions are written in one and the
same form.

It then follows that for the differentiability of a quaternion function f at a point z = x0+x1i1+x2i2+
x3i3, the necessary and sufficient condition is the existence of the finite partial angular derivatives

f ′
x̂k

= (u0)
′
x̂k

+ i1(u2)
′
x̂k

+ i2(u2)
′
x̂k

+ i3(u3)
′
x̂k
, k = 0, 1, 2, 3.

Moreover, if f is differentiable at z, the following equalities hold for its differential df(z):

df(z) = f ′
x̂0
(z) dx0 + f ′

x̂1
(z) dx1 + f ′

x̂2
(z) dx2 + f ′

x̂3
(z) dx3,

df(z) = du0(z) + i1 du1(z) + i2 du2(z) + i3 du3(z).
(6.1)

Theorem 6.1 (see [44]). If a quaternion function f is H-differentiable at a point z = x0 + x1i1 +
x2i2 + x3i3, then f is differentiable at the same point z and its partial angular derivatives f ′

x̂0
(z),

f ′
x̂1
(z), f ′

x̂2
(z), and f ′

x̂3
(z) can be expressed in terms of the H-derivative f ′(z) =

∑

k

Ak(z)Bk(z) as

follows:

f ′
x̂0
(z) =

∑

k

Ak(z)Bk(z) = f ′(z), (6.2)

f ′
x̂1
(z) =

∑

k

Ak(z)i1Bk(z), (6.3)

f ′
x̂2
(z) =

∑

k

Ak(z)i2Bk(z), (6.4)

f ′
x̂3
(z) =

∑

k

Ak(z)i3Bk(z). (6.5)

Moreover, we have

df(z) =
∑

k

Ak(z) dz Bk(z). (6.6)
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Proof. Since dz = dx0 + i1dx1 + i2dx2 + i3dx3 and there exists the H-derivative f ′(z), the increment
f(z + dz)− f(z) can be represented as in Eq. (2.1). Thus we have

f(x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3)− f(x0, x1, x2, x3)

= dx0
∑

k

Ak(z)Bk(z) + dx1
∑

k

Ak(z)i1Bk(z)

+ dx2
∑

k

Ak(z)i2Bk(z) + dx3
∑

k

Ak(z)i3Bk(z) + o(dz).

It follows that f is differentiable at the point z and the following equality holds:

df(z) = dx0
∑

k

Ak(z)Bk(z) + dx1
∑

k

Ak(z)i1Bk(z)

+ dx2
∑

k

Ak(z)i2Bk(z) + dx3
∑

k

Ak(z)i3Bk(z). (6.7)

Thus, Eq. (6.6) is fulfilled. Now, by virtue of Eq. (6.1), we obtain Eq. (6.2)–(6.5) from (6.7). �

Remark 6.2. Equality (6.7) can be interpreted as follows. As in the classical case, the differential
df(z) of the H-differentiable function f is linear with respect to the differential dz of the independent
variable z.

Theorem 6.3. If a quaternion function f is differentiable at a point z and its partial angular deriva-
tives f ′

x̂0
(z), f ′

x̂1
(z), f ′

x̂2
(z) and f ′

x̂3
(z) can be expressed in the forms (6.2)–(6.5) for some quaternions

Ak(z) and Bk(z), then f is H-differentiable at the point z and

f ′(z) =
∑

k

Ak(z)Bk(z). (6.8)

Proof. By the differentiability of f at z, we have

f(z + dz)− f(z) = df(z) + o(dz),

which, when compared with (6.1), yields

f(z + dz)− f(z) = f ′
x̂0
(z) dx0 + f ′

x̂1
(z) dx1 + f ′

x̂2
(z) dx2 + f ′

x̂3
(z) dx3 + o(dz).

Now multiplying both sides of Eqs. (6.2)–(6.5) by the real numbers dx0, dx1, dx2, and dx3, respectively,
and adding the resulting equalities, we obtain

f(z + dz)− f(z) =
∑

k

Ak(z)dzBk(z) + o(dz),

which means that the H-derivative f ′(z) exists and Eq. (6.8) holds. �
Combining Theorems 6.1 and 6.3, we obtain the following assertion.

Theorem 6.4. The existence of the differential df(z) of a quaternion function f and its representation
in the form

df(z) =
∑

k

Ak(z)dzBk(z) (6.9)

are equivalent to the existence of the derivative f ′(z) and its representation in the form

f ′(z) =
∑

k

Ak(z)Bk(z), (6.10)

where z = x0 + x1i1 + x2i2 + x3i3 and dz = dx0 + i1dx1 + i2dx2 + i3dx3.
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Proof. Since the existence of the differential df(z) is equivalent to the existence of partial angular
derivatives f ′

x̂m
(z) and its representability as in Eq. (6.1), one concludes from (6.9) that

f ′
x̂m

(z) =
∑

k

Ak(z)imBk(z), i0 = 1, m = 0, 1, 2, 3,

and

f(z + dz) − f(z) =
∑

k

Ak(z)dzBk(z) + ω(z, dz), (6.11)

where

lim
dz→0

|ω(z, dz)|
|dz| = 0. (6.12)

Now (6.10) follows immediately from (6.11) and (6.12).
Conversely, if f ′(z) exists and (6.10) holds, then Eqs. (6.11) and (6.12) also hold, from which we

conclude that df(z) exists and Eq. (6.9) is fulfilled. �

Corollary 6.5 (see [44]). When x2 = 0 = x3 and u2 = 0 = u3, one has a complex function f(z) =
u(z) + iv(z) of a complex variable z = x+ iy. In this case, Eq. (6.9) has the form

df(z) = c(z) dz = c(z) dx+ ic(z)dy,

where c(z) =
∑

k

Ak(z)Bk(z), from which we obtain the equalities

f ′
x̂(z) = c(z), f ′

ŷ(z) = ic(z).

Thus we have

f ′
x̂(z) + if ′

ŷ(z) = 0. (6.13)

Note that Eq. (6.13) is a necessary and sufficient condition for the complex function f to be C
1-

differentiable at the point z (see [1, pp. 85 and 65] and [41, p. 15] when n = 1). Moreover, we obtain
the well known equalities

f ′(z) = f ′
x̂(z), f ′(z) = −if ′

ŷ(z)

for the derivative f ′(z).

Corollary 6.6 (see [44]). For the quaternion z = x0 + x1i1 + x2i2 + x3i3, we have

dzn = zn−1 dz + zn−2 dz · z + zn−3 dz · z2 + · · ·+ z dz · zn−2 + dz · zn−1

for all n = 0, 1, 2, . . . .

Proof. According to Eq. (6.2) we have

(zn)′ = zn−1 · 1 + zn−2 · z + zn−3 · z2 + · · ·+ z · zn−2 + 1 · zn−1 = nzn−1 (6.14)

for all n = 0, 1, 2, . . . . Combining this with (6.6) gives the desired result. �

Corollary 6.7 (see [44]). For the partial derivatives of the functions fn(z) = zn, n = 0, 1, 2, . . . , with
respect to real variables xk, k = 0, 1, 2, 3, we have

(zn)′xk
= zn−1 · ik + zn−2 · ik · z + · · ·+ z · ik · zn−2 + ik · zn−1. (6.15)

Proof. It suffices to apply (6.2)–(6.5) to (6.14) and take into account that the existence of partial
angular derivatives implies that partial derivatives with respect to one and the same variable exist
and are equal to one another. �
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7. C
2-Differentiability of Quaternion Functions

and Their Representation by Integrals and Series

Introduce the complex variables z1 = x0 + x1i1 and z2 = x2 + x3i1; then the quaternion z can be
written in the form

z = z1 + z2i2 (7.1)

or, briefly, z = (z1, z2). Hence the four-dimensional real Euclidean space R
4 is identified with the

two-dimensional complex space C
2 having points z = (z1, z2).

The conjugate quaternion z = x0−x1i1−x2i2−x3i3 has the form z = z1−z2i2, where z1 = x0−x1i1.
We also have the equality

z2i2 = i2z2. (7.2)

Therefore, z1 + z2i2 = z1 − i2z2. The equality z = 0 is equivalent to two equalities z1 = 0 and z2 = 0.
The product zw of two quaternions z = z1 + z2i2 and w = w1 + w2i2 is defined by the formula

zw = (z1w1 − w2z2) + (w2z1 + z2w1)i2

(see [80, p. 37]). In particular, for the complex variables z1 and z2 we have

z1z2 = z2z1, z1 ∈ C
1, z2 ∈ C

1. (7.3)

The set of all points z = (z1, z2) ∈ C
2 with the property

‖z − z0‖ < δ,

where

‖z‖ = ‖z1‖+ ‖z2‖, ‖z1‖ = |x0|+ |x1|, ‖z2‖ = |x2|+ |x3|,
is called the δ-neighborhood of a point z0 = (z01 , z

0
2) ∈ C

2; we denote it by U(z0, δ). We also denote
by the symbol U(z0) the neighborhood of a point z0 in general.

