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WITT’S THEOREM FOR GROUPS WITH ACTION AND
FREE LEIBNIZ ALGEBRAS
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Abstract. A subcategory of the category of groups with action is determined
and it is proved that the functor defined in [2] takes free objects from this
category to free Leibniz algebras. This result gives a solution to a problem
stated by J.-L. Loday [6], [7] and is an analogue of Witt’s theorem for groups
and Lie algebras [10].
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Introduction

In [6], [7] J.-L. Loday stated the problem to define algebraic objects called
“coquecigrues”, which would have an analogous role for Leibniz algebras as
groups have for Lie algebras. In particular, the author writes: “. . . it is reason-
able to expect that a coquecigrue is equipped with a lower central series whose
graded associated object is a Leibniz algebra. Moreover, a free coquecigrue
should give rise to a free Leibniz algebra (analogue of the Witt theorem which
says that the Lie algebra associated to a free group is free)” [7].

In [2] we defined the notion of central series for groups with action on itself
and gave an analogue of Witt’s construction [10] for such groups. We intro-
duced a condition for the action of a group (see Section 1 below, Condition
1); we defined the category of groups (abelian groups) with action on itself
Grc (Abc) satisfying Condition 1 and the category of Lie–Leibniz algebras LL.
It is proved in [2] that the analogue of Witt’s construction defines a functor
LL : Grc −→ LL. This functor leads us to Leibniz algebras (defined in [5]) over

the ring of integers Z by taking the compositions Grc A // Abc L // Leibniz ,

Grc LL // LL
S2 // Leibniz , where A is the abelianization functor, L = LL

∣∣
Abc

and S2 is the functor which makes the round bracket operation trivial (see Sec-
tion 1 for details).

In this paper we introduce two conditions (Conditions 2 and 3) between round
and square brackets for the objects of Grc and according to these conditions
define subcategories Gr and LL of Grc and LL, respectively. We prove that
the functor LL takes free objects from Gr to free objects in LL (Theorem 3.2).
The composition S2◦LL

∣∣
Gr

: Gr −→ Leibniz gives free Leibniz algebras for free

objects fromGr (Corollary 3.11). In particular, the functor L : Abc −→ Leibniz
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takes free objects to free Leibniz algebras (Theorem 3.3). The results obtained
in [2] (Theorem 3.6) and in this paper (Section 3) give an analogue of Witt’s
theorem for Leibniz algebras and a solution to the problems stated by J.-L.
Loday in [6], [7].

In Section 1 we recall some definitions and main results from [2]. We introduce
Conditions 2 and 3 for groups with action on itself and denote the corresponding
subcategory of Grc by Gr. It is proved that if A and B are ideals of G in Gr,
then the commutator [A, B] is also an ideal of G (Proposition 1.5). For ideals
A,B, C of G in Gr it is proved that[

A, [B,C]
] ⊂ [

[A,B], C
]
+

[
[A,C], B

]

(Proposition 1.6). These two statements are well-known for the case of groups.
Applying these results we prove that for the objects Gn, n > 1, in the definition
of central series of groups with action from Gr we have Gn = [Gn−1, G]. From
this fact we deduce that for the objects Gn = Gn/Gn+1, G ∈ Abc, we have only
those identities which are inherited from the identities of G by identifying the
elements x y = x, where x ∈ Gn, y ∈ G, xy denotes an action, and x denotes
the corresponding class in Gn.

In Section 2 we construct free objects in the categories Gr• (resp. in Grc,
Abc, Gr) and Leibniz.

In Section 3 we discuss questions concerning identities in Gr• between round
and square brackets. We consider a certain set of possible identities in Gr•; easy
computations show that none of them is true in Gr• (even in Grc). Nevertheless
we cannot claim that there are no more identities between round and square
brackets inGr• or inGr. We denote the possible set of identities inGr by E and
the corresponding set of identities in LL, inherited from E due to the functor
LL = LL

∣∣
Gr

: Gr −→ LL, by E; we define the full subcategory LL ⊂ LL
of all those Lie–Leibniz algebras over Z which satisfy identities from E. We
prove that if G is a free object in Gr, then LL(G) is a free object in LL
(Theorem 3.2). In the same way, applying Proposition 1.13 it is proved that
the functor L : Abc −→ Leibniz preserves the freeness of objects (Theorem 3.3).
As a corollary we also obtain that the composition S2 · LL : Gr −→ Leibniz
corresponds to free objects in Gr free Leibniz algebras over Z. Of course, it
would be simpler to prove the commutator properties and Proposition 1.11
for Abc, then to show that the functor L preserves freeness, and since the
abelianization functor A : Grc −→ Abc has the same property, the composition
LA : Grc −→ Leibniz would preserve freeness, too. Nevertheless we think that
the general Lie–Leibniz case is interesting and that under Conditions 2, 3 we
can show the properties of commutators in Gr, prove Proposition 1.11 and that
the functor LL : Gr −→ LL takes free objects to free objects, from which fact
we easily deduce the corresponding result for Leibniz algebras.
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1. The Categories Grc and Gr and Some Properties of
Commutators for Groups with Action

We recall from [2] the definitions of the categories Gr•, Grc, the notions of
an ideal, commutator and central series of objects of Gr•, the construction of
the functor LL : Grc −→ LL. Further we introduce the category Gr and prove
certain properties of commutators of objects of Gr, which are known for the
case of groups.

Let Gr• be the category of groups with action on itself from the right side
[2]. Thus the objects of Gr• are groups with the additional binary operation
ε : G×G → G with

ε(g, g′ + g′′) = ε(ε(g, g′), g′′),

ε(g, 0) = g,

ε(g′ + g′′, g) = ε(g′, g) + ε(g′′, g),

ε(0, g) = 0

for g, g′, g′′ ∈ G. Denote ε(g, h) = gh, g, h ∈ G. We denote the group operation
additively, nevertheless the group is not commutative in general. A morphism
(G, ε) → (G′, ε′) is a group homomorphism ϕ : G → G′ with ϕ(gh) = ϕ(g)ϕ(h).
Let Grc be the full subcategory of Gr• of those objects which satisfy

Condition 1. For each x, y, z ∈ G, G ∈ Gr•

x− x(zx) + xy+zx − x + xz − xz+yz

= 0.

Define [g, h] = −g + gh, for g, h ∈ G, g ∈ Gr•.

Condition 1 is equivalent to
Condition 1′.[

xy, [y, z]
]

=
[
[x, y], zx

]
+

[− [x, z], yz
]
, x, y, z ∈ G.

In [2] we introduced the notion of an ideal in Gr•:
A nonempty set A of G ∈ Gr• is called an ideal of G if it satisfies the following

conditions:
1. A is a normal subgroup of G as a group;
2. ag ∈ A, for a ∈ A, g ∈ G;
3. −g + ga ∈ A, for a ∈ A and g ∈ G.

Let A and B be subobjects of G, G ∈ Gr•. Denote by {A,B} the subobject
of G generated by A and B. By definition [2], the commutator [A,B] is an ideal
of {A,B} generated by the elements{

[a, b], [b, a], (a, b) | a ∈ A, b ∈ B
}
,

where (a, b) = −a− b + a + b.
Recall that an Ω-group is a group with a system of n-any algebraic operations

Ω (n ≥ 1) which satisfies the condition

0 0 . . . 0︸ ︷︷ ︸
n

ω = 0,
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where 0 is the identity element of G and ω ∈ Ω is an n-any operation [4]. For
the original theory of Ω-groups see [3].

