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Abstract: We consider the BitsadzeSamarskii type nonlocal boundary value problem for Poisssration in a unit cube, which is
first solved by a difference scheme of second-order accukiging this approximate solution, we correct the right¢haide of the
difference scheme. It is shown that the solution of the @bec: scheme converges at the 1@é°) in the discreteL,-norm provided
that the exact solution of the original problem belongs to3lobolev space with exponesk: [2,4].
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1 Introduction For establishing the convergence, we use the

methodology of obtaining the compatible estimates of

Finite difference method is a significant tool in the ;0;\;]%?;2;3 d(tz?/teelopgffro?rllﬁ?r:?(\:/\?orkzcg?mszsr.narglz;s

ical soluti f I f iff tial . '
numerical solution of problems posed for differentia Lazarov and Makarov (see, e.¢4,%,6]), and later in the

equations. In order to minimize the amount of o
calculations it is desirable for the difference scheme to beWorks of other authors (see, e.gz,§]). For the elliptic

sufficiently good on coarse grids, i.e. to have high orderprObIems such estimates have the form
gci:t(;:rdazcg. Salr?1arstl?i? t present work we consider u— u”Wk(w) < C|h|sfk||u||W25<Q>7 s>k>0,
— ype nonlocal boundary value 2

problem for the three— dimensional Poisson equation angvhere u is the solution of original problem) is the
study a two-stage finite difference method for improving approximate solutionk and s are integer and real
the accuracy of the approximate solution. numbers, respectivelyWX(w) and Ws(Q) are the

In the first stage, we solve the difference schemeSobolev norms on the set of functions with discrete and
AnU = ¢, using the standard seven- point finite difference continuous arguments. Here and belogv,denotes a
approximation which has the second order of accuracy. Irpositive generic constant, independenhaidu.

the second stage, we use the solutidrto correct the We prove that the solutiolJ of the corrected
right-hand side of the difference scherdgl) = ¢ +RU,  difference scheme converges at the r&@?®) in the
and solve again on the same mesh. discretel, -norm when the exact solution belongs to the

This approach for boundary value problems for Sobolev spac®s, se [2,4].
Poisson and Laplace equations has been studied in The generalization of the Bitsadze Samarskii
Volkov's papers (see, e.gl,2,3]), where the input data problem P] was investigated by many authors (see, e.g.,
were chosen so as to ensure that the exact solutiofil0,11,12,13]). V.A. llin and E.l.Moiseev [1]
belongs to the Holder clags ) (Q). considered, for a Poisson equation, a difference scheme
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which converges at the rat©(h?) in the discrete Let Q = {x= (X1,%2,X3) : 0<x <1, k=1,2,3} be
WZ-norm to the exact solution from the cla€4(Q). In the unit cube with boundarly; Mo =1\ {(1,%2,%3) : 0 <
[13], the first author considered a difference scheme for a < 1, k = 2,3}; &; be fixed points in the intervdD, 1),
second order elliptic equation with variable coefficients0< & < & < --- < én < 1. Denoteép =0, &y = 1.
and compatible estimates of convergence rate in discrete Consider the problem

W2-norm were obtained.

Results for two-stage finite-difference method, Au=f(x), xe€Q, u|,_0 =0,
analogous to those given in the present work, for different
problems were obtained i14,15,16,17,18].

One of the methods for obtaining compact high order
approximations is  the Mehrstellen method . e
("Mehrstellenverfahren”), defined by Collatz (setd]). wher.e. the coefficientsrj are real numbers satisfying
Instead of approximating only the left hand side of the conditions
differential equation, he proposes to take several valties o m
the right hand side as well. In the case of = Z |aj|\/g?j <1
three-dimensional problem, the differential operator is =1
approximated on a 27-point stencil with the fourth orderBy analogy to 17 it can be proved that for
accuracy. The advantages of the Mehrstellen scheme§(x) € Lo(Q,p) there exists a unique strong solution of
over ordl_nary (seqond order) accuracy schemes on Broblem (1) in the weighted Sobolev spa‘ﬂé(f),p).
coarse grid are obvious. Throughout the following, we assume that the function