Similarly to Eq. (7.1), the function u = f(z) takes the form

f = f1 + f2i2, (7.4)

where

f1(z1, z2) = u0(z1, z2) + i1u1(z1, z2),

f2(z1, z2) = u2(z1, z2) + i1u3(z1, z2).

It can be easily verified that the existence of an angular partial derivative ∂f/∂x̂k of a quaternion
function f with respect to a variable xk is equivalent to the concurrent existence of the angular partial
derivatives ∂f1/∂x̂k and ∂f2/∂x̂k of the complex functions f1 and f2 with respect to the same xk, and
the equality

∂f

∂x̂k
=

∂f1
∂x̂k

+
∂f2
∂x̂k

i2, k = 0, 1, 2, 3, (7.5)

holds, where

∂f1
∂x̂k

=
∂u0
∂x̂k

+ i1
∂u1
∂x̂k

, (7.6)

∂f2
∂x̂k

=
∂u2
∂x̂k

+ i1
∂u3
∂x̂k

. (7.7)

Moreover, the differentiability of a quaternion function f at a point z is equivalent to the differen-
tiability of the complex functions f1 and f2 at z, and we have the equality

df(z) = df1(z) + df2(z)i2, (7.8)

where

df1(z) = du0(z) + i1du1(z), df2(z) = du2(z) + i1du3(z). (7.9)
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7.1. C
2-Differentiability of quaternion functions.

Definition 7.1 (see [45]). A quaternion function f(z) = f1(z) + f2(z)i2, z = (z1, z2) = z1 + z2i2, is
said to be C

2-differentiable at a point z0 = (z01 , z
0
2) = z01 + z02i2 if there exist quaternions d1 + d′1i2 and

d2 + d′2i2, such that the equality

lim
z→z0

f(z)− f(z0)−
2∑

k=1

(zk − z0k)(dk + d′ki2)

‖z − z0‖ = 0 (7.10)

is fulfilled. In this case, we the sum

2∑

k=1

(zk − z0k)(dk + d′ki2) (7.11)

is called the C
2-differential of the quaternion function f at the point z0.

Theorem 7.2 (see [45]). A quaternion function f(z) = f1(z) + f2(z)i2 is C2-differentiable at a point
z0 if and only if one of the following three conditions holds:

(i) the complex functions f1(z) and f2(z) are C
2-differentiable at the point z0;

(ii) the equalities

∂f

∂x̂0
(z0) + i1

∂f

∂x̂1
(z0) = 0, (7.12)

∂f

∂x̂2
(z0) + i1

∂f

∂x̂3
(z0) = 0 (7.13)

hold ;
(iii) the equality

df(z0) = dz1
∂f

∂ẑ1
(z0) + dz2

∂f

∂ẑ2
(z0) (7.14)

holds, where
∂f

∂ẑ1
=

∂f1
∂ẑ1

+
∂f2
∂ẑ1

i1,
∂f

∂ẑ2
=

∂f1
∂ẑ2

+
∂f2
∂ẑ2

i1 (7.15)

and for the complex function g(z1, z2) of two complex variables z1 and z2 the formal angular
partial derivatives ∂g/∂ẑ1 and ∂g/∂ẑ2 with respect to z1 and z2 are defined by the equality

∂g

∂ẑ1
=

1

2

( ∂g

∂x̂0
− i1

∂g

∂x̂1

)
,

∂g

∂ẑ2
=

1

2

( ∂g

∂x̂2
− i1

∂g

∂x̂3

)
. (7.16)

(see [41]).

Proof. (i) Equality (7.10) is equivalent to the fulfillment of the following two equalities:

lim
z→z0

f1(z) − f1(z
0)−

2∑

k=1

dk(zk − z0k)

‖z − z0‖ = 0, (7.17)

lim
z→z0

f2(z) − f2(z
0)−

2∑

k=1

d′k(zk − z0k)

‖z − z0‖ = 0, (7.18)

which are equivalent to the C2-differentiability of the complex functions f1(z) and f2(z), respectively,
at the point z0 (see [41, Eq. (3.2)]).

(ii) According to the statement (i), the C
2-differentiability of a quaternion function f = f1 + f2i2

at a point z0 is equivalent to the C2-differentiability of the complex functions f1 and f2. On the other
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hand, the C2-differentiability of the complex function f1 at the point z
0 is equivalent to the fulfillment

of the equalities (see [41, Eq. (3.1) or Theorem 5.10])

∂f1
∂x̂0

(z0) + i1
∂f1
∂x̂1

(z0) = 0,
∂f1
∂x̂2

(z0) + i1
∂f1
∂x̂3

(z0) = 0. (7.19)

Similarly, for the complex function f2 we have

∂f2
∂x̂0

(z0) + i1
∂f2
∂x̂1

(z0) = 0,
∂f2
∂x̂2

(z0) + i1
∂f2
∂x̂3

(z0) = 0. (7.20)

If we premultiply Eqs. (7.20) by i2 and add the resulting equalities with Eqs. (7.19), then we obtain
Eqs. (7.12) and (7.13).

(iii) Again, by virtue of the statement (i), the C
2-differentiability of the quaternion function f is

equivalent to the C2-differentiability of the complex functions f1 and f2. But the complex function f1
is C2-differentiable at a point z0 if and only if the following equality holds:

df1(z
0) =

2∑

k=1

∂f1
∂ẑk

(z0) dzk (7.21)

(see [41, Eq. (3.7)]).
Similarly, the complex function f2 is C2-differentiable at a point z0 if and only if the equality

df2(z
0) =

2∑

k=1

∂f2
∂ẑk

(z0) dzk (7.22)

is valid.
Using (7.3) we can rewrite Eqs. (7.21) and (7.22) as follows:

df1 = dz1
∂f1
∂ẑ1

+ dz2
∂f1
∂ẑ2

, df2 = dz1
∂f2
∂ẑ1

+ dz2
∂f2
∂ẑ2

. (7.23)

Hence we obtain the equality

df1 + df2i2 = dz1
∂(f1 + f2i2)

∂ẑ1
+ dz2

∂(f1 + f2i2)

∂ẑ2
,

from which by virtue of (7.8) we obtain Eq. (7.14). �

Remark 7.3. The equivalence of the C
2-differentiability of a quaternion function f = f1 + f2i2 to

the concurrent C2-differentiability of its complex components f1 and f2 (see the statement (i) of The-
orem 7.2) has no analogs for the C

1-differentiability in a domain. That fact follows from the fact that
a C

1-differentiable real function in a domain is necessarily constant in this domain.

Theorem 7.4. The C
2-differential of a quaternion function f is equal to the differential of this func-

tion.

Proof. For the coefficients dk and d′k that are involved in Eqs. (7.17) and (7.18), the following equalities
hold (see [123, p. 31]):

dk =
∂f1
∂zk

(z0), d′k =
∂f2
∂zk

(z0).

But for a C
2-differentiable complex function, the partial derivative with respect to the variable zk is

equal to its angular partial derivative with respect to the same zk (see [41, Eq. (2.1)]). Therefore, the
C
2-differential of the function f = f1 + f2i2 defined by Eq. (7.11) at the point z0 is written as

2∑

k=1

dzk
∂f

∂ẑk
(z0).

By virtue of Eq. (7.14), the last expression is equal to df(z0). �
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7.2. C
2-Holomorphy of quaternion functions.

Definition 7.5 (see [45]). A quaternion function f(z) = f1(z)+ f2(z)i2 is said to be C
2-holomorphic

at a point z0 or in a domain D ⊂ C
2 if f is C

2-differentiable in the neighborhood of z0 or at every
point of the domain D.

Proposition 7.6. A quaternion function f(z) is C2-holomorphic at a point z0 or in a domain D ⊂ C
2

if and only if one of the conditions (i)–(iii) of Theorem 7.2 holds in a neighborhood of z0 or at every
point of the domain D.

In particular, we have the following assertion.

Proposition 7.7. The C
2-holomorphy at a point or in a domain of a quaternion function f(z) =

f1(z)+f2(z)i2 is equivalent to the concurrent C2-holomorphy at the same point or in the same domain
of the complex functions f1(z) and f2(z).

7.3. Integral representations of C2-holomorphic quaternion functions.

Theorem 7.8 (see [45]). Let a quaternion function f(z) = f1(z) + f2(z)i2 be C
2-holomorphic in a

domain D ⊂ C
2, which is the Cartesian product of simply connected domains D1 ⊂ C

1 and D2 ⊂ C
1.