It is proved in [2] that for an object G ∈ Gr• considered as an Ω-group, where
Ω consists of one binary operation of action, the definitions of a commutator
and an ideal are equivalent to the corresponding definitions for Ω-groups.

For the square bracket we have [2]

[g, h1 + h2] = [g, h1] + [gh1 , h2] = [g, h2] + [g, h1]
h2 ;

[g + g′, h] = [g, h]
g′

+ [g′, h]; [g, 0] = [0, g] = 0,
(1.1)

where x
g

= −g + x + g, x, g ∈ G.
From (1.1) it follows that

[g,−h] = −[g−h, h] = −[g, h]−h; [−g, h] = −[g, h]
−g

. (1.2)

For the round bracket we have (g, h) = −(h, g) and the analogous to (1.1) and
(1.2) identities

(g, h1 + h2) = (g, h1) + (g
h1

, h2) = (g, h2) + (g, h1)
h2

;

(g + g′, h) = (g, h)
g′

+ (g′, h);

(g, 0) = (0, g) = 0,

(1.3)

(g,−h) = −(g, h)
−h ⇔ (−g, h) = −(g, h)

−g

. (1.4)

These identities are well-known for groups (see, e.g., [9]) and are the special
cases of (1.1) and (1.2).

Recall from [2] that the (lower) central series

G = G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ Gn+1 ⊃ · · ·
of an object G of Gr• is defined inductively by

Gn = [G1, Gn−1] + [G2, Gn−2] + · · ·+ [Gn−1, G1],

where for the subobjects A,B ⊂ G, [A,B] denotes the commutator and A + B
the subset of G defined by A + B = {a + b, a ∈ A, b ∈ B} [2]. We have
[Gn, Gm] ⊂ Gn+m and it is proved (Proposition 3.2 [2]) that for each n ≥ 1,
Gn+1 is an ideal of Gn.

Let k be a commutative ring with the unit. Recall [5] that a Leibniz algebra
A over k is a k-module A equipped with a k-module homomorphism called a
square bracket

[ , ] : A⊗k A → A

satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y]

for x, y, z ∈ A.
A Lie–Leibniz algebra over k is a k-module A together with two k-module

homomorphisms
( , ), [ , ] : A⊗k A → A
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called a round and a square bracket, respectively, such that (x, x) = 0 for x ∈ A
and both Jacobi and Leibniz identities hold [2].

Let Lie, Leibniz and LL denote the categories of Lie, Leibniz and Lie–Leibniz
algebras over the ring of integers Z, respectively. The functor LL : Grc −→ LL
is defined on objects as

LL(G) = G1/G2 ⊕G2/G3 ⊕ · · · ⊕Gn/Gn+1 ⊕ · · · .

Here each Gi/Gi+1 is an abelian group and ⊕ denotes the direct sum of abelian
groups. The round and square bracket operations

( , ), [ , ] : LL(G)⊗ L(G) → LL(G)

on LL(G) are induced by the maps

( , )mn, [ , ]mn : Gm ×Gn → Gm+n

defined by the round and square brackets in G, respectively:

x, y 7→ (x, y),

x, y 7→ [x, y]

(see Theorem 3.6 of [2]).
We have the following diagram

Abc

L

²²

E //
Grc

A
oo

LL

²²

Q1 //

Q2 // Gr

W

²²

Coo

Too

Leibniz
E2 //

LL
S1

oo
S2

// Lie ,
E1oo

(1.5)

where Abc is the category of abelian groups with action on itself satisfying
Condition 1, A is the abelianization functor, which is left adjoint to the full
embedding functor E. The functors S1 and S2 make square and round brackets
trivial, respectively, and are left adjoints to the full embedding functors E1 and
E2, respectively. The functor L is constructed analogously to the functor LL,
we can write L = LL

∣∣
Abc and W is the functor defined by Witt’s theorem [9],

[10], the functor Q1 makes the action of the group trivial and is left adjoint to
the functor T which considers a group as a group with trivial action on itself;
the functor Q2 makes the action of the group as an action by conjugation (i.e.,
Q2(G) is the quotient of G by the equivalence relation generated by the relation
gh ∼ −h + g + h, g, h ∈ G, G ∈ Grc), and C is the functor which considers
a group as a group with the action by conjugation on itself. The functors Q1

and Q2 are left adjoints to T and C, respectively. We have LL ◦ T = E1 ◦W ,
E2 ◦ L = LL ◦ E [2]. We will return to this diagram in Section 3.

For the case of groups it is proved that if A and B are normal subgroups
of G, then the commutator (A,B) is also a normal subgroup of G. Below we
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will show that the analogous statement is true for a certain type of groups with
action on itself.

Condition 2.
[
xy, (y, z)

]
=

[
(x, y), zx

]
+

[− (x, z), yz
]
.

Condition 3.
(
xy, [y, z]

)
=

(
[x, y], zx

)
+

(− [x, z], yz
)
.

In Section 3 we will see that the objects of Grc do not generally satisfy these
conditions. Note that for groups with trivial action on itself, or with action by
conjugation, Conditions 1′, 2 and 3 are always satisfied. The same is true for
the example Z• from [2]; recall that Z• is the abelian group of integers with
the action on itself xy = (−1)yx. Thus the round bracket is zero in this case.
For any set X, consider a free object FX on the set X in the category Gr• (see
Section 2 for the construction of free objects in this category). Let FX/ ∼ be
the quotient object, where ∼ is the minimal equivalence relation generated by
the relations expressed in Conditions 1′, 2 and 3. Then FX/ ∼ is an object of
Grc which satisfies the above two conditions.

Denote by Gr the full subcategory of Gr• of those objects which satisfy
Conditions 1′, 2 and 3. Thus Gr is the full subcategory of Grc.

Since groups with action are Ω-groups, [A,B] is an ideal of G if and only if
[[A,B], G] ⊆ [A,B] (see [4] or Proposition 2.12 of [2]).

Now we are going to prove the statements concerning some properties of
elements of [A,B], {A,B} and G, where A and B are ideals of G. These
statements readily imply that [A,B] is an ideal of G if A and B are ideals of G
and G ∈ Gr. Note that in this case {A, B} = A + B and this object is also an
ideal of G (Proposition 2.5 of [2]).

Below for g, h ∈ G, g
h

= −h + g + h.

Lemma 1.1. Let a, b, g ∈ Gr•. Then we have

(i)
(
a

g)b
=

(
ab

)(gb)

;

(ii)
(
ab

)g

=
(
a

g(−b))b
.

The proof is an easy computation of both sides.

Lemma 1.2. Let A and B be ideals of G ∈ Gr. Then for any a ∈ A, b ∈ B,
g ∈ G the elements

[a, b]
g

, [b, a]
g

, (a, b)
g

, [a, b]g, [b, a]g,

(a, b)g,
[
g, [a, b]

]
,
[
g, [b, a]

]
,
[
g, (a, b)

]

belong to [A,B].

