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Abstract

We consider the Bitsadze–Samarskii type nonlocal boundary value problem for Poisson equation in a unit square, which is
solved by a difference scheme of second-order accuracy. Using this approximate solution, we correct the right-hand side of the
difference scheme. It is shown that the solution of the corrected scheme converges at the rate O(|h|

s) in the discrete L2-norm
provided that the solution of the original problem belongs to the Sobolev space with exponent s ∈ [2, 4].
c⃝ 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Finite difference method is a significant tool in the numerical solution of problems posed for differential equations.
In order to minimize the amount of calculations it is desirable for the difference scheme to be sufficiently good on
coarse meshes, i.e. to have high order accuracy. In the present work, for improving the accuracy of the approximate
solution, we study two-stage finite difference method. We consider Bitsadze–Samarskii type nonlocal boundary value
problem for Poisson’s equation.

At the first stage we solve the difference scheme ∆hŨ = ϕ, which has the second order of approximation. Using
the solution Ũ the right-hand side of the difference scheme is corrected, ∆hU = ϕ + RŨ , and solved again on the
same mesh.

This approach for some boundary value problems posed for Poisson and Laplace equations has been studied in
Volkov’s papers (see, e.g. [1–3]), where the input data were chosen so as to ensure that the exact solution belongs to
the Hölder class C6,λ(Ω̄).
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For establishing the convergence we use the methodology of obtaining the compatible estimates of convergence
rate of difference schemes. This methodology develops from the works of Samarskii, Lazarov and Makarov (see,
e.g., [4–6]), and later in the works of other authors (see, e.g., [7,8]). For the elliptic problems such estimates have the
form

∥U − u∥W k
2 (ω) ≤ c|h|

s−k
∥u∥W s

2 (Ω), s > k ≥ 0,

where u is the solution of original problem, U is the approximate solution, k and s are integer and real numbers,
respectively, W k

2 (ω) and W s
2 (Ω) are the Sobolev norms on the set of functions with discrete and continuous arguments.

Here and below c denotes a positive generic constant, independent of h and u.
It is proved that the solution U of the corrected difference scheme converges at rate O(hs) in the discrete L2-norm,

when the exact solution belongs to the Sobolev space W s
2 , s ∈ [2, 4].

The generalization of the Bitsadze–Samarskii problem [9] was investigated by many authors (see, e.g., [10–13]).
In [11] for a Poisson equation it is considered a difference scheme, which converges by the rate O(h2) in the

discrete W 2
2 -norm to the exact solution from the class C4(Ω̄).

In [13] difference scheme is considered for a second order elliptic equation with variable coefficients and the
compatible estimate of convergence rate in discrete W 1

2 -norm is obtained.
Results, analogous to those given in the present work, are obtained in [14] for the Dirichlet problem posed for an

elliptic equation, and also in [15] for the mixed problem with third kind conditions.
One of the methods for obtaining compact high order approximations is the Mehrstellen method (“Mehrstellenver-

fahren”), defined by Collatz (see [16]). Instead of approximating only the left hand side of the differential equation, he
proposes to take several points of the right hand side as well. In the case of two-dimensional problem, the differential
operator is approximated on a 9-point stencil with the fourth order accuracy.

The advantage of the Mehrstellen schemes over ordinary (second order) accuracy schemes on a coarse grid is
obvious.

The advantage of our method is:
(a) It needs to approximate the differential operator on minimally acceptable stencil (5-point stencil for a two-

dimensional problem). Therefore, the condition number of this operator is better as compared with the Mehrstellen
schemes, which is notable on a fine grid.

(b) It is a two-stage method, nevertheless it requires matrix inversion only once (on the second stage we change
only the right-hand side of the equation, while the operator is kept unchanged).

(c) The method of correction is handy even in the case when construction of high precision schemes is impossible.