Then at any point z = (z1, z2) the representation

f(z1, z2) = − 1

4π2

∫

Γ1

∫

Γ2

dt1 dt2
(t1 − z1)(t2 − z2)

f(t1, t2) (7.24)

is fulfilled, where Γ1 and Γ2 are any closed paths in D1 and D2, respectively, which envelop the points
z1 and z2.

Proof. By Proposition 7.7, we have the following equalities (see [123, p. 28]):

f1(z1, z2) = − 1

4π2

∫

Γ1

∫

Γ2

f1(t1, t2)

(t1 − z1)(t2 − z2)
dt1 dt2, (7.25)

f2(z1, z2) = − 1

4π2

∫

Γ1

∫

Γ2

f2(t1, t2)

(t1 − z1)(t2 − z2)
dt1 dt2. (7.26)

By virtue of Eq. (7.3) we can write

f1(t1, t2) dt1 dt2 = dt1 dt2 f1(t1, t2), f2(t1, t2) dt1 dt2 = dt1 dt2 f2(t1, t2).

Hence, from Eqs. (7.25) and (7.26) we obtain the equality

f1(z1, z2) + f2(z1, z2)i2 = − 1

4π2

∫

Γ2Γ1

dt1 dt2
(t1 − z1)(t2 − z2)

[
f1(t1, t2) + f2(t1, t2)i2

]
,

which is equivalent to Eq. (7.24). �

Theorem 7.9 (see [45]). If a quaternion function f(z1, z2) = f1(z1, z2)+f2(z1, z2)i2 is C
2-holomorphic

in the Cartesian product D1×D2 of simply connected domains D1 ⊂ C
1 and D2 ⊂ C

1, then its partial
derivatives f ′

z1 and f ′
z2 are also C

2-holomorphic quaternion functions in D1 ×D2 ⊂ C
2.

Proof. According to Proposition 7.7, the C
2-holomorphy of a quaternion function f implies the C

2-
holomorphy of the complex functions f1 and f2 defined by Eqs. (7.25) and (7.26). Therefore, their
partial derivatives

df1
∂z1

,
df1
∂z2

,
df2
∂z1

,
df2
∂z2
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are C
2-holomorphic complex functions in D1 ×D2. Thus, Eqs. (7.19) and (7.20), which hold for the

functions f1 and f2, are also valid for the partial derivatives

df1
∂z1

,
df1
∂z2

,
df2
∂z1

,
df2
∂z2

.

Hence it follows that, as was shown in the proof of Theorem 7.2, these partial derivatives satisfy
Eqs. (7.12) and (7.13), i.e., are C

2-holomorphic quaternion functions by virtue of the statement (ii) of
Theorem 7.2. �

7.4. Representation of C2-holomorhic functions by power series.

Theorem 7.10 (see [45]). Let a quaternion function f(z) = f1(z) + f2(z)i2 be C
2-holomorphic in a

domain D ⊂ C
2, which is the Cartesian product of simply connected domains D1 ⊂ C

1 and D2 ⊂ C
1.

Then at any point z = (z1, z2) ∈ D from the neighborhood of z0 = (z01 , z
0
2) ∈ D the representation of

f by the power series

f(z1, z2) =

∞∑

m,n=0

(z1 − z01)
m(z2 − z02)

ncmn (7.27)

is fulfilled, where the quaternion coefficients cmn of the function f are defined by the equalities

cmn = − 1

4π2

∫

Γ1

∫

Γ2

dt1 dt2
(t1 − z01)

m+1(t2 − z02)
n+1

f(t1, t2), (7.28)

m!n!cmn =
(∂m+nf(z1, z2)

∂zm1 ∂zn2

)
z1=z01
z2=z02

. (7.29)

Proof. By Proposition 7.7, the complex functions f1 and f2 are C
2-holomorphic or, equivalently,

C
2-analytic in the domain D. Hence we have the equalities

f1(z1, z2) =

∞∑

m,n=0

1cmn(z1 − z01)
m(z2 − z02)

n, (7.30)

f2(z1, z2) =

∞∑

m,n=0

2cmn(z1 − z01)
m(z2 − z02)

n, (7.31)

where the complex coefficients of the functions f1 and f2 are given by the formulas (see [123, p. 49])

1cmn = − 1

4π2

∫

Γ1

∫

Γ2

f1(t1, t2)

(t1 − z01)
m+1(t2 − z02)

n+1
dt1 dt2, (7.32)

2cmn = − 1

4π2

∫

Γ1

∫

Γ2

f2(t1, t2)

(t1 − z01)
m+1(t2 − z02)

n+1
dt1 dt2. (7.33)

Using (7.3) and the equality f1 + f2i2 = f , from (7.30)–(7.31) and (7.32)–(7.33) we obtain respec-
tively Eqs. (7.27) and (7.28).

As to Eq. (7.29), it is obtained from the well-known formulas (see [123, p. 31])

m!n!1cmn =
(∂m+nf1(t1, t2)

∂tm1 ∂tn2

)
t1=z01
t2=z02

,

m!n!2cmn =
(∂m+nf2(t1, t2)

∂tm1 ∂tn2

)
t1=z01
t2=z02

,
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taking into account the equalities

df

dz1
=

∂f1
∂z1

+
∂f2
∂z1

i2,
df

dz2
=

∂f1
∂z2

+
∂f2
∂z2

i2. �

8. Properties of Right- and Left-Regular Functions of Two Complex Variables

8.1. As was mentioned above, a differentiable (with respect to a set of real variables (x0, x1, x2, x3))
quaternion function f(z), where z = x0 + x1i1 + x2i2 + x3i3, is right-regular (see (1.24)) in a domain
G ⊂ H if it satisfies the condition

∂rf

∂z
= 0

and is left-regular (see (1.25)) in G if it satisfies the condition

∂lf

∂z
= 0.

But we know (see Sec. 5) that the differentiability of f is equivalent to the existence of its angular
partial derivatives

∂f

∂x̂0
(z),

∂f

∂x̂1
(z),

∂f

∂x̂2
(z),

∂f

∂x̂3
(z), z ∈ G.

Therefore, a quaternion function f(z) is right-regular in a domain G ⊂ H if and only if it satisfies in
G the condition

∂rf

∂ẑ
= 0 (8.1)

and left-regular if and only if it satisfies in G the condition

∂lf

∂ẑ
= 0, (8.2)

where we assume that

∂r

∂ẑ
=

∂

∂x̂0
+

∂

∂x̂1
i1 +

∂

∂x̂2
i2 +

∂

∂x̂3
i3, (8.3)

∂l

∂ẑ
=

∂

∂x̂0
+ i1

∂

∂x̂1
+ i2

∂

∂x̂2
+ i3

∂

∂x̂3
. (8.4)

Now we can write the operators ∂r/∂ẑ and ∂l/∂ẑ using the function f1 and f2, where f1(z1, z2) +
f2(z1, z2)i2 = f(z1, z2) and z1 = x0 + i1x1, z2 = x2 + i1x3. Equality (8.3) takes the form

∂rf

∂ẑ
=

∂f1
∂x̂0

+
∂f2
∂x̂0

i2 +
(∂f1
∂x̂1

+
∂f2
∂x̂1

i2

)
i1 +

(∂f1
∂x̂2

+
∂f2
∂x̂2

i2

)
i2 +

(∂f1
∂x̂3

+
∂f2
∂x̂3

i2

)
i3

=
∂f1
∂x̂0

+
∂f1
∂x̂1

i1 +
∂f1
∂x̂2

i2 +
∂f1
∂x̂3

i3 +
∂f2
∂x̂0

i2 − ∂f2
∂x̂2

i1i2 − ∂f2
∂x̂2

+
∂f2
∂x̂3

i1

=
∂f1
∂x̂0

+
∂f1
∂x̂1

i1 +
(∂f1
∂x̂2

+
∂f1
∂x̂3

i1

)
i2 +

(∂f2
∂x̂0

− ∂f2
∂x̂1

i1

)
i2 −

(∂f2
∂x̂2

− ∂f2
∂x̂3

i1

)
.