Proof. We have

[a, b]
g

=− g + [a, b] + g = −g − a + ab + g = −g − a + g + (ab)
g

=− g − a + g +
(
a

g(−b))b
= −g − a + g + a

g(−b)

− a
g(−b)

+
(
a

g(−b))b
= −g − a + g − g(−b) + a + g(−b) +

[
a

g(−b)

, b
]
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=− g − a + g − g(−b) + a + g(−b) − g + g +
[
a

g(−b)

, b
]

=(a, b′)
g

+
[
a

g(−b)

, b
]
,

where b′ = g− g(−b) ∈ B, since B is an ideal, which proves that [a, b]
g ∈ [A, B].

We have [b, a]
g ∈ [A, B], since [b, a]

g ∈ [B,A] by the above-given proof and
[B,A] = [A,B] [2],

(a, b)
g ∈ [A,B], since (a, b)

g

= (a
g

, b
g

).

For the next element we have

[a, b]g = −ag + ab+g = −ag + ag+b′ = [ag, b′] ∈ [A,B],

where b′ = −g + b + g ∈ B, here we apply the fact that B is an ideal of G.
From the previous result and from [B, A] = [A,B] it follows that [b, a]g ∈

[A,B].
It is easy to see that

(a, b)g = (ag, bg) ∈ [A,B].

For the element [g, [a, b]] we apply Condition 1′:
[
g, [a, b]

]
=

[
(g−a)a, [a, b]

]
=

[
[g−a, a], b(g−a)

]
+

[− [g−a, b], ab
]
.

This element is from [A,B], since A and B are ideals of G and [A,B] = [B, A].
From the previous result it follows that [g, [b, a]] ∈ [A,B]. In the same way

applying Condition 2, we prove that [g, [a, b]] ∈ [A,B]. ¤
Remark. We do not need to check that elements of the type (g, t) belong to

[A,B], where t is a generator of [A,B], since

(g, t) ∈ [A,B] ⇔ (t, g) ∈ [A, B] ⇔ t
g ∈ [A,B].

The latter inclusion has been considered in Lemma 1.2.

Lemma 1.3. Let A,B be ideals of G, G ∈ Grc. For g ∈ G, t, ti ∈ [A,B],
i = 1, 2

(a) If [g, ti] ∈ [A,B], i = 1, 2, then [g, t1 + t2] ∈ [A,B].
(b) If [ti, g] ∈ [A,B], i = 1, 2, then [t1 + t2, g] ∈ [A,B].
(c) If [g, t] ∈ [A,B], then [g,−t] ∈ [A, B].

The proof follows from (1.1) and (1.2).

Lemma 1.4. Let A and B be ideals of G, G ∈ Gr. If for t ∈ [A,B] and
any g ∈ G we have tg, t

g

, [g, t] ∈ [A,B], then for any g1 ∈ {A,B} the following
elements

(tg1)g, (t
g1

)g, [g1, t]
g,

(tg1)
g

, (t
g1

)
g

, [g1, t]
g

,

[g, tg1 ], [g, t
g1

],
[
g, [g1, t]

]

belong to [A,B].
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Proof. It is obvious that (tg1)g, (t
g1

)
g ∈ [A,B]. By Lemma 1.1, for the elements

(tg1)
g

, (t
g1

)g we have (tg1)
g

= (t
g(−g1)

)g1 ∈ [A,B]. Since {A,B} = A + B is an

ideal, (t
g1

)g = (tg)
(g

g
1) ∈ [A,B], and therefore gg

1 ∈ {A,B}.
For the element [g1, t]

g we have

[g1, t]
g = −gg

1 + gt+g
1 = −gg

1 + gg+t′
1 = [gg

1 , t
′] ∈ [A,B],

where t′ = −g + t + g ∈ [A,B], and gg
1 ∈ {A,B}.

For the element [g1, t]
g

we will show that ([g1, t], g) ∈ [A,B], from which it
follows that [g1, t]

g ∈ [A,B]. Applying Condition 3, we obtain
(
[g1, t], (g

−g1)g1
)

=
(
gt
1, [t, g

−g1 ]
)− (− [g1, g

−g1 ], tg
(−g1)) ∈ [A,B].

For the element [g, tg1 ] we show that [g, [t, g1]] ∈ [A,B], from which, by (1.1),
it follows that [g, tg1 ] + [g,−t]g1 ∈ [A,B]. Since [g, t] ∈ [A,B] ⇒ [g,−t] ∈
[A,B] ⇒ [g,−t]t

g1 ∈ [A,B], which implies that [g, tg1 ] ∈ [A, B].
By Condition 1′ we have

[
g, [t, g1]

]
=

[
[g−t, t], g

(g−t)
1

]
+

[− [g−t, g1], t
g1

]

∈ [
[A,B, {A,B}] +

[{A, B}, [A,B]
] ⊂ [A,B].

For [g, t
g1

] ∈ [A,B] we show that [g, (t, g1)] ∈ [A,B], which can be done analo-
gously to the previous proof by applying Condition 2.

For the element [g, [g1, t]] we have
[
g, [g1, t]

]
=

[
(g−g1)g1 , [g1, t]

]
=

[
[g−g1 , g1], t

(g−g1 )
]
+

[− [g−g1 , t], g1

]

∈ [{A, B}, [A,B]
]
+

[
[A,B], {A,B}] ⊂ [A,B]. ¤

Proposition 1.5. Let A and B be ideals of G ∈ Gr. Then the commutator
[A,B] is also an ideal of G.

Proof. By Lemmas 1.1–1.4 we have proved that the generators of [A,B] (as an
ideal of {A,B}) satisfy the conditions: tg, t

g

, [g, t] ∈ [A, B] for any g ∈ G,
where t is any generator of [A,B] (Lemma 1.2), and from Lemmas 1.3, 1.4 it
follows that if the generators satisfy these conditions, then any element of [A,B]
satisfies the same conditions, which is a necessary and sufficient condition for
[A,B] to be an ideal of G, which proves the proposition. ¤

Remark. From the above-proven lemmas we obtain [[A,B], C] ⊂ [A,B] which
is a necessary and sufficient condition for [A,B] to be an ideal of G [2], [4],
and this is another similar way to prove Proposition 1.5 by applying the same
lemmas.

If A,B, C are normal subgroups of a group G, we have(
A, (B, C)

) ⊂ (
B, (C, A)

)
+

(
C, (A, B)

)
, (1.6)

where (A,B) denotes the commutator subgroup of G (see, e.g., [9]).
For groups with action on itself the analogous inclusion for square brackets

does not hold in general for the ideals A,B,C of G, when G ∈ Gr•, nor in the
case when G satisfies the Condition 1′ (i.e., G ∈ Grc).
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Proposition 1.6. Let G ∈ Gr and A,B,C be ideals of G. Then we have
[
A, [B, C]

] ⊂ [
[A,B], C

]
+

[
[A,C], B

]
.

For the case of groups this result gives (1.6). We have formulated the right
side of the inclusion in this form, since it is more convenient for the proof using
Conditions 1′, 2, 3. We need several lemmas. For simplicity, denote

DA,B,C =
[
[A,B], C

]
+

[
[A,C], B

]
.

