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Abstract

We prove that for any groups X and Y , the existence of an isomor-
phism among their integral group rings Z(X) and Z(Y ) implies an iso-
morphism of the integral group (co)homologies of X and Y . As a result
we get a new proof of the isomorphism problem for integral group rings
of abelian groups. The other conclusion is that the Schur multipliers of
X and Y are the same.
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We have in mind that the reader is familiar with the elementary notions of
homological algebra (see [2], [4]).

Given the groups X and Y , the existence of an isomorphism among their
integral group rings Z(X) and Z(Y ), does not always imply that X ∼= Y .
There is a counterexample even for finite groups (see [1]). This means that,
in general, a group is not determined by its integral group ring. We show
in this work that the integral group (co)homologies of an arbitrary group are
determined by their integral group rings. We prove a more general fact:
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Proposition 1. Let X and Y be groups such that Z(X) ∼= Z(Y ). Assume
that M is an abelian group and that X and Y act trivially on M . Then there
is an isomorphism of (co)homology groups:

Hn(X, M) ∼= Hn(Y, M) , Hn(X, M) ∼= Hn(Y, M) for all n ≥ 0 .

Recall that the augmentation map εX : Z(X) → Z is defined by εX(
∑

nixi) =∑
ni, where ni ∈ Z and xi ∈ X.
Let f : Z(X) → Z(Y ) be an isomorphism of rings. We demand that f is

compatible with the augmentation map, εX = εY f . Such an isomorphism is
called normalized. This does not restrict generality thanks to the following:

Lemma 2. Let f : Z(X) → Z(Y ) be an isomorphism of rings. Then there
is an isomorphism f : Z(X) → Z(Y ) such that εX = εY f .

Proof. Define f : Z(X) → Z(Y ) in the following way: f(x) = εX(x)(εY f(x))f(x),
for all x ∈ X. Since x and f(x) are units in Z(X) and Z(Y ), respectively, we
have εX(x), εY f(x) ∈ {±1} for all x ∈ X. Using this fact we easily check that
f is an isomorphism and εX(x) = εY f(x) for all x ∈ X.

Given an homomorphism f : Z(X) → Z(Y ) of rings and a Y -module M ,
we define on M an X-module structure via f and denote this X-module by
Mf .

Lemma 3. If f : Z(X) → Z(Y ) is a normalized isomorphism and M is a
trivial Y -module, then Mf is also a trivial X-module.

Proof. Straightforward.

Proposition 4. Let X and Y be groups and f : Z(X) → Z(Y ) a normalized
isomorphism of rings. Then, for each Y -module M , there are the isomorphisms
of (co)homology groups:

Hn(Y, M) ∼= Hn(X, Mf ) , Hn(Y, M) ∼= Hn(X, Mf ) for all n ≥ 0 .

Proof. We only show the first isomorphism. The proof of the second one is
similar.

Let · · · d2−→ F1
d1−→ F0

d0−→ Z → 0 be a free Y -resolution of the trivial Y -

module Z. It is clear that · · · d2−→ F f
1

d1−→ F f
0

d0−→ Z
f → 0 is a free X-resolution

of Z
f . But according to the Remark given above, Z

f is also a trivial X-module.
Hence, the homologies of the following complexes

· · · → F1 ⊗Y M → F0 ⊗Y M and · · · → F f
1 ⊗X Mf → F f

0 ⊗X Mf

are H∗(Y, M) and H∗(X, Mf ), respectively. Thus, Proposition 4 is proved,
since the complexes mentioned above are isomorphic.
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Combining Lemma 2, Lemma 3 and Proposition 4, we get a proof of Propo-
sition 1.

A new proof of the isomorphism problem for integral group rings
of abelian groups. Given a group X, one has the following short exact
sequence

0 → IX → Z(X) → Z → 0

where IX is an ideal of Z(X) generated by x − 1, for all x ∈ X. If X acts
trivially on Z, then it is well known that

H1(X, Z) ∼= IX ⊗X Z ∼= Xab ,

where the last isomorphism is given by (x − 1) ⊗ 1 �→ x (see [4]). Hence, as a
result of Proposition 1 we have:

Corollary 5. If X and Y are the groups such that Z(X) ∼= Z(Y ), then
Xab ∼= Y ab.