Taking into consideration the equalities z1 = x0−i1x2 and z2 = x2−i1x3 and introducing the notation

∂f1
∂x̂0

+
∂f1
∂x̂1

i1 = 2
∂f1

∂ẑ1
,

∂f1
∂x̂2

+
∂f1
∂x̂3

i1 = 2
∂f1

∂ẑ2
,

∂f2
∂x̂0

− ∂f2
∂x̂1

i1 = 2
∂f2
∂ẑ1

,
∂f2
∂x̂2

− ∂f2
∂x̂3

i1 = 2
∂f2
∂ẑ2

,

we have

∂rf

∂ẑ
= 2

[∂f1
∂ẑ1

+
∂f1

∂ẑ2
i2 +

∂f2
∂ẑ1

i2 − ∂f2
∂ẑ2

]
= 2

[(∂f1
∂ẑ1

− ∂f2
∂ẑ2

)
+

(∂f1
∂ẑ2

+
∂f2
∂ẑ1

)
i2

]
. (8.5)
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Therefore, Eq. (8.1) is equivalent to the system of equalities (see Sec. 7)

∂f1

∂ẑ1
=

∂f2
∂ẑ2

,
∂f1

∂ẑ2
= −∂f2

∂ẑ1
. (8.6)

Proposition 8.1. If the second component f2(z1, z2) of a quaternion function f(z1, z2) = f1(z1, z2)+
f2(z1, z2)i2 is a complex function equal to zero in a domain G ⊂ H, then the right-regularity of the
complex function f(z1, z2) = f1(z1, z2) is the property of its C

2-differentiability in G.

Proof. Since f2(z1, z2) = 0 for all (z1, z2) ∈ G, the system (8.6) implies that the system

∂f1

∂ẑ1
= 0,

∂f1

∂ẑ2
= 0 (8.7)

is fulfilled in G. But the complex function f1(z1, z2) is C
2-differentiable in G if and only if the

conditions (8.7) are fulfilled (see [41]). �

Corollary 8.2. The fulfillment of the conditions

f2(z1, z2) = 0,
∂rf1
∂ẑ

= 0 (8.8)

in G implies the fulfillment of either of the following two conditions:

(1) the function f1(z1, z2) is C
2-differentiable in G (see [41]);

(2) the equality

df1 =
∂f1
∂ẑ1

dz1 +
∂f1
∂ẑ2

dz2 (8.9)

is fulfilled in G (see [41]).

Furthermore, the system (8.6) implies the following assertions.

Proposition 8.3. If the complex functions f1(z1, z2) and f2(z1, z2) are C
2-holomorphic in G with

respect to (z1, z2), then the quaternion function f = f1 + f2i2 is right-regular in G.

Proposition 8.4. If a quaternion function f(z1, z2) = f1(z1, z2) + f2(z1, z2)i2 is right-regular in the
domain G, then the complex functions f1(z1, z2) and f2(z1, z2) simultaneously are or are not C

2-
holomorphic in G with respect to (z1, z2).

8.2. The assertions given below clearly show that the properties of right- and left-regular functions
are, generally speaking, different.

For the operator ∂lf/∂ẑ we have

∂lf

∂ẑ
=

(∂f1
∂x̂0

+
∂f2
∂x̂0

i2

)
+ i1

(∂f1
∂x̂1

+
∂f2
∂x̂2

i2

)
+ i2

(∂f1
∂x̂2

+
∂f2
∂x̂2

i2

)
+ i3

(∂f1
∂x̂3

+
∂f2
∂x̂3

i2

)

=
(∂f1
∂x̂0

+ i1
∂f1
∂x̂1

)
+
(
i2

∂f1
∂x̂2

+ i3
∂f1
∂x̂3

)
+

(∂f2
∂x̂0

i2 + i1
∂f2
∂x̂1

i2

)
+ i2

∂f2
∂x̂2

i2 + i3
∂f2
∂x̂3

i2.

If we perform the substitution

i3 = −i2i1,
∂f2
∂x̂0

i2 = i2

(∂f2
∂x̂0

)
, i1

∂f2
∂x̂1

= −i2i1

(∂f2
∂x̂1

)

and take into account the fact that the conjugate to the derivative with respect to a real variable of
a complex function is equal to the derivative of its conjugate function, then we obtain

∂lf

∂ẑ
=

(∂f1
∂x̂0

+ i1
∂f1
∂x̂1

)
+ i2

(∂f1
∂x̂2

− i1
∂f1
∂x̂3

)
+ i2

(∂f2

∂x̂0
− i1

∂f2

∂x̂1

)
+

(
− ∂f2

∂x̂2
− i1

∂f2

∂x̂3

)

= 2

[(∂f1
∂ẑ1

− ∂f2

∂ẑ2

)
+ i2

(∂f1
∂ẑ2

+
∂f2

∂ẑ1

)]
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(note that at the end of the procedure we have used the equality t1t2 = t2t1, t1 ∈ C, t2 ∈ C). Thus,
the equality ∂lf/∂ẑ = 0 is equivalent to the system

∂f1

∂ẑ1
=

∂f2

∂ẑ2
,

∂f1
∂ẑ2

= −∂f2

∂ẑ1
. (8.10)

This system gives rise to the following assertions.

Proposition 8.5. If a quaternion function f = f1 + f2i2 is left-regular in the domain G and the
complex function f1 is C

2-holomorphic with respect to (z1, z2), then this complex function f2 is C
2-

holomorphic with respect to (z1, z2).

Proposition 8.6. If complex functions f1 and f2 are C
2-holomorphic in G with respect to (z1, z2),

then the quaternion function f = f1 + f2i2 is left-regular in G.

Proposition 8.7. If a quaternion function f = f1 + f2i2 is left-regular in the domain G, then the
complex functions f1 and f2 simultaneously are or are not C2-holomorphic in G with respect to (z1, z2).

9. On Harmonic and Regular Functions

9.1. We already know (see Sec. 1) that if a quaternion function f(z) of a quaternion variable
z = x0 + x1i1 + x2i2 + x3i3 is right- or left-regular in a domain G ⊂ H, then it is a harmonic function
in this domain G, i.e., a function f is a solution in G of the Laplace equation

Δf = 0, (9.1)

where the Laplace operator Δ is defined by the equality

Δ =
∂2

∂x20
+

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
. (9.2)

Since (9.2) contains partial derivatives with respect to the real variables x0, x1, x2, and x3, Eq. (9.1)
is equivalent to the following system of equalities in G:

Δu0(z) = 0, Δu1(z) = 0, Δu2(z) = 0, Δu3(z) = 0, (9.3)

where
f(z) = u0(z) + u1(z)i1 + u2(z)i2 + u3(z)i3, z = x0 + x1i1 + x2i2 + x3i3. (9.4)

Therefore, if the quaternion function (9.4) is right- or left-regular in a domain G ⊂ H, then its
components (i.e., the real functions u0(z), u1(z), u2(z), and u3(z)) are harmonic functions in G.

The following assertion is easy to verify.

Proposition 9.1. If a real function u(z) is harmonic in a domain G ⊂ H, then the function

F =
∂u

∂x0
− ∂u

∂x1
i1 − ∂u

∂x2
i2 − ∂u

∂x3
i3 (9.5)

is regular in G.

The following assertion is remarkable.

Theorem 9.2 (see [54]). If a real function u0(z) is harmonic in a simply connected domain G ⊂ H,
then there exist harmonic in G real functions u1(z), u2(z) and u3(z) such that the quaternion function

f(z) = u0(z) + u1(z)i1 + u2(z)i2 + u3(z)i3 (9.6)

is regular in G.

As we already know (see Sec. 1), the power functions ψn(z) = zn are not harmonic functions, but
the functions Δzn are such. Namely, the following assertion is valid.

Theorem 9.3 (see [54]). Functions Δzn, n = 0, 1, 2, . . ., are regular and, therefore, harmonic in any
finite domain G ⊂ H.
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9.2. If a quaternion function f(z) is different from zero in a domain G ⊂ H, then the equality

1

f
· f = 1 (9.7)

is fulfilled in G. Hence, using the equality

(ϕ · ψ)′xk
= ϕ′

xk
· ψ + ϕ · ψ′

xk
(9.8)

we have ( 1
f

)′
xk

· f +
1

f
· f ′

xk
= 0,

( 1

f

)′
xk

· f · ik + 1

f
· f ′

xk
· ik = 0.

Therefore,
3∑

k=0

( 1

f

)′
xk

· f · ik + 1

f

( 3∑

k=0

f ′
xk

· ik
)
= 0. (9.9)

Proposition 9.4. The right regularity of a quaternion function f that differs from zero in a domain
G ⊂ H is equivalent to the fulfillment of the equality

3∑

k=0

( 1
f

)′
xk

· f · ik = 0 (9.10)

in G.

Similarly, when f(z) �= 0, z ∈ G, from the equality f · 1
f = 1 we have

f ′
xk

· 1
f
+ f ·

( 1

f

)′
xk

= 0, (9.11)

( 3∑

k=0

ikf
′
xk

)
· 1
f
+

3∑

k=0

ikf
( 1
f

)′
xk

= 0. (9.12)

Proposition 9.5. The left regularity of a quaternion function f that differs from zero in a domain
G is equivalent to the fulfillment of the equality

3∑

k=0

ik · f ·
( 1

f

)′
xk

= 0 (9.13)

in G.