By Proposition 1.5, [A, [B,C]] and D are ideals of G, therefore it is sufficient
to prove that the generators of [A, [B, C]] (as an ideal of {A, [B,C]}) belong
to D. By the definition of a commutator, [A, [B, C]] is an ideal of {A, [B, C]}
generated by the elements

{
[a, t], [t, a], (a, t) | a ∈ A, t ∈ [B,C]

}
.

The commutator [B, C] itself is an ideal of {B, C} generated by the elements
{
[b, c], [c, b], (b, c) | b ∈ B, c ∈ C

}
,

and we have {B, C} = B + C, since B and C are ideals of G.

Lemma 1.7. Let A,B and C be ideals of G, G ∈ Gr. For a ∈ A, b ∈ B,
c ∈ C the elements

[
a, [b, c]

]
,

[
a, [c, b]

]
,

[
a, (b, c)

]
,

[
[b, c], a

]
,[

[c, b], a
]
,

[
(b, c), a

]
,

(
a, [b, c]

)
,

(
a, [c, b]

)
,

(
a, (b, c)

)

belong to DABC.

Proof. For the first element we apply Condition 1′. We have
[
a, [b, c]

]
=

[
(a−b)b, [b, c]

]
=

[
(a−b, b), ca(−b)]

+
[− [(a, c), bc

] ∈ DABC .

For the next element we apply the first result and we have [a, [c, b]] ∈ DACB =
DABC .

In the same way, applying Conditions 2, 3 and also the corresponding Witt–
Hall identity for commutators in groups, we prove that all elements given in the
lemma belong to D. ¤

Lemma 1.8. Let A,B and C be ideals of G, G ∈ Gr, and ti ∈ [B, C],
i = 1, 2.

If (a, ti) ∈ DABC, i = 1, 2 for any a ∈ A, then

(a, t1 + t2) ∈ DABC .

If [a, ti] ∈ DABC, i = 1, 2 for any a ∈ A, then

[a, t1 + t2] ∈ DABC .

If [ti, a] ∈ DABC, i = 1, 2 for any a ∈ A, then

[t1 + t2, a] ∈ DABC .

The proof follows from (1.1) and (1.3) and the fact that D is an ideal of G.
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Lemma 1.9. For any ideal I of G, G ∈ Gr• and elements g, h ∈ G,
If [g, h] ∈ I, then [−g, h], [g,−h] ∈ I.
If (g, h) ∈ I, then (−g, h), (g,−h) ∈ I.

The proof follows from (1.2) and (1.4) and the fact that I is an ideal of G.

Lemma 1.10. Let A,B and C be ideals of G, G ∈ Gr. For any t ∈ [B, C],
any a ∈ A and any x ∈ {B,C} we have:

(a) [a, t] ∈ DABC, then [a, tx] ∈ DABC.
(b) [a, t] ∈ DABC, then [a, t

x
] ∈ DABC.

(c) [a, [x, t]] ∈ DABC.
(a′) If (a, t) ∈ DABC, then (a, tx) ∈ DABC.
(b′) If (a, t) ∈ DABC, then (a, t

x
) ∈ DABC.

(c′) (a, [x, t]) ∈ DABC.
(a′′) If [t, a] ∈ DABC, then [tx, a] ∈ DABC.
(b′′) If [t, a] ∈ DABC, then [t

x
, a] ∈ DABC.

(c′′) [[x, t], a] ∈ DABC.

Proof. We will show that [a, [t, x]] ∈ DABC , from which it follows that [a, tx] ∈
DABC . Since B and C are ideals of G, {B,C} = B+C, any element x ∈ {B, C}
has the form x = b + c, b ∈ B, c ∈ C. We have[

a, [t, b + c]
]

=
[
a, [t, b] + [tb, c]

]
=

[
a, [t, b]

]
+

[
a[t,b], [tb, c]

]
.

By Proposition 1.5, [B, C] is an ideal of G. By Lemma 1.7 applied for A, [B, C], B
and A, [B,C], C we obtain[

a, [t, b + c]
] ⊂ DA,[B,C],B + DA,[B,C],C ⊂ DA,C,B + DA,B,C = DA,B,C ,

since [B, C] ⊂ C, [B,C] ⊂ B (since B and C are ideals of G) and DACB =
DABC . We have [

a, [t, x]
]

= [a,−t + tx] = [a, tx] + [a,−t](t
x).

Since [a, t] ∈ D, by Lemma 1.9 [a,−t] ∈ D, and since D is an ideal of G,
[a,−t](t

x) ∈ G. This proves that [a, tx] ∈ DABC .
(b) is proved in an analogous way; we prove first that [a, (t, x)] ∈ DABC for

any a ∈ A, t ∈ [B, C], x ∈ {B,C}, from which it follows that [a, t
x
] ∈ DABC .

(c) Since x = b + c, for b ∈ B, c ∈ C, we have
[
a, [x, t]

]
=

[
a, [b + c, t]

]
=

[
a, [b, t]

c

+ [c, t]
]

=
[
a, [b, t]

c]
+

[
a[b,t]

c

, [c, t]
]
.

In the same way as in (a), applying Lemma 1.7 we can prove that [a, [b, t]] ∈
DAB[B,C] ⊂ DABC and [a[b,t]c , [c, t]] ⊂ DAC[B,C] ⊂ DACB ⊂ DABC . By (b) we
have [a, [b, t]

c
] ⊂ DABC , since [b, t] ∈ [B, [B, C]] ⊂ [B,C] and c ∈ {B, C}.

(a′), (b′), (c′) are proved in a similar way.
For (a′′) we first show that [[t, x], a] ∈ DABC . We have

[
[t, x], a

]
=

[
[t, b + c], a

]
=

[
[t, b] + [tb, c], a

]
=

[
[t, b], a

][tb,c]

+
[
[tb, c], a

]
.

Applying Lemma 1.7, we show that [[t, b], a] ∈ DAB[B,C] ⊂ DABC and since

DABC is an ideal of G, we have [[t, b], a]
[tb,c] ∈ DABC .
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Next, we show by Lemma 1.7 applied for tb ∈ [B, C], c ∈ C, a ∈ A, that
the element [[tb, c], a] from [A, [[B, C], C]] is included in DA[B,C]C and hence in
DABC , since B is an ideal of G and [B, C] ⊂ B.

Applying Lemma 1.9, from [[t, x], a] ∈ DABC it follows that [tx, a] ∈ DABC .
(b′′) We begin with proving that [(t, x), a] ∈ DABC . We have

[
(t, b + c), a

]
=

[
(t, c) + (t, b)

c

, a
]

=
[
(t, c), a

](t,b)c

+
[
(t, b)

c

, a
]
.

Again by Lemma 1.7 [(t, c), a] ∈ DA[B,C]C ⊂ DABC , from which [(t, c), a]
(t,b)c ∈

DABC .
For the second summand we have[

(t, b)
c

, a
]

=
[
(tc, bc), a

] ∈ DA[B,C]B ⊂ DACB = DABC ;

hence [(t, x), a] ∈ DABC .
We have [

(t, x), a
]

=
[− t + t

x

, a
]

=
[− t, a

]tx
+

[
t

x

, a
]
.