2. Statement of the problem and some auxiliary estimate

As usual, by symbol W s
2 (Ω), s ≥ 0 we denote the Sobolev space. For integer s the norm in W s

2 (Ω) is given by
formula

∥u∥
2
W s

2 (Ω) =

s
j=0

|u|
2
W j

2 (Ω)
, |u|

2
W j

2 (Ω)
=


|ν|= j

∥Dνu∥
2
L2(Ω),

where Dν
= ∂ |ν|/


∂xν1

1 ∂xν2
2


, ν = (ν1, ν2) is multi-index with non-negative integer components, |ν| = ν1 + ν2.

If s = s̄ + ε, where s̄ is an integer part of s and 0 < ε < 1, then

∥u∥
2
W s

2 (Ω) = ∥u∥
2
W s̄

2 (Ω)
+ |u|

2
W s

2 (Ω),

where

|u|W s
2 (Ω) =


|ν|=s̄


Ω


Ω

|Dνu(x) − Dνu(y)|2

|x − y|2+2ε
dx dy.

Particularly, for s = 0 we have W 0
2 = L2.
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Let Ω̄ = {(x1, x2) : 0 ≤ xα ≤ 1, α = 1, 2} be a unit square with a boundary Γ ; Γ0 = Γ \ {(1, x2) : 0 < x2 < 1};
ξk be fixed points from interval (0; 1), 0 < ξ1 < ξ2 < · · · ξm < 1. Denote ξ0 = 0, ξm+1 = 1.

Consider the problem

∆u = f (x), x ∈ Ω , u

Γ0

= 0, u(1, x2) =

m
k=1

αku(ξk, x2), 0 < x2 < 1 (1)

where the coefficients αk are real numbers satisfying conditions

~ :=

m
k=1

|αk |


ξk < 1.

It was shown in [12] that, for f (x) ∈ L2(Ω , ρ), there exists a unique strong solution of problem (1) in the weighted
Sobolev space W 2

2 (Ω , ρ). Throughout the following, we assume that the function f (x) provides the unique solvability
of problem (1) in the W s

2 (Ω), 2 ≤ s ≤ 4.
Consider the following grid domains in Ω̄ :

ω̄k = {xk = ikh : ik = 0, 1, . . . , n, h = 1/n}, ωk = ω̄k ∩ (0, 1),

ω+

k = ω̄α ∩ (0, 1], k = 1, 2, ω = ω1 × ω2, ω̄ = ω̄1 × ω̄2, γ0 = Γ0 ∩ ω̄.

We assume that the points ξk coincide with grid nodes

ξk = nkh, k = 1, 2, . . . , m,

where nk are nonnegative integers 0 < n1 < n2 < · · · < nm < n. We suppose also that

h/2 ≤ 1 − ξm − ν, ν = const > 0.

For grid functions we define difference quotients in xk directions as follows

Vxk =

V (+1k ) − V


/h, Vx̄k =


V − V (−1k )


/h

where

V = V (x), V (±11) = V (x1 ± h, x2), V (±12) = V (x1, x2 ± h).

For functions, defined on Ω , we need the following averaging operators:

T1u(x) :=
1

h2

 x1+h1

x1−h1

(h1 − |x1 − t1|)u(t1, x2) dt1.

Analogously is defined operator T2. Note that these operators commute and

Tk
∂2u

∂x2
k

= u x̄k xk , k = 1, 2.

Define the following weight functions

r(x1) = 1 − x1, ρ(x1) = 1 − x1 −

m
k=1

~σkχ(ξk − x1),

where

σk =
|αk |
√

ξk
, χ(t) =


t, if t ≥ 0,

0, if t < 0.

Let

r̄ =

r + r (−11)


/2, ρ =


ρ + ρ(−11)


/2.
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Notice that the following inequality

(1 − ~2)r(x1) ≤ ρ(x1) ≤ r(x1) (2)

holds.
Indeed, the right-hand side inequality is obvious. The left-hand side inequality can be verified as follows:

ρ(x1) = 1 − x1 − ~

m
k= j+1

σk(ξk − x1) ≥


1 − ~

m
k= j+1

σkξk


(1 − x1)

≥ (1 − ~2)(1 − x1), x1 ∈ (ξ j , ξ j+1).