9.3. From Eq. (9.9) we obtain
( 1

f

)′′
xkxk

· f +
( 1
f

)′
xk

· f ′
xk

+
( 1
f

)′
xk

· f ′
xk

+
1

f
· f ′′

xkxk
= 0,

i.e.,
( 1

f

)′′
xkxk

· f + 2
( 1

f

)′
xk

· f ′
xk

+
1

f
· f ′′

xkxk
= 0.

Therefore,
[ 3∑

k=0

( 1

f

)′′
xkxk

]
· f + 2

3∑

k=0

( 1

f

)′
xk

· f ′
xk

+
1

f

3∑

k=0

f ′′
xkxk

= 0. (9.14)

In addition, we have ( 1

f

)′
xk

= − 1

f
· f ′

xk
· 1
f
. (9.15)
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Now Eq. (9.14) takes the form
[ 3∑

k=0

( 1

f

)′′
xkxk

]
· f − 2

f

3∑

k=0

f ′
xk

· 1
f
· f ′

xk
+

1

f

3∑

k=0

f ′′
xkxk

= 0. (9.16)

Furthermore, Eq. (9.11) implies

f ′′
xkxk

· 1
f
+ f ′

xk
·
( 1

f

)′
xk

+ f ′
xk

·
( 1

f

)′
xk

+ f ·
( 1

f

)′′
xkxk

= 0,

( 3∑

k=0

f ′′
xkxk

)
· 1
f
+ 2

3∑

k=0

f ′
xk

·
( 1

f

)′
xk

+ f

3∑

k=0

( 1

f

)′′
xkxk

= 0.

(9.17)

Equalities (9.14), (9.16), and (9.17) give rise to the following assertion.

Theorem 9.6. If a quaternion function f differs from zero in a domain G ⊂ H and both its inverse
function f−1 and f itself are harmonic in G, then the equalities

3∑

k=0

( 1
f

)′
xk

· f ′
xk

= 0, (9.18)

3∑

k=0

f ′
xk

· 1
f
· f ′

xk
= 0, (9.19)

3∑

k=0

f ′
xk

·
( 1
f

)′
xk

= 0 (9.20)

are fulfilled in G.

9.4. One can easily prove the following equalities:

Δ
(
z · f(z)) = 2

3∑

k=0

ik · f ′
xk

+ z ·Δ(f), (9.21)

Δ
(
f(z) · z) = 2

3∑

k=0

f ′
xk

· ik +Δ(f) · z. (9.22)

From Eq. (9.21) we obtain the following two assertions.

Proposition 9.7. If a quaternion function f(z) defined in a domain G ⊂ H is left-regular in G, then
the function z · f(z) is harmonic in G.

Proposition 9.8. If quaternion functions f(z) and z · f(z) defined in a domain G ⊂ H are harmonic
in G, then the function f(z) is left-regular in the domain G.

Similarly, from Eq. (9.22) we also obtain two assertions.

Proposition 9.9. If a quaternion function f(z) defined in a domain G ⊂ H is right-regular in G,
then the function f(z) · z is harmonic in G.

Proposition 9.10. If quaternion functions f(z) and f(z)·z defined in a domain G ⊂ H are harmonic
in G, then the function f(z) is right-regular in the domain G.

Therefore, the function ψ2(z) = z2 is not harmonic since the function ψ1(z) = z does not belong to
the union F+(G) ∪ F−(G) (see Sec. 1).

Remark 9.11. Propositions 9.8 and 9.10 generalize to the case of quaternion functions the well-
known assertion from the theory of of complex functions of one complex variable z = x+ iy given by
the equality

Δ(zh(z)) = 2(h′x + ih′y) + zΔ(h). (9.23)
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9.5. For a quaternion function f given in a domain G ⊂ H we consider the function ϕ = f2 = f ·f .
Then we have the relations

ϕ′
xk

= f ′
xk

· f + f · f ′
xk
, ϕ′′

xkxk
= f ′′

xkxk
· f + f ′

xk
· f ′

xk
+ f ′

xk
· f ′

xk
+ f · f ′′

xkxk

and

Δ(f2) = Δ(f) · f + f ·Δ(f) + 2
3∑

k=0

(f ′
xk
)2, (9.24)

from which we obtain the following assertion.

Proposition 9.12. If quaternion functions f and f2 defined in a domain G ⊂ H are harmonic in G,
then the equality

3∑

k=0

(f ′
xk
)2 = 0 (9.25)

is fulfilled in G, i.e., the sum of squares of partial derivatives of the function f is equal to zero.

Remark 9.13. From the theory of complex functions of one complex variable z = x + iy we know
that the fulfillment of the equality (f ′

x)
2 + (f ′

y)
2 = 0 in the domain D implies that either of the two

functions f and f is holomorphic in D.

9.6. If f(z) = u0(z) + u1(z)i1 + u2(z)i2 + u3(z)i3, then

f2(z) = −|f(z)|2 + 2u0(z)f(z). (9.26)

Indeed,

f2 = (u20 − u21 − u22 − u23) + 2u0u1i1 + 2u0u2i2 + 2u0u3i3

= (u20 − u21 − u22 − u23) + 2u0(u1i1 + u2i2 + u3i3)

= (u20 − u21 − u22 − u23) + 2u0(f − u0) = −(u20 + u21 + u22 + u23) + 2u0f = −|f |2 + 2u0f.

9.7. Equalities (9.21) and (9.22) imply the following theorem.

Theorem 9.14. A function f is Fueter-regular if and only if the functions f(z), f(z) · z, and z · f(z)
are harmonic.

10. Integral Properties of Regular Functions

The following integral properties of right- and left-regular functions were established by Fueter.

Theorem 10.1 (see [54]). Let quaternion functions f(z) and ψ(z) be respectively right- and left-
regular in a domain G ⊂ H. If G is a closed and smooth surface in G that bounds a simply connected
domain, then the following equalities are fulfilled :

∫

σ

f(z) dZ = 0, (10.1)

∫

σ

dZ ψ(z) = 0, (10.2)

∫

σ

f(z) dZ ψ(z) = 0, (10.3)

where
dZ = (cosα0 + i1 cosα1 + i2 cosα2 + i3 cosα3) ds

and αm is the angle formed by the positively directed Oxm-axis and the outward normal drawn at a
point z ∈ σ and ds is a surface element of the corresponding unit sphere in H.
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Theorem 10.2 (see [54]). Let a quaternion function f(z) be right-regular in a domain G ⊂ H. Then
at every point z0 ∈ G the equality

f(z0) =
1

8π2

∫

σ

f(z) dZ Δ(z − z0)−1 (10.4)

is fulfilled for any closed and smooth surface σ which is homothetic to the point z0.

11. Quaternions and Vector Algebra

The discovery of quaternions motivated various studies in mathematics and physics. Owing to
quaternions, a fruitful trend appeared in mathematics, namely, vector algebra. Below we give a brief
account of the relationship between the product of two vector quaternions and the scalar and vector
products of two respective vectors from a three-dimensional vector space (see [80]).

Every quaternion z = x0 + x1i1 + x2i2 + x3i3 is the formal sum of a real number x0 and a vector
x1i1 + x2i2 + x3i3 (in a three-dimensional space we have the Cartesian coordinate systems and i1,
i2, and i3 are unit vectors starting from the origin and directed along the coordinate axes) which is
directed from the origin to the point (x1, x2, x3). Recall that it was Hamilton who used the term
vector for the first time in 1845 (see [116, p. 276]).

The number x0 is called the scalar (or real) part, while the expression x1i1 + x2i2 + x3i3 is called
the vector (or imaginary) part of the quaternion z.

Let us consider two vector quaternions

z′ = x′1i1 + x′2i2 + x′3i3, z′′ = x′′1i1 + x′′2i2 + x′′3i3. (11.1)

From the rule of multiplication of quaternions we obtain the equality

z′z′′ = −(x′1x
′′
1 + x′2x

′′
2 + x′3x

′′
3) + (x′2x

′′
3 − x′3x

′′
2)i1 + (x′3x

′′
1 − x′1x

′′
3)i2 + (x′1x

′′
2 − x′2x

′′
1)i3. (11.2)

Hence it is clear that the scalar part with the minus sign of the product z′z′′ is the scalar product of
the vectors z′ = (x′1, x′2, x′3) and z′′ = (x′′1 , x′′2 , x′′3), which is denoted by (z′, z′′) , i.e.,

(z′, z′′) = x′1x
′′
1 + x′2x

′′
2 + x′3x

′′
3. (11.3)

The vector part of the product z′z′′ is the vector product of the vectors z′ and z′′, which is denoted
by [z′, z′′]. Thus,

[z′, z′′] = (x′2x
′′
3 − x′3x

′′
2)i1 + (x′3x

′′
1 − x′1x

′′
3)i2 + (x′1x

′′
2 − x′2x

′′
1)i3. (11.4)

Therefore, for the product of the vector quaternions z′ and z′′ we have the equality

z′z′′ = −(z′, z′′) + [z′, z′′]. (11.5)

Thus, the scalar and vector products of three-dimensional vectors are parts of the product of the
corresponding two vector quaternions. This shows the importance of quaternions especially in view
of the fact that the operations of scalar and vector multiplication underlie such an important area of
mathematics as vector algebra, having various applications both in mathematics and in physics.