The advantages of our method are: f(x) provides the unique solvability of problem (1) in the
a) We approximate the differential operator on a spacans(Q),2<s< 4.

minimally acceptable stencil (7-point stencil for a
three-dimensional problem). Therefore, the condition

m
U(1, %2, %3) = Z aju(éj,xe,x3), 0<x,x3<1, (1)
=1

Consider the following discrete domainsan

number of this operator is better as compared with the = {x=ikh:ix=0,1,....,n, h=1/n},
Mehrstellen schemes, which is notable on a fine grid. o

b) It is a two-stage method, but it requires matrix W= W1 X W X Wz,
inversion only once (on the second stage we change only W = @ (0,1]
the right-hand side of the equation, while the operator is _ T
kept unchanged). w = wcN(0,1),

¢) The method of correction is useful even in the case w=0Na, k=123, w=lN.
when construction of high precision schemes is ) o i ,
impossible. We assume that the poinfg coincide with grid nodes

=nh j=12..m

2 Statement of the Problem and Some where nj are nonnegative integers
Aucxiliary Estimates O<n << <Nm<n

For grid functionsV = V(x) we define difference
As usual, by symbdls(Q), s> 0 we denote the Sobolev duotients inx directions as follows
space. For integes, the norm in\5(Q) is given b
p I ga‘ | 2( ) I g|V y VXk — (V(+1k) —V)/h, V)?k — (V _V(—lk))/h7

S
2 2 2 V12
Ull\s _2 uss o ulg = Z DVu ; where
|| ||W2(_Q) pa | |W21(_Q) | |W21(_Q) ‘V‘:JH ”LZ(Q) V(:H'l) :V(Xlﬂ:h,Xz,Xg),

(£1p) —
whereD := 9Vl / (9x*9xy29%5%), andv = (vq,V2,v3) is VIR =Viaxe£hxs),
a multi-index with non-negative integer componehi$= (VA V (X1, X2, X3 £ h).

Vit V2t Vs For functions defined o2, we need the following

If s=s+ ¢, wheresis an integer part afand 0< € < . i

1. then averaging operators:
ullds) = Iulasa) + Uis0) 1 path
" 5(0) 5(0) T 1Ung T = /th (h— [x1 — ta] Ju(ty, Xp, Xa) dty.
IDYu(x) — DVu(y)|? The operatordy,, T3 are defined similarly. Note that
Ujws(@) = / / T dxdy these operators commute and
|v]=s® QJQ |X_y|
1Y e — A k=123

Particularly, fors= 0 we haveA? = L,. ka—xﬁ = U =, K= 1,50
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Let Denote byH=H (@) the set of grid function¥ (x),
5 5 given onw and satisfying conditions
= kl:llTka I_l Tk, = k;l qne V(x) =0, X € y,
kta k£a

m
V(1,%2,%3) = Z V(& %2,%3),  (X2,X3) € wp X @3
(4)

Lemma 2.For each function Y=Y (x,), defined on mesh
w1, which equals zero o= 0 and satisfies the nonlocal

Define the following weight functions

m
rx)=1-x, p)=1-x-73 >0jX(&—x),
=1

where condition in (4), the following inequalities hold:
o =19l xp={LTL=0 ~ 2 oYY 2 5 oY, )
E “)oift<o. o
Let Y hry? < 3 hi(¥q)?. (6)
wy +
i -1) 5= -1)
- (r +rih )/2’ P= (p+p( ! )/2' Proof After simple computations, we obtain
Lemma 1.For the weight functions, the following relations _ _
hold welg u | wing | _ z hpY)G_XlY _ Z,DY)G_Y _ Z‘D( 11)Y)(1Y( 1) _
o
(1—52)r(xa) < p(xa) < 1(¥a). (2) “ “
m 70k
Prxg (X1) = — ) ——9(%1, k) (3) _p-1)
o 2 — Z p+p Y ¥+ Zip DY (Y+Y+ (1) =
whered(-,-) is the Kronecker delta. !
ProofThe right-hand side of inequality (2) is obvious. The 1)
) . I ) o i B (1 B
left-hand side of this inequality can be verified as follows: _ Z ho (Y )%+ Z p—p (Y2 (! 11))2)’
dl Wy Wy 2
pxa) =1-x1—3x % O(&—x1)
k=T+1 ie.
¢ 1 1
> (1—s oiék) (1—x _ . _ ~nN2 20yt 2
( kgﬂ )(1—xq) %hprlle = 3 hal%)* - 5YA() ZéhY Prine.