Remark. Introduction of auxiliary (equivalent to r ) weight function ρ gives possibility to state the positive
definiteness of the difference scheme operator.

Let H = H(ω) be the set of grid functions defined on ω with the inner product and norm

(U, V )r =


x∈ω

h2r(x1)U (x)V (x), ∥V ∥r = ∥V ∥L2(ω,r) = (V, V )
1/2
r .

Moreover, let

(U, V ) =


x∈ω

h2U (x)V (x), ∥V ∥ = (V, V )1/2.

Inner product and norm, involving ρ in index will make similar to the expression with index r sense.
Denote by H̊ = H̊(ω̄) the set of grid functions V (x), given on ω̄ and satisfying conditions

V (x) = 0, x ∈ γ0, V (1, x2) =

m
k=1

αk V (ξk, x2), x2 ∈ ω2. (3)

Lemma 1. For each function, defined on mesh ω̄, which equals zero on x1 = 0 and satisfies the nonlocal condition
from (3), the following inequalities

−


ω1

hρYx̄1x1 Y ≥


ω+

1

hρ̄Y 2
x̄1

, (4)


ω1

hrY 2
≤ 4


ω+

1

hr̄(Yx̄1)
2 (5)

hold.

Proof. After simple computations, we obtain

−


ω1

hρYx̄1x1 Y =


ω+

1

hρ̄Y 2
x̄1

−
1
2

Y 2(1, x2) −
1
2


ω1

hY 2ρx̄1x1 .

Taking into account
ω1

hY 2ρx̄1x1 = −


ω1

hY 2
m

k=1

~σk
1
h

δ(x1, ξk) = −

m
k=1

Y 2(ξk, x2)σk~,

where δ(·, ·) is the Kronecker delta, and

Y 2(1, x2) ≤

 m
k=1

4


α2
k ξk

4


α2
k /ξk |Y (ξk, x2)|

2
≤ ~

m
k=1

|αk |
√

ξk
Y 2(ξk, x2), (6)

we obtain (4).
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One can show that
ω+

1

hr̄2(Y 2)x̄1 =


ω1

hrY 2
+

h2

8
Y 2(1, x2). (7)

On the other hand,
ω+

1

hr̄2(Y 2)x̄1 =


ω+

1

hr̄2Yx̄1(Y + Y (−11))

≤


ω+

1

hr̄(Yx̄1)
2
1/2

ω+

1

hr̄

Y + Y (−11)

2
1/2

≤
ε

2


ω+

1

hr̄(Yx̄1)
2
+

1
2ε


ω+

1

hr̄(Y + Y (−11))2.

Whence, choosing ε = 4 we obtain
ω+

1

hr̄2(Y 2)x̄1 ≤ 2

ω+

1

hr̄(Yx̄1)
2
+

1
8


ω+

1

hr̄(Y + Y (−11))2

= 2

ω+

1

hr̄(Yx̄1)
2
+

h2

8
Y 2(1, x2) +

1
2


ω1

hrY 2. (8)

(7), (8) prove the inequality (5). Lemma 1 is proved. �

3. Difference scheme, correction procedure, and main result

At the first stage, we approximate problem (1) by the difference scheme

Ũx1x1 + Ũx2x2 = ϕ(x), x ∈ ω, Ũ ∈
◦

H , (9)

where ϕ = T1T2 f is the average of function f .
Define the operators

A := A1 + A2, AkY := −
◦

Y x̄1x1 , k = 1, 2, x ∈ ω,

where

Y ∈ H,
◦

Y∈
◦

H and Y (x) =
◦

Y (x) for x ∈ ω.