Here we draw attention to the following fact. Given the right-hand side of Eq. (11.3) and anyone
of the vectors from its left-hand side (say z′′), there exists an infinite set of vectors z′ that satisfy
Eq. (11.3).

Similarly, given the right-hand side of Eq. (11.4) and a vector z′′, there exists an infinite set of
vectors z′ that satisfy Eq. (11.4).

Along with this, Eq. (11.5) shows that for its given right part and given z′′, the unknown vector z′
is the right quotient obtained by dividing [z′, z′′]− (z′, z′′) by z′′, which is equal to

z′ =
1

|z′′|2 · (− (z′, z′′) + [z′, z′′]
) · z′′. (11.6)
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Finally, it should be said that any rotation of a three-dimensional space about the origin can be
given by means of some quaternion Q with norm 1. The rotation corresponding to Q transforms
the vector z′ = (x′1, x′2, x′3) to the vector Qz′Q−1 (see [34]). Here Q−1 denotes as usual the inverse
quaternion to Q, i.e., such that QQ−1 = 1.

Various applications of quaternions will be discussed in the concluding section of this work.

12. Information on Other Properties of Quaternions

We will use the notation z′ = x1i1 + x2i2 + x3i3 for the vector part of the quaternion z = x0 +
x1i1 + x2i2 + x3i3.

10. The equality

(z′)2 = −|z′|2 (12.1)

is valid. Indeed, z′z′ = z′(−z′) = −(z′)2.

20. For the quaternions

z1 = x0 + x1i1 + x2i2 + x3i3, z2 = y0 + y1i1 + y2i2 + y3i3 (12.2)

the inequality

|z1 + z2| ≤ |z1|+ |z2| (12.3)

holds.

Proof. We have the relations

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z2z1 + z2z2 = |z1|2 + |z2|2 + z1z2 + z2z1.

But

z1z2 + z2z1 = 2(x0y0 + x1y1 + x2y2 + x3y3) = 2
3∑

k=0

xkyk (12.4)

and

∣∣z1z2 + z2z1
∣∣ ≤ 2

3∑

k=0

|xk| |yk| ≤ 2
( 3∑

k=0

x2k

)1/2 ·
( 3∑

k=0

y2k

)1/2
= 2|z1| |z2|.

Therefore,

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2|z1| |z2| =
(|z1|+ |z2|

)2
. �

30. The equality

z′1z′2 = z′2z
′
1 (12.5)

is fulfilled for the vector parts z′1 and z′2 of the quaternions (12.2).

Proof. By the formula (1.12) we have

z′1z′2 = z′2 · z′1 = (−z′2)(−z′1) = z′2z
′
1. �
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40. The equality

(z1z2)
−1 = z−1

2 · z−1
1 , z1 �= 0, z2 �= 0, (12.6)

or, equivalently,
1

z1z2
=

1

z2
· 1

z1
, z1 �= 0, z2 �= 0, (12.7)

is fulfilled.

Proof. By virtue of the formulas (1.17) and (1.12) we have

1

z1z2
=

1

|z1z2|2 z1z2 =
1

|z1z2|2 · z2 · z1 = 1

|z2|2 · z2 · 1

|z1|2 z1 = z−1
2 · z−1

1 . �

50. The equality
1

z1
− 1

z2
=

1

z1
(z2 − z1)

1

z2
, z1 �= 0, z2 �= 0, (12.8)

holds.

Proof. By the formula (1.17) we have

1

z1
(z2 − z1)

1

z2
=

1

|z1|2 z1(z2 − z1)
1

|z2|2 z2

=
1

|z1|2 z1z2
1

|z2|2 z2 −
1

|z1|2 z1z1
1

|z2|2 z2 =
1

|z1|2 z1 −
1

|z2|2 z2 =
1

z1
− 1

z2
. �

60. The equality
1

z1
(z1 − z2)

1

z2
=

1

z2
(z1 − z2)

1

z1
(12.9)

holds.

Proof. Multiplying Eq. (12.8) by (−1) we obtain

1

z2
− 1

z1
=

1

z1
(z1 − z2)

1

z2
. (12.10)

By virtue of (12.8) the left-hand side of this equality is equal to

1

z2
(z1 − z2)

1

z1
.

Thus, Eq. (12.9) is fulfilled. �

Remark 12.1. Equality (12.9) implies that we cannot reduce both of its parts by z1 − z2. Otherwise
we would obtain the equality z1z2 = z2z1 which is not fulfilled at all.

70. The equality

z2 = −|z|2 + 2x0z (12.11)

is fulfilled for the quaternion z = x0 + x1i1 + x2i2 + x3i3.

Proof. We have the relations

z2 = (x20 − x21 − x22 − x23) + 2x0x1i1 + 2x0x2i2 + 2x0x3i3

= (x20 − x21 − x22 − x23) + 2x0(x1i1 + x2i2 + x3i3)

= (x20 − x21 − x22 − x23) + 2x0(z − x0)

= −(x20 + x21 + x22 + x23) + 2x0z = −|z|2 + 2x0z. �
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80. The equality

1 + z + z2 + · · ·+ zn−1 =

⎧
⎨

⎩

1− zn

1− z
for z �= 1,

n for z = 1
(12.12)

holds.

Proof. For z �= 1 we have

(1− z)(1 + z + z2 + · · · + zn−1) = 1 + z + · · · + zn−1 − z − z2 − · · · − zn−1 − zn = 1− zn

and

(1 + z + z2 + · · ·+ zn−1)(1− z) = 1 + z + · · ·+ zn−1 − z − z2 − · · · − zn−1 − zn = 1− zn.

Therefore, the first row in Eq. (12.12) is valid, while the validity of the second row from above is
obvious. �

90. If |z| < 1, then we have the equality

∞∑

k=0

zk =
1

1− z
, (12.13)

which is a consequence of Eq. (12.12).

100. Let us define all quaternions which will commute with the given quaternion z = x0 + x1i1 +
x2i2 + x3i3. Assume that the sought quaternion is

L = y0 + y1i1 + y2i2 + y3i3.

Then from the equality zL = Lz we obtain the equalities x2y1 = x1y2, x3y1 = x1y3, and x3y2 = x2y3,
i.e.

y1
x1

=
y2
x2

=
y3
x3

.

If we denote the common value of these equalities by λ, which is a real number, then we have y1 = λx1,
y2 = λx2, y3 = λx3. Therefore, L = y0 + λ(z − x0) = (y0 − x0λ) + λz. Hence

L = r1 + r2z, (12.14)

where r1 and r2 are any real numbers.

110. We want to know for which z = x0 + x1i1 + x2i2 + x3i3 the equality

i1zi1 = z (12.15)

is fulfilled. We have

i1zi1 = i1(x0 + x1i1 + x2i2 + x3i3)i1 = −x0 − x1i1 + x2i2 + x3i3.

The equality

−x0 − x1i1 + x2i2 + x3i3 = x0 + x1i1 + x2i2 + x3i3

will be fulfilled for x0 = 0, x1 = 0, and any real x2 and x3. Therefore, the equality

i1(x2i2 + x3i3)i1 = x2i2 + x3i3 (12.16)

is valid for any real x2 and x3.

120. For the vector parts z′1 and z′2 of quaternions (12.2) we have the equality

z′1z
′
2 = −z′2z1 (12.17)

if the scalar part of the product z′1z′2 is equal to zero.
This statement follows from Eq. (11.2) if we replace there z′ by z′1 and z′′ by z′2.
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130 (A. Hurwitz, see [77]). The equality

z(ab)z−1 = zaz−1 · zbz−1 (12.18)

holds.
Indeed, by the formula (1.16) we have

zaz−1 · zbz−1 = za
1

|z|2 z · zbz−1 = z(ab)z−1.

