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Abstract: We consider the Bitsadze−Samarskii type nonlocal boundary value problem for Poissonequation in a unit cube, which is
first solved by a difference scheme of second-order accuracy. Using this approximate solution, we correct the right-hand side of the
difference scheme. It is shown that the solution of the corrected scheme converges at the rateO(hs) in the discreteL2-norm provided
that the exact solution of the original problem belongs to the Sobolev space with exponents∈ [2,4].
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1 Introduction

Finite difference method is a significant tool in the
numerical solution of problems posed for differential
equations. In order to minimize the amount of
calculations it is desirable for the difference scheme to be
sufficiently good on coarse grids, i.e. to have high order
accuracy. In the present work we consider
Bitsadze–Samarskii type nonlocal boundary value
problem for the three– dimensional Poisson equation and
study a two-stage finite difference method for improving
the accuracy of the approximate solution.

In the first stage, we solve the difference scheme
∆hŨ = ϕ , using the standard seven- point finite difference
approximation which has the second order of accuracy. In
the second stage, we use the solutionŨ to correct the
right-hand side of the difference scheme,∆hU = ϕ +RŨ ,
and solve again on the same mesh.

This approach for boundary value problems for
Poisson and Laplace equations has been studied in
Volkov’s papers (see, e.g. [1,2,3]), where the input data
were chosen so as to ensure that the exact solution
belongs to the Hölder classC6,λ (Ω̄ ).

For establishing the convergence, we use the
methodology of obtaining the compatible estimates of
convergence rate of difference schemes. This
methodology develops from the works of Samarskii,
Lazarov and Makarov (see, e.g., [4,5,6]), and later in the
works of other authors (see, e.g., [7,8]). For the elliptic
problems such estimates have the form

‖U −u‖Wk
2 (ω) ≤ c|h|s−k‖u‖Ws

2(Ω), s> k≥ 0,

where u is the solution of original problem,U is the
approximate solution,k and s are integer and real
numbers, respectively,Wk

2 (ω) and Ws
2(Ω) are the

Sobolev norms on the set of functions with discrete and
continuous arguments. Here and below,c denotes a
positive generic constant, independent ofh andu.

We prove that the solutionU of the corrected
difference scheme converges at the rateO(hs) in the
discreteL2 -norm when the exact solution belongs to the
Sobolev spaceWs

2 , s∈ [2,4].
The generalization of the Bitsadze− Samarskii

problem [9] was investigated by many authors (see, e.g.,
[10,11,12,13]). V.A. Ilin and E.I.Moiseev [11]
considered, for a Poisson equation, a difference scheme
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which converges at the rateO(h2) in the discrete
W2

2 -norm to the exact solution from the classC4(Ω̄). In
[13], the first author considered a difference scheme for a
second order elliptic equation with variable coefficients
and compatible estimates of convergence rate in discrete
W1

2 -norm were obtained.
Results for two-stage finite-difference method,

analogous to those given in the present work, for different
problems were obtained in [14,15,16,17,18].

One of the methods for obtaining compact high order
approximations is the Mehrstellen method
(”Mehrstellenverfahren”), defined by Collatz (see [19]).
Instead of approximating only the left hand side of the
differential equation, he proposes to take several values of
the right hand side as well. In the case of
three-dimensional problem, the differential operator is
approximated on a 27-point stencil with the fourth order
accuracy. The advantages of the Mehrstellen schemes
over ordinary (second order) accuracy schemes on a
coarse grid are obvious.

The advantages of our method are:
a) We approximate the differential operator on a

minimally acceptable stencil (7-point stencil for a
three-dimensional problem). Therefore, the condition
number of this operator is better as compared with the
Mehrstellen schemes, which is notable on a fine grid.

b) It is a two-stage method, but it requires matrix
inversion only once (on the second stage we change only
the right-hand side of the equation, while the operator is
kept unchanged).

c) The method of correction is useful even in the case
when construction of high precision schemes is
impossible.

2 Statement of the Problem and Some
Auxiliary Estimates

As usual, by symbolWs
2(Ω), s≥ 0 we denote the Sobolev

space. For integers, the norm inWs
2(Ω) is given by

‖u‖2
Ws

2(Ω) =
s

∑
j=0

|u|2
W j

2 (Ω)
, |u|2

W j
2 (Ω)

= ∑
|ν|= j

‖Dνu‖2
L2(Ω),

whereDν := ∂ |ν|/
(

∂xν1
1 ∂xν2

2 ∂xν3
3

)

, andν = (ν1,ν2,ν3) is
a multi-index with non-negative integer components,|ν|=
ν1+ν2+ν3.