The difference scheme (9) can be rewritten in the form of operator equation

−AŨ = ϕ(x), x ∈ ω, Ũ ∈ H. (10)

Operator A maps H onto H . Indeed, it suffices to show that operator A1 on near-boundary point (1 − h, x2) has the
form

A1Y (1 − h, x2) = −Y̊x̄1x1(1 − h, x2)

= −

Y̊ (1, x2) − 2Y̊ (1 − h, x2) + Y̊ (1 − 2h, x2)


/h2

= −

 m
k=1

αkY (ξk, x2) − 2Y (1 − h, x2) + Y (1 − 2h, x2)


/h2.

According to the estimates (2), (4) and (5) we obtain the inequality

(A1Y, Y )ρ ≥ c∥Y∥
2
ρ, Y ∈ H.
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In addition, it is well known that A2 is a self-adjoint and positive definite operator, A2 = A∗

2, (A2Y, Y )ρ ≥ c∥Y∥
2
ρ .

Therefore, the operator A is positive definite on the space H ,

(AY, Y )ρ ≥ ∥Y∥
2
ρ,

and hence the scheme (10) (i.e. (9)) is uniquely solvable.
At the second stage, we use the earlier-found solution of the difference scheme (10), define the correction term

RŨ :=
h2

6
Ũx̄1x1 x̄2x2

and solve the difference scheme

−AU = ϕ − RŨ , x ∈ ω, U ∈ H (11)

on the same grid.
The following assertion is the main result of the present paper.

Theorem 1. Let the solution of problem (1) belong to the space W s
2 (Ω), s ≥ 2. Then the convergence rate of the

corrected difference scheme (11) in the discrete L2-norm is defined by the estimate

∥U − u∥L2(ω,r) ≤ chs
∥u∥W s

2 (Ω), 2 ≤ s ≤ 4.

4. A priori error estimates. Proof of Theorem 1

Let

ζ3−k = Tku − u, η3−k = Tku − u −
h2

12
u x̄k xk , k = 1, 2.

By Z̃ = Ũ −u and Z = U −u we denote the errors in the solution of the schemes (10) and (11) respectively. First,
notice that these functions represent solutions of the following problems:

−AZ̃ = (ζ1)x̄1x1 + (ζ2)x̄2x2 , x ∈ ω, Z̃ ∈ H (12)

and

−AZ = (η1)x̄1x1 + (η2)x̄2x2 − (h2/6)Z̃ x̄1x1 x̄2x2 , x ∈ ω, Z ∈ H. (13)

Indeed, we have

−AZ = −AU + Au = ϕ − RŨ + Au = −R Z̃ + T1T2 f − Ru + Au,

whence using the relation

T1T2∆u = (T2u)x̄1x1 + (T1u)x̄2x2

and the expressions for the operators Au and Ru, we obtain (13). Eq. (12) is obtained analogously.

Lemma 2. For the solutions of problems (12), (13) there hold the following a priori estimates

∥Z̃ x̄1x1∥ρ ≤ c

∥(ζ1)x̄1x1∥ + ∥(ζ2)x̄2x2∥


, (14)

∥Z∥ρ ≤ c

∥η1∥ + ∥η2∥ + h2

∥Z̃ x̄1x1∥ρ


. (15)

Proof. From (12) it follows
Z̃ x̄1x1 , Z̃ x̄1x1


ρ

+

Z̃ x̄2x2 , Z̃ x̄1x1


ρ

= −

(ζ1)x̄1x1 + (ζ2)x̄2x2 , Z̃ x̄1x1


ρ
. (16)
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Summing up by parts, we get
Z̃ x̄2x2 , Z̃ x̄1x1


ρ

=


ω+

h2ρ̄(Z̃ x̄1 x̄2)
2
−


ω+

2

h

2
(Z̃ x̄2(1, x2))

2
−

1
2


ω1×ω+

2

h2ρx̄1x1(Z̃ x̄2)
2

=


ω+

h2ρ̄(Z̃ x̄1 x̄2)
2
−


ω+

2

h

2


(Z̃ x̄2(1, x2))

2
−

m
k=1

~|αk |
√

ξk
(Z̃ x̄2(ξk, x2))

2


.