By Lemma 1.9, [−t, a] ∈ DABC and therefore [−t, a]
tx ∈ DABC , from which

[t
x
, a] ∈ DABC .

(c′′) We have
[
[x, t], a

]
=

[
[c + b, t], a

]
=

[
[c, t]

b
+ [b, t], a

]
=

[
[c, t]

b
, a

][b,t]

+[
[b, t], a

]
.

By Lemma 1.7, [
[b, t], a

] ⊂ DA[B,C]B ⊂ DABC .

For the first summand we have [c, t] ∈ [
B, [B,C]

] ⊂ [B, C];
[
[c, t], a

] ∈
DA[B,C]C ⊂ DABC by Lemma 1.7. Thus for t′ = [c, t] we have [t′, a] ∈ DABC .
From (b′′) we obtain

[
(t′)

b

, a
] ∈ DABC since b ∈ {B,C},

and therefore [
[c, t]

b

, a
][b,t]

∈ DABC ,

since DABC is an ideal of G. This ends the proof of the lemma. ¤
The proof of Proposition 1.6 follows from Lemmas 1.7–1.10.

Lemma 1.11. If G ∈ Gr, then for

Gn = [G1, Gn−1] + [G2, Gn−2] + · · ·+ Gn−1, G1]

we have
Gn = [Gn−1, G], (1.7)

for n > 1, where G1 = G.

Proof. For n = 2, 3 (1.7) is trivial. For n = 4 we have

G4 = [G1, G3] + [G2, G2] + [G3, G1].

Thus [G3, G1] ⊂ G4, and for G4 ⊂ [G3, G1] we will show that [G2, G2] ⊂ [G3, G1].
We have

[G2, G2] =
[
[G1, G1], G2

] ⊂ [
G1, [G1, G2]

]
+

[
G1, [G1, G2]

] ⊂ [G3, G1],
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since [G1, G2] ⊂ G3.
Assume that (1.7) is true for any Gl, where l < n. For l = n we have

[Gn−1, G1] ⊆ Gn. We have to show that

[Gk, Gn−k] ⊆ [Gn−1, G] for 1 ≤ k < n. (1.8)

For k = 1, [G1, Gn−1] = [Gn−1, G].
For k = 2, by Proposition 1.6, [G2, Gn−2]=[[G1, G1], Gn−2]⊂ [G1, [G1, Gn−2]]+

[G1, [G1, Gn−2]] = [Gn−1, G], since [G1, Gn−2] = Gn−1 by our assumption.
Suppose that (1.8) is true for 1 ≤ k ≤ t− 1, where t < n. We will show (1.8)

for k = t.
By our assumption, Gt = [Gt−1, G]; therefore

[Gt, Gn−t] =
[
[G,Gt−1], Gn−t

] ⊂ [
G, [Gt−1, Gn−t

]
+

[
Gt−1, [G,Gn−t

]

⊂ [G,Gn−1] + [Gt−1, Gn−t+1] ⊂ [G,Gn−1] + [Gn−1, G] = [Gn−1, G];

here we have used the facts that [Gt−1, Gn−t] ⊂ Gn−1, [G,Gn−t] ⊂ Gn−t+1

and that, by our assumption, [Gt−1, Gn−t+1] ⊂ [Gn−1, G],which proves the
lemma. ¤

From this lemma the construction of the functorGrc −→ LL becomes simpler
for the objects of Gr. Namely, if G ∈ Gr, then

LL(G) =
∞∑

n=1

Gn

/
[Gn, G]. (1.9)

Let G be a free object in Gr (see Section 2 for the construction) and Gn =
[Gn−1, G], n > 1. Let E be the set of all defining identities between the brackets
(both round and square) in Gn, n ≥ 1, and E the set of all defining identities
which satisfy the elements of the groups Gn = Gn/[Gn, G], n ≥ 1. Under
“defining identities” we mean that any identity in G follows from the identities
from E.

Remark. We could define Gn from the beginning by (1.7), but we would need
Propositions 1.5 and 1.6 for proving [Gn, Gm] ⊂ Gn+m, which we have applied
in proving Theorem 3.6 [2].

If G is a free object in Gr, then we have Conditions 1′,2,3 for the elements of
G, but there can be more identities between the round, and round and square
brackets. In the case of Abc we have another picture, the only identity we have
in Abc is Condition 1′ (and of course its consequences).

Let G be a free object of Abc and g1, . . . , gk ∈ G. Let P (g1, . . . , gk) be any
expression of the elements gi, i = 1, . . . , k and bracket operations in G.

We say that P is a pure n-bracket if after decomposing each gi in terms of
brackets it contains only n-brackets. Here we have in mind that Ab• ∼= Ab[] and
the corresponding isomorphism for Abc. For example, for the basis elements
x1, x2, x3 of G, [x1, [x2, x3]] is a pure 3-bracket. If g is a pure m-bracket and h
is a pure k-bracket, then [g, h] is a pure m + k-bracket.

According to Condition 1′, it may happen that a linear combination of pure
n-brackets is an element of Gn+1.
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Lemma 1.12. Let G be a free object in Abc. If P (g1, . . . , gt) ∈ Gn is
a linear combination of pure n-brackets in G and P (g1, . . . , gt) ∈ Gn+1, then
P (g1, . . . , gt) = 0 in Gn = Gn/Gn+1 is either the Leibniz identity or its conse-
quence.

Proof. There exists an expression Q() ∈ Gn+1 with n + 1 brackets such that
P ()−Q() = 0. Since G is free, P ()−Q() = 0 is either equivalent to Condition
1′ or to its consequence. Now the proof is a direct computation. Take x, y, z
as pure k, l, m-brackets, respectively, in Condition 1′, with k + l + m = n.
Then from (1.1), (1,3) and the fact that gh = g + [g, h], for any g, h ∈ G we
obtain that the pure n-bracket combination part of Condition 1′ has the form
[x, [y, z]]− [[x, y], z]+[[x, z], y]. Note that in Abc we have [−g, h] = −[g, h]. The
same result we have in the case P () − Q() = 0 is equivalent to a consequence
of Condition 1′, which ends the proof. ¤

Proposition 1.13. Let G be a free object in Abc. Then the elements of the
object L(G) (L : Abc −→ Leibniz) satisfy only the Leibniz algebra identities
for square brackets i.e., the square bracket operation is bilinear and in Gn =
Gn/Gn+1, n ≥ 1we have the Leibniz identity[

x, [y, z]
]

=
[
[x, y], z

]− [
[x, z], y

]
,

where x, y, z ∈ G and x ∈ Gm, y ∈ Gl, z ∈ Gt denote the corresponding
elements with m + l + t = n.

