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ON THE DOUBLE LIMIT ASSOCIATED WITH RIEMANN’S SUMMATION

METHOD

O. DZAGNIDZE1 AND I. TSIVTSIVADZE2

Abstract. By Riemann’s first theorem the convergence of any series
∞∑

k=0
ak to a finite value s

implies the existence of the limit lim
h→0

∞∑
k=0

ak

(
sin kh
kh

)2
, i.e. the existence of the repeated limit

lim
h→0

lim
n→∞

n∑
k=0

ak

(
sin kh
kh

)2
with the value s, but the converse statement does not hold. In the article

it is proved the following theorem: A numerical series
∞∑

k=0
ak converges to a finite number s if and

only if there exists the double limit lim
h→0
n→∞

n∑
k=0

ak

(
sin kh
kh

)2
and the limit is equal to s. The proof is

based on Toeplitz’s condition on the uniform boundedness for summation (see, relation (12) in the
article) and Moore–Osgood’s double limit theorem. An application of the theorem to trigonometric

Fourier series is given.

Along with an arbitrary series
∞∑
k=0

ak, (1)

no matter whether it is converging or not, we will consider the series
∞∑
k=0

ak

( sin kh

kh

)2
(2)

which depends on the variable h under the assumption that this series converges for sufficiently small

h 6= 0 and
sin 0

0
= 1.

In particular, the series (2) will be converging for any h 6= 0 if the sequence |ak|, k = 0, 1, . . . is
bounded by some number M > 0. Indeed, we have∣∣∣∣ ∞∑

k=0

ak

( sin kh

kh

)2∣∣∣∣ ≤ |a0|+Mh−2
∞∑
k=1

1

k2
.

If under the above assumption the finite limit

lim
h→0

∞∑
k=0

ak

( sin kh

kh

)2
= σ (3)

exists, then the series (1) is called Riemann-summable (or, briefly, R-summable) to the value σ.
It is obvious that the equality (3) can be written in the following form

lim
h→0

lim
n→∞

n∑
k=0

ak

( sin kh

kh

)2
= σ,

i.e. in the form of the repeated limit

lim
h→0

lim
n→∞

An(h) = σ, (4)
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where it is assumed that

An(h) =

n∑
k=0

ak

( sin kh

kh

)2
.

Therefore the fulfillment of the equality (4) is equivalent to the R-summability of the series (1) to
the value σ.

The existence of another repeated limit with the finite value ω

lim
n→∞

lim
h→0

An(h) = ω, (5)

implies the equality
∞∑
k=0

ak = ω (6)

and vice versa: from the equality (6) there follows the equality (5). Hence we have the following

Proposition. The convergence of the series (1) to the value ω is the necessary and sufficient condition
for the fulfillment of the equality (5).

We establish the relationship between the convergence of the series (1) and the existence of the
double limit

lim
h→0
n→∞

An(h). (7)

As to this relationship we have the following statement.

Theorem. The convergence of the series (1) to the finite value s
∞∑
k=0

ak = s (8)

is the necessary and sufficient condition for the fulfillment of the equality

lim
h→0
n→∞

An(h) = s. (9)

Sufficiency. By virtue of the above Proposition, from the equality (8) we obtain the equality (5) where
ω is replaced by s. Therefore the limit

lim
h→0

An(h) (10)

is finite for any n.
Furthermore, from the equality (8) there follows the equality

lim
h→0

lim
n→∞

An(h) = s (11)

by virtue of Riemann’s first theorem [5, p. 319].
Along with this, during the proof of this Riemann’s first theorem an important fact is established

that consists in that the series
∞∑
k=0

ak

( sin kh

kh

)2
converges uniformly with respect to h, i.e. the limit

lim
n→∞

An(h) (12)

exists uniformly with respect to h ([3, Ch. XIII, §13.8.2], [4, Ch. 9, §9.62], [5, Ch. IX, §2, inequality
(2.6), which holds uniformly with respect to the family {(hi)} of all sequences (hi) tending to zero as
i→∞]).

Therefore by virtue of the Moore–Osgood Double Limit Theorem [2, p. 180] modified for the
continuous parameter h, the equalities

lim
n→∞

lim
h→0

An(h) = lim
h→0

lim
n→∞

An(h) = lim
h→0
n→∞

An(h) = s
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are fulfilled.
Thus the convergence of the series (1) to the value s implies the existence of the limit (7) and the

equality (9).

Necessity. If the double limit
lim
h→0
n→∞

An(h) = s

exists, then there exists the partial limit s equal to lim
n→∞

An(0). But lim
n→∞

An(0) =
∞∑
k=0

ak.

Therefore the equality (8) is fulfilled. The theorem is proved.
Finally, we give an application of the above theorem to trigonometric Fourier series. It is well

known that there is the summable Kolmogorov function K(x) on [−π, π], whose Fourier series

K ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) (13)

diverges at every point x ∈ [−π, π] [5, p. 310].
However, the series (13) is R-summable at almost all points x ∈ [−π, π] to values K(x) [1, Ch. I,

paragraph 69]. From the theorem that is proved above it follows.

Corollary. For the series (13) the following statements are true:
1. The equality

lim
h→0

lim
n→∞

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)
( sin kh

kh

)2]
= K(x)

is fulfilled for almost all points x ∈ [−π, π];
2. There is not a point x ∈ [−π, π] at which the double limit

lim
h→0
n→∞

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)
( sin kh

kh

)2]
would exist.
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