If s= s̄+ ε, where ¯s is an integer part ofsand 0< ε <
1, then

‖u‖2
Ws

2(Ω) = ‖u‖2
Ws̄

2(Ω)
+ |u|2Ws

2(Ω),

where

|u|Ws
2(Ω) = ∑

|ν|=s̄

∫

Ω

∫

Ω

|Dν u(x)−Dνu(y)|2

|x− y|3+2ε dxdy.

Particularly, fors= 0 we haveW0
2 = L2.

Let Ω̄ = {x= (x1,x2,x3) : 0≤ xk ≤ 1, k = 1,2,3} be
the unit cube with boundaryΓ ; Γ0 = Γ \ {(1,x2,x3) : 0<
xk < 1, k = 2,3}; ξ j be fixed points in the interval(0,1),
0< ξ1 < ξ2 < · · ·< ξm < 1. Denoteξ0 = 0, ξm+1 = 1.

Consider the problem

∆u= f (x), x∈ Ω , u
∣

∣

Γ0
= 0,

u(1,x2,x3) =
m

∑
j=1

α j u(ξ j ,x2,x3), 0< x2,x3 < 1, (1)

where the coefficientsα j are real numbers satisfying
conditions

κ :=
m

∑
j=1

|α j |
√

ξ j < 1.

By analogy to [12] it can be proved that for
f (x) ∈ L2(Ω ,ρ) there exists a unique strong solution of
problem (1) in the weighted Sobolev spaceW2

2 (Ω ,ρ).
Throughout the following, we assume that the function
f (x) provides the unique solvability of problem (1) in the
spaceWs

2(Ω), 2≤ s≤ 4.
Consider the following discrete domains in̄Ω :

ω̄k = {xk = ikh : ik = 0,1, . . . ,n, h= 1/n},

ω̄ = ω̄1× ω̄2× ω̄3,

ω+
k = ω̄k∩ (0,1],

ωk = ω̄k∩ (0,1),

ω = Ω ∩ ω̄ , k= 1,2,3, γ0 = Γ0∩ ω̄ .

We assume that the pointsξ j coincide with grid nodes

ξ j = n jh, j = 1,2, . . . ,m,

where n j are nonnegative integers
0< n1 < n2 < · · ·< nm < n.

For grid functionsV = V(x) we define difference
quotients inxk directions as follows

Vxk =
(

V(+1k)−V
)

/h, Vx̄k =
(

V −V(−1k)
)

/h,

where
V(±11) =V(x1±h,x2,x3),

V(±12) =V(x1,x2±h,x3),

V(±13) =V(x1,x2,x3±h).

For functions defined onΩ , we need the following
averaging operators:

T1u(x) :=
1
h2

∫ x1+h

x1−h
(h−|x1− t1|)u(t1,x2,x3)dt1.

The operatorsT2, T3 are defined similarly. Note that
these operators commute and

Tk
∂ 2u

∂x2
k

= ux̄kxk := Λku, k= 1,2,3.

c© 2018 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.7, No. 2, 71-77 (2018) /www.naturalspublishing.com/Journals.asp 73

Let

T =
3

∏
k=1

Tk, T(α) =
3

∏
k=1,
k6=α

Tk, Λ(α) =
3

∑
k=1,
k6=α

Λk.

Define the following weight functions

r(x1) = 1− x1, ρ(x1) = 1− x1−
m

∑
j=1

κσ j χ(ξ j − x1),

where

σ j =
|α j |
√

ξ j
, χ(t) =

{

t, if t ≥ 0,
0, if t < 0.

Let

r̄ =
(

r + r(−11)
)

/2, ρ =
(

ρ +ρ (−11)
)

/2.

Lemma 1.For the weight functions, the following relations
hold

(1−κ
2)r(x1)≤ ρ(x1)≤ r(x1). (2)

ρx̄1x1(x1) =−
m

∑
k=1

κσk

h
δ (x1,ξk) (3)

whereδ (·, ·) is the Kronecker delta.

Proof.The right-hand side of inequality (2) is obvious. The
left-hand side of this inequality can be verified as follows:

ρ(x1) = 1− x1−κ

m

∑
k= j+1

σk(ξk− x1)

≥
(

1−κ

m

∑
k= j+1

σkξk
)

(1− x1)

≥ (1−κ
2)(1− x1),x1 ∈ (ξ j ,ξ j+1).