In this way we get a new proof of the “isomorphism problem for integral
group rings” of abelian groups (see [3, Corollary 2.10]).

It is well known that the second integral group homology defines the Schur
multiplier. Thus, we have the following:

Corollary 6. If X and Y are the groups such that Z(X) ∼= Z(Y ), then the
Schur multipliers of X and Y are isomorphic.

Corollary 7. If X and Y are the groups such that Z(X) ∼= Z(Y ) and X is
perfect, then so is Y .

Proof. If X is perfect, then Xab = 0, and by Corollary 5, Y ab = 0, and so Y
is perfect.

Finally, we show that the opposite version of Proposition 1 need not hold,
i.e. if the groups X and Y are given, then the existence of the isomorphisms

Hn(X, M) ∼= Hn(Y, M) , Hn(X, M) ∼= Hn(Y, M) for all n ≥ 0 ,

where M is an abelian group with trivial actions of X and Y , does not always
imply that Z(X) ∼= Z(Y ) and a fortiori that X ∼= Y .

Recall that a group G is said to be acyclic if its integral group homolo-
gies, Hn(G, Z), are trivial for all n > 0. By the universal coefficient theorem
the integral group cohomologies of acyclic groups are also trivial in positive
dimensions. Now, using the standard technique we prove the following:

Proposition 8. Let G be an acyclic group acting trivially on an abelian
group M . Then

H0(G, M) ∼= H0(G, M) ∼= M ,

Hn(G, M) = Hn(G, M) = 0 for all n > 0 .
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Proof. The first two isomorphisms immediately follow from the definitions and
are well known. We will only check that Hn(G, M) = 0 (for n > 0), since
the same procedure works for Hn(G, M). First of all we consider the case
M = Z/mZ, for any m ∈ N, and prove the following:

Hn(G, Z/mZ) = 0 for all n > 0 . (1)

In fact, the following short exact sequence

0 −→ Z
m−→ Z −→ Z/mZ −→ 0

gives rise to the long exact sequence in homology:

· · · −→ Hn(G, Z)
m−→ Hn(G, Z) −→ Hn(G, Z/mZ) −→ Hn−1(G, Z)

m−→ · · · .

Thus, taking into account that H0(G, Z) = Z and Hn(G, Z) = 0 for n > 1, the
above long exact sequence implies (1).

Now assume that M is a finitely generated abelian group. Then M =
⊕
i∈I

Z/mZi, where I is a finite set and mi ∈ Z
+, and

Hn(G, M) = ⊕
i∈I

Hn(G, Z/mZi) for all n ≥ 0 .

Hence by (1) Hn(G, M) = 0, when M is finitely generated and n > 0. In
general M can be presented as a direct limit M = lim−→Mt, where each Mt is a
finitely generated abelian sub-group of M . Therefore

Hn(G, M) = lim−→Hn(G, Mt) = 0 for all n > 0 .

Corollary 9. Let G and H be groups acting trivially on an abelian group
M . If G is acyclic, then

Hn(G × H, M) ∼= Hn(H, M) , Hn(G × H, M) ∼= Hn(H, M) for all n ≥ 0 .

Proof. Straightforward from Proposition 8 and the following spectral sequences:

Hp(H, Hq(G, M)) ⇒ Hp+q(G × H, M) ,

Hp(H, Hq(G, M)) ⇒ Hp+q(G × H, M) for all p, q ≥ 0 .

Corollary 10. Let X, Y and H be groups acting trivially on an abelian
group M . If X and Y are acyclic, then

Hn(X×H, M) ∼= Hn(Y ×H, M) , Hn(X×H, M) ∼= Hn(Y ×H, M) for all n ≥ 0 .

Corollary 10 shows that the opposite version of Proposition 1 need not
hold.
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