Using analogous to the estimate (6), written for Z̃ x̄2 , we obtain
Z̃ x̄2x2 , Z̃ x̄1x1


ρ

≥


ω+

h2ρ̄(Z̃ x̄1 x̄2)
2

≥ 0.

Therefore, from (16) we obtain the validity of (14).
Now, represent the solution of the problem (13) in the form of sum

Z = Z (1)
+ Z (2),

where Z (k), k = 1, 2, are the solutions of the following problems

−AZ (1)
= (η1)x̄1x1 , x ∈ ω, Z (1)

∈ H, (17)

−AZ (2)
= (η2)x̄2x2 −

h2

6
Z̃ x̄1x1 x̄2x2 , x ∈ ω, Z (2)

∈ H. (18)

From (17) we have

Z (1)
+ A−1

1 A2 Z (1)
= −η1,

∥Z (1)
∥

2
ρ +


A−1

1 A2 Z (1), Z (1)

ρ

= −

η1, Z (1)


ρ
.

The operator A2 is self-adjoint and positive definite, therefore, there exists quadratic root A1/2
2 , which is self-adjoint

and commutable with A−1
1 . Thus

A−1
1 A2 Z (1), Z (1)


ρ

=


A−1
1 (A1/2

2 Z (1)), (A1/2
2 Z (1))


ρ

≥ 0

and

∥Z (1)
∥ρ ≤ ∥η1∥. (19)

From (18) it follows

A−1
2 A1 Z (2)

+ Z (2)
= −η2 + (h2/6)Z̃ x̄1x1 ,

and since
A−1

2 A1 Z (2), Z (2)

ρ

=


A1(A−1/2
2 Z (2)), (A−1/2

2 Z (2))

ρ

≥ 0,

we obtain

∥Z (2)
∥ρ ≤ ∥η2∥ + (h2/6)∥Z̃ x̄1x1∥ρ . (20)

(19) and (20) prove (15). �

To determine the rate of convergence of the two-stage finite difference method with the help of Lemma 2, it is
sufficient to estimate the terms on the right-hand sides of (18), (19). For that purpose we use the following lemma.

Lemma 3. Assume that the linear functional l(u) is bounded in W s
2 (E), where s = s̄ + ε, s̄ is an integer, 0 < ε ≤ 1,

and l(P) = 0 for every polynomial P of degree ≤ s̄ in two variables. Then, there exists a constant c, independent of
u, such that |l(u)| ≤ c|u|W s

2 (E).
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Table 1
Experimental order of convergence in L2(ω, r)-norm.

h ∥Ũh − u∥r ∥Uh − u∥r Ord(Ũ ) Ord(U )

1/8 2.53376e−03 3.39828e−05
1.9949 3.9896

1/16 6.35699e−04 2.13925e−06
1.9987 3.9974

1/32 1.59065e−04 1.33943e−07
1.9997 3.9994

1/64 3.977507e−05 8.37520e−09
1.9999 3.9998

1/128 9.94431e−06 5.23507e−10

This lemma is a particular case of the Dupont–Scott approximation theorem [17] and represents a generalization
of the Bramble–Hilbert lemma [18].

Quantities (ζk)x̄k xk , as a linear functionals with respect to u, vanish on the third order polynomials and are bounded
in W s

2 (Ω), s ≥ 2. Using the well known methodology (see, e.g., [6, Ch. 4, §1]), based on Lemma 3, for them we
obtain the estimates

∥(ζk)x̄k xk ∥ ≤ chs−2
∥u∥W s

2 (Ω), k = 1, 2, (21)

∥ηk∥ ≤ chs
∥u∥W s

2 (Ω), k = 1, 2. (22)

Due to Lemma 2

∥Z∥ρ ≤ c

∥η1∥ + ∥η2∥ + h2

∥(ζ1)x̄1x1∥ + h2
∥(ζ2)x̄2x2∥


,

which together with the estimates (21), (22) accomplishes the proof of Theorem 1.