Remark 12.2. Now it becomes possible to prove the formula (see [42])
( 1

ϕ

)′
(z0) = − 1

ϕ(z0)
· ϕ′(z0) · 1

ϕ(z0)
(12.19)

only after the author proved (see [42]) the following equality (see the formula (12.9) above):

1

z1
(z1 − z2)

1

z2
=

1

z2
(z1 − z2)

1

z1
. (12.20)

Thus the inequality
1

z1
· 1

z2
�= 1

z2
· 1

z1
“transforms to the equality” as a result of “intrusion” of the difference z2−z1 in the role of a multiplier
between 1/z2 and 1/z1 in both parts of this inequality. In this context, a question arises as to the
physical nature of this statement—in the author’s opinion this topic is interesting to investigate.

13. Interrelations between the Functions zn, cos z, sin z, and ez

Let us consider a nonzero quaternion z = x0 + x1i1 + x2i2 + x3i3, z �= 0. Since

z = |z|
(x0
|z| +

x1
|z| i1 +

x2
|z| i2 +

x3
|z| i3

)
, |z| = (x20 + x21 + x22 + x23)

1/2 > 0,

and (x0
|z|

)2
+

∣∣
∣
x1
|z| i1 +

x2
|z| i2 +

x3
|z| i3

∣∣
∣
2
= 1,

there exists a real number θ such that 0 ≤ θ ≤ π and
x0
|z| = cos θ (13.1)

and ∣
∣∣
x1
|z| i1 +

x2
|z| i2 +

x3
|z| i3

∣
∣∣
2
= sin θ. (13.2)

We rewrite the last equality in the form

|x1i1 + x2i2 + x3i3| = |z| sin θ (13.3)

or, equivalently, √
x21 + x22 + x23 = |z| sin θ. (13.4)

On the other hand, we have

x1i1 + x2i2 + x3i3 =
√

x21 + x22 + x23
x1i1 + x2i2 + x3i3√

x21 + x22 + x23

=
√

x21 + x22 + x23

(
x1√

x21 + x22 + x23
i1 +

x2√
x21 + x22 + x23

i2 +
x3√

x21 + x22 + x23
i3

)
. (13.5)

Assuming that the quaternion z is not a real number, we introduce the notation (see [71, p. 349])

Iz =
x1√

x21 + x22 + x23
i1 +

x2√
x21 + x22 + x23

i2 +
x3√

x21 + x22 + x23
i3. (13.6)
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Then we have the equalities

z = x0 + Iz

√
x21 + x22 + x23 , (13.7)

z = |z|(cos θ + Iz sin θ). (13.8)

It is obvious that

|Iz| = 1 (13.9)

and by the formula (9.26) we have

I2z = −1. (13.10)

Therefore, Iz is a variable quaternion collective imaginary unit (as different from Hamiltonian constant
imaginary units).

It is obvious that

Iz = −Iz = Iz. (13.11)

The equalities

I3z = −Iz, I4z = 1, I4n+m
z = Imz , 1 ≤ m ≤ 4, n = 1, 2, . . . , (13.12)

are obvious. Similarly, we obtain the equalities

z = x0 − Iz

√
x21 + x22 + x23 , (13.13)

z = |z|(cos θ − Iz sin θ), (13.14)

z−1 = |z|−2
(
x0 − Iz

√
x21 + x22 + x23

)
, (13.15)

z−1 = |z|−1(cos θ − Iz sin θ). (13.16)

From Eq. (13.7) we obtain

z · Iz = −
√
x21 + x22 + x23 + x0Iz, (13.17)

Iz · z = −
√
x21 + x22 + x23 + x0Iz (13.18)

and, therefore,

z · Iz = Iz · z. (13.19)

Furthermore,

(z · Iz)2 = z · Iz · z · Iz = z · Iz · Iz · z = −z2, (13.20)

(Iz · z)2 = Iz · z · Iz · z = z · Iz · Iz · z = −z2. (13.21)

The following equalities are fulfilled by virtue of Eq. (13.19):

(z + Iz)
2 = z2 + 2Iz · z + I2z = z2 + 2z · Iz − 1, (13.22)

(z + Iz)(z − Iz) = z2 − I2z = z2 − 1. (13.23)

Remark 13.1. The well-known formula

(t1 + t2)
2 = t21 + 2t1t2 + t22

from complex analysis for the square of a sum does not hold in general for quaternions. Indeed,

(i1 + i2)
2 = (i1 + i2)(i1 + i2) = i21 + i1i2 + i2i1 + i22 = i21 + i22 = −2,

i21 + 2i1i2 + i22 = −2 + 2i3 = 2(i3 − 1).
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If a and b are real functions of some variables, then the equality

(a+ Izb)
2 = a2 + 2abIz − b2 (13.24)

holds. Indeed,

(a+ Izb)
2 = (a+ Izb)(a+ Izb) = a2 + abIz + abIz + I2z b

2 = a2 + 2aIz − b2.

Furthermore,

|a+ Izb| =
√

a2 + b2. (13.25)

As a matter of fact, by the formulas (1.10), (1.11), and (13.11) we have

|a+ Izb|2 = (a+ Izb)(a+ Izb) = (a+ Izb)(a− Izb) = a2 − abIz + abIz − b2I2z = a2 + b2.

For the functions zn, ez, cos z, and sin z defined by Eqs. (1.30)–(1.33) we formulate the following
propositions, in which r is a real function of some variables.

Proposition 13.2 (A. Moivre’s formula (see [24, p. 21])).

(cos r + Iz sin r)
n = cosnr + Iz sinnr (13.26)

This formula can be proved by induction.

Proposition 13.3. The equality

er·Iz = cos r + Iz sin r (13.27)

holds.

Proof. Using Eqs. (13.10) and (13.12), from Eqs. (1.31)–(1.33) we obtain

er·Iz = 1 + rIz − r2

2!
− r3

3!
Iz +

r4

4!
− · · ·

=
(
1− z2

2!
+

z4

4!
− · · ·

)
+

(
r − r3

3!
+

r5

5!
− · · ·

)
Iz = cos r + Iz sin r. �

Proposition 13.4. The equality

ez·Iz = cos z + Iz sin z (13.28)

is fulfilled for any quaternion z which is not a real number.

Proof. We have

ez·Iz = 1 + zIz − z2

2!
− Iz

z3

3!
+

z4

4!
+ Iz

z5

5!
− · · ·

=
(
1− r2

2!
+

r4

4!
− · · ·

)
+ Iz

(
r − z3

3!
+

z5

5!
− · · ·

)
= cos z + Iz sin z. �

Proposition 13.5. The equalities

e−z·Iz = cos z − Iz sin z (13.29)

are fulfilled under the conditions of Proposition 13.4.

Proof. From Eq. (1.31) we have

e−zIz = 1− zIz +
(−zIz)

2

2!
+

1

3!
(−zIz)

3 +
1

4!
(−zIz)

4 + · · ·

= 1− Iz · z + 1

2!
(zIz)

2 − 1

3!
(zIz)

2(zIz) +
1

4!
(zIz)

2(zIz)
2 + · · · .
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Now, using Eq. (13.20) we obtain

e−zIz = 1− zIz − z2

2!
+

1

3!
z2zIz +

1

4!
(−z2)(−z2) + · · ·

=
(
1− z2

2!
+

z4

4!
− · · ·

)
− Iz

(
z − z3

3!
+

z5

5!
− · · ·

)

= cos z − Iz sin z.

�

Proposition 13.6. The equalities

cos z =
1

2
(e−z·Iz + ez·Iz), (13.30)

sin z =
1

2
Iz(e

−z·Iz − ez·Iz) (13.31)

are fulfilled under the conditions of Proposition 13.4.

Proof. Equality (13.30) is obtained by adding Eqs. (13.28) and (13.29). Next, by subtracting
Eq. (13.29) from (13.28) we obtain

ez·Iz − e−z·Iz = 2Iz sin z.

From this, taking into account (13.10), we have

Iz(e
z·Iz − e−z·Iz) = −2 sin z

and
1

2
Iz(e

−z·Iz − ez·Iz) = sin z. �

Proposition 13.7. The equality
z = |z|eθ·Iz , 0 ≤ θ ≤ π, (13.32)

holds for any nonreal quaternion z.

The proof of Proposition 13.7 is based on Eqs. (13.8) and (13.27).

Proposition 13.8. The equalities
eπIz = −1, e2πIz = 1 (13.33)

obtained from (13.27) are fulfilled under the conditions of Proposition 13.7.

Proposition 13.9. The equality
(er·Iz)n = enr·Iz (13.34)

is fulfilled under the conditions of Proposition 13.7.

Proof. From Eqs. (13.27) and (13.26) we obtain

(er·Iz)n = (cosr + Iz sin r)
n = cosnr + Iz sinnr. (13.35)

On the other hand, from Eq. (1.31) we obtain

enr·Iz = 1 + nr · Iz − 1

2!
n2r2 − 1

3!
n3r3 · Iz + · · ·

=
(
1− 1

2!
(nr)2 +

1

4!
(nr)4 − · · ·

)
+ Iz

(
nr − 1

3!
(nr)3 + · · ·

)

= cosnr + Iz sinnr.