W

> (L= 52) (L= x2), %1 € (&, &j2)- | | |
. . . o Due to (3), the last term on the right hand side of this
The validity of (3) can be obtained by direct verification. equality can be rewritten as follows

Remark: Introduction of auxiliary (equivalenttpweight ) 5 1 m
functionp allows us to determine the positive definiteness Z hY*pign = — % hy Z 0k, 0%, &) = Z (k) G,
of the difference scheme operator.

LetH = H(w) be the set of grid functions defined on and taking into account the inequality

w with the inner product and norm m 2
v < (Y gfaze a2/ vg)) <o z 'f'vzm
(U V)r =Y br(x)U(x)V(x), =1 = o
o we obtain (5).
1/2 One can show that
IVlle = IV llygear) = VoV
- . (r(1—h))?
Moreover, let Z hr2(Y2)>z1 _ z F2y2_ Z(r—(+11))2Y2+ " Y2(1)
F wr (]
U V)= hPUXVE), [V]=(VV)H2 “
Xew
. L L h2
Inner products and norms, involvimgindex are similar to _ z (r_— r—(+11)) (r_+ F(+11>)Y2+ —Y2(1)
the expressions with index & 4 '
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Whence, according to the identities- Tt =hand  Lemma3.Finite difference scheme (11) is uniquely

r+r+1) = 2r, we have solvable.

B h2 ProofDefine the operators

S (Y25 =23 hry?+ ZYZ(l). (8) )

wf w1 A=A+A+A3, AY =—Yzx k=123 xcw,

On the other hand, where
3 h2(Y2)g = 3 hit¥g (Y + Y1) YEH, YeH and Y(X) =Y (x) for xe w.
o T
“r The difference scheme (11) can be rewritten in the
_ 1/2 _ 1/2 form of operator equation
< (Z hr(Yx—l)Z) (z hr (Y+Y<—11>)2) i ;
wr wr —AU =¢(x), xe w, U e H. (12)
£ _, 2 1 _ (—1)\2 OperatorA mapsH onto H. Indeed, it suffices to
= 2 Z hr(Ye )™+ 2¢ Zhr(Y+Y Y) notice, that operatorA; on near-boundary point

wf @ (1—h,%p,x3) has the form
Whence, choosing = 2, we obtain o
ALY (1—h, %o, X3) = —Y g%, (1 — D, X2, X3)

hr2(Y2)z < S hi(Yg) hr(Y +Y (1)
z Xl z Xl 4 z ) = — (YO(:L7 X27X3) — 2Y0(1 - h7X27X3) +Y0(1_ 2h7X27X3))/h2

W
» , —(g a;Y (&j,x2,X3) —2Y(1—h,xz,X3)+Y(1—2h,x2,X3)) /h?.
ZhTYX1 + Y Zth (9) =1
From the estimates (2), (5) and (6), we obtain the
The results (8), (9) prove the inequality (6) and thusinequality
Lemma 2.2 is proved. (ALY,Y), > c||Y||f,, Y cH.

Corollary 1.For any function VeH the following estimate  In addition, since weighted functigndoes not depend on
holds variablesxy, x3, the operatoré\,, Az are self-adjoint and
positive definiteAc=Ay, and(AcY,Y), > c||Y[|3, k=2,3.
Z z h?pVix, Vi, > Z z h’p(Vigx)?, k=2,3. (10)  Therefore, the operatdk is positive definite on the space
wf & H,
i (AY,Y)o > c[[Y|]3,
Indeed, iV €H, then function¥x .k = 2,3, satisfy the  and hence the scheme (12) (i.e. (11)) is uniquely solvable.