Proof. Suppose G is free in Abc and we have in Gn the identity or relation
P (xji) =

∑l
j=1 Pj(xj1, . . . , xjt) = 0, where each Pj denotes a bracket element in

P , Σ denotes the sum of these elements in Gn, xij ∈ Gkji, kj1 + · · ·+kjt = n,j =
1, . . . , l. We suppose that each xji 6= 0 and P contains at most n brackets. For
each inverse image x′ji in Gkji, j = 1, . . . , l, i = 1, . . . , t (i.e., x′ji 7→ xji, by the

natural homomorphism Gkji → Gkji) we have P (x′ji) =
∑l

j=1 PJ(x′j1, . . . , x
′
jt) ∈

Gn+1. Since each xji 6= 0, we have xji /∈ Gkji+1, thus each xji contains kji
brackets as a summand. Hence each xji has an inverse image x̃ji ∈ Gkji, x̃ji 7→
xji, and x̃ji is a pure kji-bracket. We have P (x̃ji) =

∑l
j=1 Pj(x̃j1, . . . , x̃jt) ∈

Gn+1, and each Pj(x̃j1, . . . , x̃jt) is a pure n-bracket. P (x̃ji) = P (xji) and, by
Lemma 1.12, P (xji) = 0 is either the Leibniz identity or its consequence. ¤

Remark. In Ab•, Condition 1 has the form

−x(zx) + xy+zx

+ xz − xz+yz

= 0,

which is, of course, equivalent to Condition 1′.

Direct computations show that in Abc we have the identities

[−g, h] = −[g, h],

[g,−h] = [−g, h]−h, [g, h]x = [gx, h], x, g, h ∈ G ∈ Abc .

The first two identities could be obtained from the identities in Grc

[−g, h]
g

= −[g, h],
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[g,−h]
−g

= [−g, h]−h, g, h ∈ G′ ∈ Grc,

applying the functor A : Grc −→ Abc. It is easy to see that these identities
follow from (1.2) and all the above identities do not give new identities for
LL(G′), or L(G).

2. Free Objects in Gr•, Gr, Abc and Leibniz

In this section we give the construction of free objects in the categories of
groups with action. We define free objects in Leibniz and Lie–Leibniz algebras
and recall the free Lie algebra definition; we give the construction of free Leibniz
algebras.

Let X be a set, MX be the free magma generated by X. Recall (see, e.g.,
[1] or [9]) that a magma is a set M with a (generally nonassociative) binary
operation

M × M // M .

We write the elements of MX in a “vertical way”; so the elements of MX have
the form







xt−1,it−1

·
·
·


xt−1,3(

xt−1,2

xt−1,1

)






·
·
·






x1i1·
·
·


x13(

x12

x11

)






x







0
BBBBBBBBBBBB@

xtit

···


xt3(
xt2

xt1

)



1
CCCCCCCCCCCCA

(2.1)

where x, xjs ∈ X, j = 1, 2, . . . , t, s = 1, 2, . . . ij.
We denote this kind of elements by x� to indicate that the element (2.1) is

presented by the element x ∈ X.
Let F(MX) be a free group generated by MX . The operation in F(MX) we

denote by “+”, so the elements of F(MX) have the form

±x�1 ± x�2 ± · · · ± x�n ,
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where x�i is an element of type (2.1) for each i = 1, . . . , n. The empty word
(neutral element) of F(MX) we denote by 0.

Define in F(MX) the action of elements by

(x�1 + · · ·+ x�n )y�1 +···+y�m

=




(y�m−1)(
(y�1 )

(x�1 ))

)



(y�m)

+ · · ·+



(y�m−1)(
(y�1 )

(x�n ))

)



(y�m)

,

(x�1 + · · ·+ x�n )0 = x�1 + · · ·+ x�n , 0(x�1 +···+x�n ) = 0.

Now it is easy to see that the following statement holds.

Proposition 2.1. The object F(MX) is a group with action on itself and it
is the free object in Gr• generated by the set X.

Let ∼ be a minimal equivalence relation on F(MX) generated by the relation
defined by Condition 1. Then we obtain

Proposition 2.2. The object F(MX)/ ∼ is the free object in Grc generated
by the set X.

In the same way we construct free objects in Gr and Abc.
On the other hand, in diagram (1.5) the functor A is left adjoint to the full

embedding functor E and therefore we obtain

Proposition 2.3. A(F(MX)/ ∼) is the free object in Abc generated by the
set X.

In the following definition all algebras are considered over a commutative ring
k with the unit.

Definition 2.4. Let X be a set. A is a free Lie–Leibniz (respectively Lie,
Leibniz) algebra with basis X if there is an injection X −→ A and for any Lie–
Leibniz (resp. Lie, Leibniz) algebra B and a map α : X −→ B, there exists a
unique homomorphism α : A −→ B of Lie–Leibniz (resp. Lie, Leibniz) algebras
such that the diagram

A
α // B

X

OO
α

88ppppppppppppp

is commutative.

Here we give a construction of free Leibniz algebras. Let k be a commutative
ring with the unit and X be any set. Denote by W (X) the set of all those formal
combinations of square brackets and elements of X, which do not contain the
words of the form [a, [b, c]], where a, b, c are elements of X or combinations of
elements of X and brackets. Let F (W (X)) be the free k-module generated by
the set W (X). Consider the map η : W (X) ×W (X) → F (W (X)) defined by
η(w1, w2) = [w1, w2] if [w1, w2] ∈ W (X); for [w1, w2] /∈ W (X) we decompose the
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word [w1, w2] according to the Leibniz identity and express it as a sum of the
words from W (X) in F (W (X)). We define η(w1, w2) as this final sum. Note
that any two different decompositions give the same element of F (W (X)). We
define the bracket operation on F (W (X)) as the k-linear extension of the map η
to F (W (X)). It is easy to see that the obtained object is a free Leibniz algebra
on the set X (cf. [8]).

3. Identities in Grc and the Main Results

In this section all algebras (Lie, Leibniz, Lie–Leibniz) are considered over the
ring of integers Z.

We investigate a question of the existence of identities between round and
square brackets in Gr•. If E is the set of identities for the category Gr, we
define the full subcategory LL of LL (Lie–Leibniz algebras) of those objects
satisfying identities E, where E denotes the set of all identities inherited in LL
from E. We prove that if G is the free object in Gr generated by the set X, then
every element of Gn = Gn/Gn+1 is represented as a combination of elements of
the form [(

· · · [( · · · [(yk, · · · [(y3, [(x, y1)], y2)]
)]

, . . . yn−1

)]
,

where two brackets mean that we have either a round or a square bracket for
x, y1, . . . , yn−1 ∈ X and this representation is unique up to identities from E.
By this result we easily prove that the functor LL takes free objects from Gr to
free objects in LL and L(G) (resp. LA(G′)) is a free Leibniz algebra if G (resp.
G′) is a free object in Abc (resp. in Gr). The category Gr is defined in Section 1
as the full subcategory of those objects of Gr• which satisfy Conditions 1′, 2, 3.
We look for possible identities in Gr between the round and square brackets.
We have well-known Witt–Hall identities for round brackets in Gr. By Witt’s
theorem [9], [10] the functor W : Gr −→ Lie in diagram (1.5) takes free objects
to free objects. Taking into account the same kind of argument as we have at
the end of Section 1 for the case of groups with action and Lie–Leibniz algebras,
we conclude that in Gr we do not have such identities for the round brackets
which “inherit” new identities for Lie algebras. Thus if new identities exist
in Gr they give the same Jacobi identity, the identity (x, x) = 0 and bilinear
property for the operation ( , ) in the corresponding Lie algebra. Below we
consider in Gr those “variations” of the well-known identities in Gr which by
applying the usual functors (see diagram (1.5))