5. Numerical experiments

Now, we present some numerical results to demonstrate the convergence order of the proposed method. The
experimental order of convergence in the discrete L2(ω, r) and L2(ω) norms is computed by formulas

Ord(Y ) = log2
∥Yh − u∥r

∥Yh/2 − u∥r
, Ord(Y ) = log2

∥Yh − u∥

∥Yh/2 − u∥
,

where u is the exact solution of original problem, while Yh denotes the solution of the difference scheme on the grid
with step h.

Below, in the examples the symbols Ũ , U denote solutions of the difference schemes (10), (11), respectively.
The results of calculations are given by Tables 1, 2.
Consider the following problem

∆u = f, x ∈ (0, 1)2, u

Γ0

= 0, u(1, x2) = u(0.5, x2), 0 < x2 < 1, (23)

where

f (x) = −
13π2

9
sin

2πx1

3


sin(πx2).

The exact solution u(x) = sin(
2πx1

3 ) sin(πx2) of the problem (23) belongs to the space W 4
2 , therefore, theoretical

convergence rate of the difference scheme equals 4.
The right-hand side of the scheme is calculated by the formula

ϕ(x) = T1T2 f = −
13π2

9
λ2

1λ
2
2 sin

2π ih

3


sin(π jh),

λ1 =
3

πh
sin

πh

3


, λ2 =

2
πh

sin
πh

2


.
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Table 2
Experimental order of convergence in L2(ω)-norm.

h ∥Ũh − u∥ ∥Uh − u∥ Ord(Ũ ) Ord(U )

1/8 4.15297e−03 5.56995e−05
1.9654 3.9601

1/16 1.06347e−03 3.57879e−06
1.9844 3.9831

1/32 2.68761e−04 2.26315e−07
1.9926 3.9923

1/64 6.75360e−05 1.42207e−08
1.9964 3.9963

1/128 1.69262e−06 8.91061e−10

6. Conclusion

For solution of the Bitsadze–Samarskii type nonlocal problem posed in unit square for Poisson equation it is used
a finite-difference scheme. Using the solution, obtained by the method with second order accuracy, we correct the
right-hand side of the scheme and solve it again on the same grid. It is proved that if the solution of original problem
belongs to the Sobolev space with fractional exponent s ∈ [2; 4], then the corrected scheme converges with the rate
O(|h|

s). The theoretical results are supported by numerical experiments. The obtained results can be extended to the
nonlocal problem posed for general elliptic equations, and also to three-dimensional case.

Acknowledgments

The work was supported by the Shota Rustaveli National Science Foundation (Grant FR/406/5-106/12).
The authors sincerely thank the anonymous referee for helpful comments.

References

[1] E.A. Volkov, Solving the Dirichlet problem by a method of corrections with higher order differences, I, Differ. Uravn. 1 (7) (1965) 946–960
(in Russian).

[2] E.A. Volkov, Solving the Dirichlet problem by a method of corrections with higher order differences, II, Differ. Uravn. 1 (8) (1965) 1070–1084
(in Russian).

[3] E.A. Volkov, A two–stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped,
Comput. Math. Math. Phys. 49 (3) (2009) 496–501.

[4] R.D. Lazarov, V.L. Makarov, Convergence of the method of nets and the method of lines for multidimensional problems of mathematical
physics in classes of generalized solutions, Dokl. Akad. Nauk SSSR 259 (2) (1981) 282–286 (in Russian).

[5] R.D. Lazarov, V.L. Makarov, A.A. Samarskii, Application of exact difference schemes to the construction and study of difference schemes
for generalized solutions, Mat. Sb. (N.S.) 117 (159) (4) (1982) 469–480 (in Russian).

[6] A.A. Samarskii, R.D. Lazarov, V.L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions, Visshaja Shkola,
Moscow, 1987 (in Russian).
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