conditions of Lemma 2 ) )
At the second stagewe use the earlier-found solution

m . . .
of the difference scheme (12), define the correction term
Vi (0.%2,%3) =0, Vi (1,X,%3) = H ajVi (&,%2,%3), (12)

=1 ~ h% . ~ ~
FHU = — (Usixyox, + Usixaxaxs T Usoxoxs
and the validity of (10) follows from the identity 6 ( wwere TR szzxsxa)

) ) and on the same grid solve the difference scheme
> > hPoViax Vi = — Y Y WP (Vi) s, Vi
oy o Or g

MU=¢-20, xcw, UeH

or
3 Difference Scheme, Correction Procedure, ~AU=¢-20, xcw, UEcH. (13)

and Main Result The following assertion is the main result of the
present paper.

At the first stage we approximate problem (1) by the .
difference scheme Theorem 1.Let the solution of problem (1) belong to the

space W(Q), s> 2. Then the convergence rate of the

~ ~ _° corrected difference scheme (13) in the discretenbrm
AU =90, xcw, UeH, (13) is defined by the estimate
where AnY = Yix, + Yiox, + Yaax, and ¢ = Tf is the
average of functio. U = Ulliyn) < clullws@): 2<s<4
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2
4 A Priori Error Estimates. Proof of —AZ? = Aynp — %/\1/\22, xew, ZP?eH. (20)
Theorem 1 ,
h .

Let —AZ®) = Agns— 5 (MAs+MAS)Z, xew, Z®eH.

5 (21)

h

Zk = T(k>u —-u, nNk= T(k>u —Uu— 1_2/\(k) u k= 1, 2, 3. From (19) we have

. _ ZW 4 ATY Ay + Ag)ZM =y,
By Z=U —uandZ = U — u we denote the errors in
the solution of the schemes (12) and (13), respectively. 1))2 1 1D 1)y _ (1)

First, notice that these functions represent solutiongef t 12515+ (A (Ao +A9)Z, 27) = (M1, 27) .

following problems: The operatory, k = 2,3 is self-adjoint and positive
definite, therefore, there exists quadratic rAﬂtz, which

—AZ =Nl +NMNlo+N3ls, xew, ZeH (14)  isself-adjoint, positive definite and commutable WA

Thus

and 1 1) »(1 1al/25(1 1/25(1

; (AT AZYZD) = (ATHAZW). (A*ZW) > 0

—AZ=3 Aana —(0?/6) (Ao +MiAs+AoA)Z, x€w, ZeH. (15)

o and, therefore
Indeed, we have 1ZM]p < [Iml. (22)

—AZ=-AU+Au=¢—20 +Au=—ZZ+Tt—2u—NAw,  From(20)itfollows

whence using the relation A AL+ AR)ZP) + 2P =y — (W2)6) Ziyxy,
TAu=Ay(Tiyyu) +A2(Tp)u) +As(Tgu) and since
and the expressions for the operatdusandZu, we obtain (A (AL +29)Z®,22) | = ((Au+Ag) (A, 22), (A, Y222)) >0,
(15). Equation (14) is obtained analogously. .
we obtain
Lemma4.For the solutions of problems (14),(15) the .
following a priori estimates hold: 1Z@))15 < |1n2]] + (h?/6) || Zgyx |l p- (23)

1Zgxllo < €(ll(C0)saxll+ (€20l + 11 (L) |l), k= 1(71263) From (21) we obtain
1Zllp < c(Inall+ In2ll+ 11n3] + 21| Zzx lp + 21 Zxe o) - (A5 A1 +Ag A)Z + 2%, 29))
(17)

= (13,2%)p — (n?/6) (ZY1X1 Jrz>72><2vz(3))p
. and, therefore,
ProofFrom (14) it follows

3)12 3 2 y y 3
(MZNZ),+ (2 NZ) ,+ (ML), = (Mot Mol + Ml ME) - (18) ”Z( )”P < [ nsll ”Z( )||p+(h /6)(HZX1X1+ZX2X2HP) HZ( >HP'

(24)
From (10) we obtain (22), (23) and (24) prove (17) and thus lemma 4.1 is
o established.
(Zino Zaxg), 20, k=23, Due to lemma 4.1

It is easy to see that 3 )
L 1Zlp<cy (Inall+h(€a)mxll) . (25
(Z)GX27Z>T3X3)p >0. a=1
To determine the rate of convergence of the proposed
two-stage finite difference method it is sufficient to

Now, represent the solution of the problem (15) in the form estimate the terms on the right-hand sides of (25). For that
of sum purpose we use the following lemma.