Abc GrcAoo Q2 // Gr

give the known identities in Abc and Gr. As above, for x, y ∈ G, G ∈ Gr• we
denote x

y

= −y + x + y. Consider the following expressions:

a1 =
[
xy, (y, z)

]
; b1 =

[
(x, y), zx

]
; c1 =

[− (x, z), yz
]
;

a2 =
(
xy, [y, z]

)
; b2 =

(
[x, y], zx

)
; c2 =

(− [x, z], yz
)
;

a3 = −[
(y, z), xy

]
; b3 = −[

zx, (x, y)
]
; c3 = −[

yz,−(x, z)
]
;
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a4 =
(
xy,−[z, y]

)
; b4 =

(− [y, x], zx
)
; c4 =

(
[z, x], yz

)
;

a5 =
[
x

y

, (y, z)
]
; b5 =

[
(x, y), z

x]
; c5 =

[− (x, z), y
z]

;

a6 =
(
x

y

, [y, z]
)
; b6 =

(
[x, y], z

x)
; c6 =

(− [x, z], y
z)

;

a7 = −[
(y, z), x

y]
; b7 = −[

z
x

, (x, y)
]
; c7 = −[

y
z

,−(x, z)
]
;

a8 =
(
x

y

,−[z, y]
)
; b8 =

(− [y, x], z
x)

; c8 =
(
[z, x], y

z)
.

Consider all kinds of identities

ai = bj + ck, i, j, k = 1, 8. (3.1)

Applying the functor A or Q2 to (3.1), we obtain that the resulting equalities
are true in Abc and Gr (i.e., when ( ) = 0 or [ ] = ( ) ).

Direct computations give:

a1 = −xy + x−z+y+z;

a2 = −xy − yz + y + xy − y + yz;

a3 = −z(xy) − y(xy) + z(xy) + y(xy) − y − z + y + z;

a4 = −xy − z + zy + xy − zy + z;

a5 = −y − x + y − y−y−z+y+z + x−y−z+y+z + y−y−z+y+z;

a6 = −y − x + y − yz + x + yz;

a7 = −z−y+x+y − y−y+x+y + z−y+x+y + y−y+x+y − y − z + y + z;

a8 = −y − x + y − z + zy − y + x + y − zy + z;

b1 = −y − x + y + x− x(zx) − y(zx) + x(zx) + y(zx);

b2 = −xy + x− zx − x + xy + zx;

b3 = −z−y+x+y + zx;

b4 = −y + yx − zx − yx + y + zx;

b5 = −y − x + y + x− x−x+z+x − y−x+z+x + x−x+z+x + y−x+z+x;

b6 = −xy − z + xy − x + z + x;

b7 = −x−x−y+x+y − z−x−y+x+y + x−x−y+x+y − x + z + x;

b8 = −y + yx − x− z + x− yx + y − x + z + x;

c1 = −x− z + x + y − z(yz) − x(yz) + z(yz) + x(yz);

c2 = −− x + xz − yz − xz + x + yz;

c3 = −y−x+z+x + yz;

c4 = −zx + z − yz − z + zx + yz;

c5 = −x− z + x + z − z−z+y+z − x−z+y+z + z−z+y+z + x−z+y+z;

c6 = −x + xz − z − y + z − xz + x− z + y + z;

c7 = −z−z−x+z+x − y−z−x+z+x + z−z−x+z+x − z + y + z;

c8 = −zx − y + zx − z + y + z.
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The check shows that none of identities (3.1) holds for free objects in Gr•.
The same is true for the category Grc, since Condition 1 represents any element
x by a combination of elements with base element x, and therefore Condition
1 does not help any of identities (3.1) to hold in Grc. Nevertheless we cannot
claim that we do not have identities between round and square brackets in Gr•

or inGrc. The same situation is observed forGr; by definition, here we have two
identities from (3.1), these are Condition 2 and Condition 3 (for i = j = k = 1
and i = j = k = 2). Note also that we may have identities in Gr which
do not give new identities for W (F ) (where F is a free group and W (F ) is
the corresponding Lie algebra) but “variations” (with square brackets) of these
identities in Grc (or in Gr) may give new identities in LL(G), for a free object
G ∈ Grc, since, e.g., in W (G) we have (x, x) = 0, but in LL(G), [x, x] 6= 0,
x ∈ G.

Let G be a free object in Gr. Let E be the set of all defining identities
between both kinds of brackets in Gr, and let E be the set of corresponding
identities for LL(G), inherited from E.

Denote by LL the full subcategory of LL consisting of those objects of LL
which satisfy the conditions from E. Of course, among the identities in E we
have bilinear properties of [ , ] and ( , ), the identities (x, x) = 0, (x, 0) =
(0, x) = 0, [x, 0] = [0, x] = 0, the Jacobi identity

(
x, (y, z)

)
+

(
y, (z, x)

)
+

(
z, (x, y)

)
= 0,

the Leibniz identity
[
x, [y, z]

]
=

[
[x, y], z

]− [
[x, z], y

]
, (3.2)

and also the identities
[
x, (y, z)

]
=

[
(x, y), z

]− [
(x, z), y

]
,(

x, [y, z]
)

=
(
[x, y], z

)− (
[x, z], y

)

which correspond to the known identities for round and square brackets in Gr
and Gr•, respectively, Conditions 1′, 2 and 3 in Gr•.

For a free object G ∈ Abc, E contains the usual identities (1.1) and only
one additional identity, Condition 1′; by virtue of Proposition 1.13 the set of all
defining identities E (which satisfy the elements of L(G)) consists of identity
(3.2), bilinear properties of square bracket operation and [x, 0] = [0, x] = 0. See
also the remark after the proof of Proposition 1.13.

Proposition 3.1. Let G ∈ Gr, Gn = [Gn−1, G] for n > 1, where G1 = G,
and Gr = Gn/Gn+1. If G is the free object in Gr generated by the set X, then
G1 is the free abelian group generated by the same set Xand every element of
Gn, n > 1 has a representation as a combination of elements of the form[(

· · · [( · · · [(yk · · ·
[(

y3, [(x, y1)], y2)]
)
] · · · )] · · · ym

] · · · yn−1

)]
(3.3)

(n− 1 round or square brackets), where x, y1, . . . , yn−1 ∈ X, and this represen-
tation is unique up to identities from E.
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Proof. It is obvious that G1 = G1/G2 is the free abelian group generated by the
set X. We have G2 = [G1, G], and, by definition, G2 is an ideal of G generated
by elements of the form [(g, h)] (here we mean elements of both forms [g, h] and
(g, h)), g, h ∈ G. Since G is a free object in Gr, we have

g = x�1 + · · ·+ x�n , h = y�1 + · · ·+ y�k ,

where xi, yi ∈ X, i = 1, n, j = 1, k. Then by (1.2) and (1.3) we obtain that
[(g, h)] has the form

[(g, h)] =
∑
i,j

[(
x�i , y�j

)]�
; (3.4)

here for a ∈ G, a
�

means that the action operations represented by ¤ include
also actions by conjugation. Now we have to show that if t, t1, t2 ∈ G2 and have
form (3.4), then tg, t

g

, [g, t], t1 + t2 have the same form for g ∈ G. It is obvious
that tg, t

g

and t1 + t2 have form (3.4). For [g, t] we have the representation

[g, t] =
∑

l,i,j

[
z�l ,

[(
x�i , y�j

)]�)]�
.