Thus,
cosnr + Iz sinnr = enr·Iz . (13.36)

Now Eq. (13.34) follows from (13.35) and (13.36). �
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Proposition 13.10. The equality

zn = |z|nenθ·Iz (13.37)

is fulfilled under the conditions of Proposition 13.7.

The proof of Proposition 13.10 is based on Eqs. (13.32) and (13.34).

Proposition 13.11. For real numbers θ and ψ we have

e(θ+ψ)Iz = eθ·Iz · eψ·Iz = eψ·Iz · eθ·Iz . (13.38)

Proof. Using the formula (13.27) we have

e(θ+ψ)Iz = cos(θ + ψ) + Iz sin(θ + ψ) = cos θ cosψ − sin θ sinψ + Iz sin θ cosψ + Iz cos θ sinψ.

On the other hand,

(cos θ + Iz sin θ)(cosψ + Iz sinψ) = cos θ cosψ − sin θ sinψ + Iz sin θ cosψ + Iz cos θ sinψ.

Therefore,

e(θ+ψ)Iz = eθ·Iz · eψ·Iz = eψ·Iz · eθ·Iz . �

Corollary 13.12. For any real ψ we have

eψ·Iz · e−ψ·Iz = e−ψ·Iz · eψ·Iz = 1. (13.39)

Remark 13.13. In the complex analysis of one complex variable, the equality et1+t2 = et1 ·et2 is valid
for any complex numbers t1 and t2. A similar equality does not hold in quaternion analysis. Indeed,
if in the formula (13.27) we assume that x0 = 0, x1 = 1, x2 = 0 = x3, and r = 1, then Iz = i1 and

ei1 = cos 1 + i1 sin 1.

Similarly,

ei2 = cos 1 + i2 sin 1.

If x0 = 0, x1 = 1, x2 = 1, x3 = 0, and r =
√
2, then

Iz =
1√
2
i1 +

1√
2
i2

and

ei1+i2 = e
√
2 Iz = cos

√
2 +

i1 + i2√
2

sin
√
2 �= ei1 · ei2 .

14. Applications of Quaternions

14.1. Vector analysis. Historically, the first important application of vector quaternions is given
by Eq. (11.5), according to which a three-dimensional vector can be uniquely defined if we know its
scalar and vector products on another given three-dimensional vector (a vector quaternion). In this
case, the unknown vector is the left or the right quotient obtained by dividing the four-dimensional
vector by another vector (see Eq. (11.6)).

The case of two-dimensional vectors is exceptional! For such vectors, the operations of multiplication
and division are introduced as multiplication and division of appropriate complex numbers of the form
a+ bi, where a and b are real numbers and i2 = −1!

The condition i2 = −1 allows one to solve any first-order equation, i.e. an equation, where the
coefficient of the unknown is nonzero. This result is achieved by multiplying the equation by a
conjugate constant value with respect to the coefficient of the unknown, this coefficient being obviously
not equal to zero.

Possibilities of generalizing an algebra of vectors to dimensions higher than two are few in number.
The matter is that according to the Frobenius theorem the system of complex numbers a+bi with i2 =
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−1 is the only possible extension of the field of real numbers with all the addition and multiplication
laws remaining preserved.

But if we reject the commutative property of multipliers, then there will be one more possibility
to consider four-dimensional vectors (the system of Hamilton quaternions) having the associative
property (q1q2)q3 = q1(q2q3), but q1q2 �= q2q1.

If we also give up the associative property, then we will have eight-dimensional vectors (Cayley
octaves) with weak associativity variants (uv)v = u(vv) and v(vu) = (vv)u.

Therefore, complex numbers and quaternions are an ultimate possible extension of the notion of a
real number with the basic properties of the field of real numbers preserved.

Thus, W. R. Hamilton made a truly outstanding contribution to the elaboration of the fundamental
principles of modern operational calculus. For Hamilton’s bibliography, see the book [115, pp. 262–
269].

Physicists, mechanical experts, and technologists have widely used the techniques provided by
quaternions, placing special emphasis on the ideas of vector and vector and scalar multiplication. In
the applied branches of science, quaternions were replaced by ordinary vector calculus.

The books [65, 66] were the outcome of Hamilton’s creative research efforts. Hamilton’s writings
are collected in the books [67–71].

The application of quaternions in vector analysis is described in [127, pp. 45–50 and 259–263].
As to the applications in other areas, we will briefly say about them below.

14.2. Space flight mechanics. The book [24] summarizes the results obtained earlier in [15, 22,
23, 30, 101, 120, 135]. In [24], the idea is realized concerning the potential application of quaternion
methods to the solution of general theoretical problems, as well as to practical motion control problems
of solid bodies and flying aircraft.

The application of quaternions makes it possible to create quite a convenient and obvious formalism
employing the Rodrigues–Hamilton parameters which, as different from Euler angles, do not degenerate
for any position of a solid body.

It is noteworthy here that in describing the helical motion of a solid body, use is made of biquater-
nions which are not mentioned in the book [24] and which do not possess the remarkable property of
quaternions consisting in that the equality of a quaternion module to zero is equivalent to the equality
of all quaternion components to zero.

14.3. Physics and mechanics. In these areas, the most important results were obtained by
W. P. Hamilton himself (see [67–71]). A detailed account of Hamilton’s results is given by L. S. Polak
in [116].

For other results in this direction a reference should be made to the works [15, 22–24, 27, 30, 35,
51, 52, 59, 61, 78, 83, 101, 103, 120, 126, 135–137].

14.4. Number theory. The use of quaternions in the solution of various problems from the theory
of numbers yielded a lot of serious results. The works [7, 8, 32, 33, 47–49, 72, 73, 77, 87–90, 111, 112,
122, 132, 138–141] are dedicated to this large class of questions.

14.5. Equation theory. As different from the complex case, big difficulties arise when solving
equations in quaternions. For EXAMPLE, each point of the unit three-dimensional sphere x21 + x22 +
x23 = 1 is a solution of the equation (see Eq. (13.10))

I2z + 1 = 0. (14.1)

The works [21, 107, 108] are worth mentioning in this direction.
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63. K. Gürlebeck and W. Sprössig, Quaternionic Analysis and Elliptic Boundary-Value Problems,

Math. Res., 56, Akademie-Verlag, Berlin (1989).
64. Z. Haddad, “Two remarks on the quaternions,” Pi Mu Epsilon J., 7, 221–231 (1981).
65. W. R. Hamilton, Lectures of Quaternions, Hodges & Smith, Dublin (1853).
66. W. R. Hamilton, Elements of Quaternions, Chelsea, New York (1866).
67. W. R. Hamilton, Mathematical Papers, Vol. I. Geometrical Optics, Cambridge Univ. Press

(1931).
68. W. R. Hamilton, Mathematical Papers, Vol. II. Dynamics, Cambridge Univ. Press (1940).
69. W. R. Hamilton, Mathematical Papers, Vol. III. Algebra, Cambridge Univ. Press (1967).
70. W. R. Hamilton, Mathematical Papers, Vol. IV. Geometry, Analysis, Astronomy, Probability

and Finite Differences, Miscellaneous, Cambridge Univ. Press (2000).
71. W. R. Hamilton, Selected Works. Optics. Dynamics. Quaternions [Russian translation], Nauka,

Moscow (1994).
72. H. Hankel, Theorie der complexen Zahlensysteme, Leipzig (1867).
73. H. Hankel, Theory of Complex Numerical Systems, Mainly Ordinary Imaginary Numbers and

Hamilton Quaternions Together with Their Geometric Interpretations [Russian translation],
Kazan Univ., Kazan (1912).

74. F. Hausdorff, “Zur Theorie der Systeme comoplex Zahlen,” Leipz. Ber., 52, 43–61 (1900).
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99. A. S. Měılihzon, “On the assignment of monogeneity to quaternions,” Dokl. Akad. Nauk SSSR

(N.S.), 59, 431–434 (1948).
100. D. Menchoff, “Sur la generalisation des conditions de Cauchy–Riemann,” Fundam. Math., 25,

59–97 (1935).
101. E. L. Mitchell and A. E. Rogers, Quaternion Parameters in the Simulation of a Spinning Rigid

Body, Simulation, New York (1968).
102. P. Molenbroek, Anwendung der Quaternionen anf die Geometrie, Leiden (1893).
103. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York–Toronto–

London (1953).
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131. P.-G. Tait, Traité élémentaire des quaternions, Gauthier-Villars, Paris (1882).
132. O. Taussky, “Sums of squares,” Am. Math. Mon., 77, 805–830 (1970).
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