Therefore, from (18) we obtain the validity of (16).

— 71 L 7(2) L 73
Z=274 25427, Lemmab5.Assume that the linear functional(u) is
whereZ®, k = 1,2,3, are the solutions of the following bounded in \§(E), where s= S+ ¢, S is an integer,
problems 0< e <1, and|(P) =0 for every polynomial P of degree
s in three variables. Then, there exists a constant c,
~AZY =M, xew, ZWeH, (19 independentof u, such thatu)| < clulws)-
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This lemma is a particular case of the Dupont—Scott[8] G. Berikelashvili, Construction and analysis of diffece

approximation theorem 20] and represents a schemes for some elliptic problems, and consistent estsnat

generalization of the Bramble—Hilbert lemma21]. of the rate of convergence, Mem. Differential Equations

Quantities  ({)xx, Mk k = 1,23, as linear Math. Phys. 38 (2006) 1-131.

functionals with respect ta, vanish on the third order [9]A.V. Bitsadze, A.A. Samarskii, On some simples

polynomials and are bounded\W(Q), s> 2. Using the generalizations of linear elliptic problems, Dokl. Akad.

well known methodology, based on lemma 3, one may Nauk SSSR 185 (1969) 739740 (in Russian).

obtain the estimate2p) [10] D.G. Gordeziani, On the methods of solution for one slas
of nonlocal boundary value problems, Thil. Gos. Univ., Inst

(@ < oFF Iulhaga). Ikl < CHFlulugia), 2SS4 prig Mat, Thilisi 1981 (in Russian).

which together with (25) completes the proof of Theorem[11] V.A. llin, E.I.Moiseev, A two-dimensional nonlocal

1. boundary value problem for Poisson operator in the

differential and the difference interpretation, Mat. Mbde

(8) (1990) 130-156 (in Russian); Math. Model. 2 (8) (1990)

598-611 (Transl.).
[12] G. Berikelashvili, On the solvability of a nonlocal badary
In this paper, we consider Bitsadze-Samarskii type value problem in the weighted Sobolev spaces, Proc.
nonlocal boundary value problems for a three—  A:Razmadze Math.nst.119(1999)3-11.
dimensional Poisson equation and study a two-stage finite™) O Berikelashvili, On the convergence of finitedi#ece
diff thod for i : th f th scheme for a nonlocal elliptic boundary value problem, Publ
ierence method for iImproving the accuracy ofthe o \amh. (Beograd) (NS) 70 (84) (2001) 69-78.
approximate - solution.The  differential ~operator is JL41GK. Berikelashvili, ~B.G.Midodashvili, ~ Compatible
approximated on the minimally acceptable seven- point' ., ergence estimates in the method of refinement by
stencil.Although this is a two-stage method, nevertheless higher—order differences, Differ. Uravn. 51(1) (2015)

it requires matrix inversion only once because on the 1pg_115 (in Russian)); Differ. Equ. 51(1) (2015) 107-115

second stage we change only the right-hand side of the (Transl.).

equation while the operator is kept unchanged. We[15] G. Berikelashvili, B. Midodashvili, On the improventen

establish the convergence by obtaining the compatible of convergence rate of difference scheme for one mixed

estimates of convergence rates of difference schemes. The boundary value problem, Mem. Diff. Equ. Math. Phys. 65

convergence of the corrected difference scheme is proved (2015) 23-34.

to be O(h®) in the discretel, -norm, assuming that the [16] G.Berikelashvili, B. Midodashvili, On increasing the

exact solution belongs to the Sobolev spﬁif,;ese [2,4]. convergence rate of difference solution to the third bounda
value problem of elasticity theory. Boundary Value Proldem
2015, no.1 (2015): 1-11.
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