If we open one bracket (square or round, as it is in the representation) in
each summand [

x�i , y�j
]

= −x�i + x
(y�j )

i ,

(
x�i , y�i

)
= −x�i + x

(y�j )

i ,

(3.5)

and then apply (1.2) and (1.3), we will see that [(g, t)] has a representation of

form (3.4). We have [(g, t)] = 0 in G2, since [(g, t)] ∈ G3, and this is also obvious

from (3.5) and the fact that xi = x
(y0

j )

i in G2 for xi ∈ G2. In the same way we
prove that the elements of G3 = [G2, G] have representations of the form

∑ [( xy
z�2 ,

[(
x�i , y�i

)]�)]�
,

where for a, b ∈ G, [
xy

(a, b)] denotes elements either of form [(a, b)] or of form
[(b, a)].

Suppose that the elements of Gn−1 can be represented as Z-combinations of
the elements of the form

[(
· · ·

[(
· · · [(y�k · · ·

[(
y�3 , [(x�, y�1 )]

)]�
. . .

)]� · · · ym

)]�
· · · , yn−2

)]�
.

Then we obtain the corresponding result for Gn. These representations are
unique up to identities from E. From this it follows that the elements of Gn

are combinations with coefficients from Z of elements of form (3.3). Since E is

the set of all identities in L(G) =
∞∑

n=1

Gn, these representations of elements of

Gn are unique up to identities from E. ¤
From Proposition 3.1 follows the main result.
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Theorem 3.2. Let G be the free object in Gr generated by the set X. Then
the Lie–Leibniz algebra LL(G) is the free object in the category LL with basis X.

In the same way, applying Proposition 1.13 we obtain

Theorem 3.3. Let G be the free object in Abc generated by the set X. Then
L(G) is the free Leibniz algebra on the set X.

Corollary 3.4. Any free Leibniz algebra can be obtained up to an isomorphism
by the functor L; i.e., for any free Leibniz algebra A there is an object G ∈ Abc

such that L(G) ≈ A.

Proof. Let A be the free Leibniz algebra on the set X. Take the free object G
in Abc on the set X. Now, by Theorem 3.3 L(G) is the free Leibniz algebra
generated by the set X and therefore L(G) ≈ A. ¤

Consider LL
∣∣
Gr

. It is obvious that LL
∣∣
Gr

factors through LL. Thus we have
the commutative diagram

Grc

LL

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Gr? _oo

LL
/
Gr

""EEEEEEEEEEEEEEEEEE
LL // LL

I

²²
LL .

Corollary 3.5. Any free Leibniz algebra A can be considered as an object of
LL, i.e., E2(A) ∈ LL.

Proof. It follows from Corollary 3.4 and the fact that Abc ↪→ Gr and E2 · L =
LL

∣∣
Abc = LL

∣∣
Abc . ¤

Corollary 3.6. There is a full embedding functor E2 : Leibniz −→ LL such
that IE2 = E2; the functor S2 = S2I is a left adjoint to E2.

Proof. Let A be any Leibniz algebra, choose a free Leibniz algebra FA on the
basis A and an epimorphism FA −→ A. We have E2(FA) ∈ LL by Corollary
3.5 and E2(A) ∈ LL; from this it follows that the elements of A also satisfy
identities from E, thus E2(A) ∈ LL, which means that there is a full embedding
functor E2 : Leibniz−→ LL with IE2 = E2. It is easy to see that S2 is a left
adjoint to E2. ¤

Applying Witt’s theorem stating that the functor W takes free objects from
Gr to free objects in Lie, we obtain the following results.

Corollary 3.7. Any free Lie algebra can be obtained by the functor W .

Corollary 3.8. Any free Lie algebra A can be considered as an object of LL,
i.e., E1(A) ∈ LL.

Corollary 3.9. There is a full embedding functor E1 : Lie −→ LL such that
IE1 = E1; the functor S1 = S1I is a left adjoint to E1.
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Thus we have the diagram

Grc

A

¡¡

Q1

½½

Q2

½½

LL

µµ

Abc

E

33

L

²²

E //
Gr

OO

A

oo

LL

²²

Q1 //

Q2 // Gr

W

²²

C

oo

Too

C

mm T

mm

Leibniz

E2

&&MMMMMMMMMMMMMMMMMMMMMMM

E2 //
LL

I

²²

S2

oo
S1

// Lie ,
E1oo

E1

xxrrrrrrrrrrrrrrrrrrrrrr

LL

S2

ffMMMMMMMMMMMMMMMMMMMMMMM

S1

88rrrrrrrrrrrrrrrrrrrrrr

(3.6)

where A = A
∣∣
Gr

, E is the obvious full embedding, (i.e., it is clear that E factors

through Gr), Qi = Qi

∣∣
Gr

, i = 1, 2. Since Conditions 2 and 3 are satisfied for
groups with trivial action or action by conjugation, it follows that T and C
factor through Gr; this gives the functors T and C.

Corollary 3.10. For free objects in Gr the left and right directional diagrams
in (3.6) commute, i.e., if G is a free object in Gr, then

LA(G) = S2 · LL(G) = S2 · LL
∣∣
Gr

(G),

WQ1 = S1 · LL(G) = S1 · LL
∣∣
Gr

(G).

It may be useful to formulate the result concerning free Leibniz algebras in
the following form.

Corollary 3.11. The composition of functors S2 ◦ LL in the commutative
diagram

Gr
LL //

LL

∣∣
Gr

!!CC
CC

CC
CC

CC
CC

CC
CC

C LL

I

²²

S2 // Leibniz

LL

S1

;;xxxxxxxxxxxxxxxxxxx

takes free objects from Gr to free Leibniz algebras and for any free Leibniz
algebra A there is a free object G ∈ Gr with S2 · LL(G) ≈ A.
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Let V : LL → Leibniz be the obvious forgetful functor. The following
commutative diagram is due to the referee:

Gr
C //

W
²²

Gr

V ◦LL
²²

Lie // Leibniz.

These results together with Theorem 3.6 of [2] give Witt’s well-known con-
struction for groups with action and prove an analogue of Witt’s theorem for
this special kind of groups and Leibniz algebras.
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Enseign. Math. (2) 39(1993), No. 3-4, 269–293.
7. J.-L. Loday, Algebraic K-theory and the conjectural Leibniz K-theory. Special issue in

honor of Hyman Bass on his seventieth birthday. Part II. K-Theory 30 (2003), No. 2,
105–127.

8. J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and
(co)homology. Math. Ann. 296(1993), 139–158.

9. J.-P. Serre, Lie algebras and Lie groups. W. A. Benjamin, INC. London, Amsterdam,
Tokyo, 1965.

10. E. Witt, Treue Darstellung Liescher Ringe. J. Reine Angew. Math. 1(1937), 152–160.

(Received 3.07.2004; revised 4.10.2004)

Author’s address:

Tamar Datuashvili
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193, Georgia
E-mails: tamarda@geo.net.ge

tamar@rmi.acnet.ge