The validity of (3) can be obtained by direct verification.

Remark: Introduction of auxiliary (equivalent tor) weight
functionρ allows us to determine the positive definiteness
of the difference scheme operator.

Let H = H(ω) be the set of grid functions defined on
ω with the inner product and norm

(U,V)r = ∑
x∈ω

h3r(x1)U(x)V(x),

‖V‖r = ‖V‖L2(ω,r) = (V,V)
1/2
r .

Moreover, let

(U,V) = ∑
x∈ω

h3U(x)V(x), ‖V‖= (V,V)1/2.

Inner products and norms, involvingρ index are similar to
the expressions with indexr.

Denote by
◦
H=

◦
H (ω̄) the set of grid functionsV(x),

given onω̄ and satisfying conditions

V(x) = 0, x∈ γ0,

V(1,x2,x3) =
m

∑
j=1

α jV(ξ j ,x2,x3), (x2,x3) ∈ ω2×ω3.

(4)

Lemma 2.For each function Y= Y(x1), defined on mesh
ω̄1, which equals zero on x1 = 0 and satisfies the nonlocal
condition in (4), the following inequalities hold:

−∑
ω1

hρYx̄1x1Y ≥ ∑
ω+

1

hρ̄Y2
x̄1
, (5)

∑
ω1

hrY2 ≤ ∑
ω+

1

hr̄(Yx̄1)
2. (6)

Proof.After simple computations, we obtain

−∑
ω1

hρYx̄1x1Y = ∑
ω+

1

ρYx̄1Y−∑
ω+

1

ρ (−11)Yx̄1Y
(−11) =

=∑
ω+

1

ρ +ρ (−11)

2
(Yx̄1)

2+∑
ω+

1

ρ −ρ (−11)

2
Yx̄1(Y+Y+(−11))=

= ∑
ω+

1

hρ̄(Yx̄1)
2+∑

ω+
1

ρ −ρ (−11)

2

(

Y2− (Y(−11))2),

i.e.

−∑
ω1

hρYx̄1x1Y = ∑
ω+

1

hρ̄(Yx̄1)
2−

1
2

Y2(1)−
1
2 ∑

ω1

hY2ρx̄1x1.

Due to (3), the last term on the right hand side of this
equality can be rewritten as follows

∑
ω1

hY2ρx̄1x1 =−∑
ω1

hY2
m

∑
k=1

κσk
1
h

δ (x1,ξk) =−
m

∑
k=1

Y2(ξk)σkκ,

and taking into account the inequality

Y2(1)≤
( m

∑
j=1

4

√

α2
j ξ j

4

√

α2
j /ξ j |Y(ξ j)|

)2
≤ κ

m

∑
j=1

|α j |
√

ξ j
Y2(ξ j ),

(7)
we obtain (5).

One can show that

∑
ω+

1

hr̄2(Y2)x̄1 =∑
ω1

r̄2Y2−∑
ω1

(r̄(+11))2Y2+
(r(1−h))2

4
Y2(1)

= ∑
ω1

(

r̄ − r̄(+11)
)(

r̄ + r̄(+11)
)

Y2+
h2

4
Y2(1).
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Whence, according to the identities ¯r − r̄(+11) = h and
r̄ + r̄(+11) = 2r, we have

∑
ω+

1

hr̄2(Y2)x̄1 = 2∑
ω1

hrY2+
h2

4
Y2(1). (8)

On the other hand,

∑
ω+

1

hr̄2(Y2)x̄1 = ∑
ω+

1

hr̄2Yx̄1(Y+Y(−11))

≤
(

∑
ω+

1

hr̄(Yx̄1)
2
)1/2(

∑
ω+

1

hr̄
(

Y+Y(−11)
)2
)1/2

≤
ε
2 ∑

ω+
1

hr̄(Yx̄1)
2+

1
2ε ∑

ω+
1

hr̄(Y+Y(−11))2.

Whence, choosingε = 2, we obtain

∑
ω+

1

hr̄2(Y2)x̄1 ≤ ∑
ω+

1

hr̄(Yx̄1)
2+

1
4 ∑

ω+
1

hr̄(Y+Y(−11))2

≤ ∑
ω+

1

hr̄(Yx̄1)
2+

h2

4
Y2(1)+∑

ω1

hrY2. (9)

The results (8), (9) prove the inequality (6) and thus
Lemma 2.2 is proved.

Corollary 1.For any function V∈
◦
H the following estimate

holds

∑
ω1

∑
ωk

h2ρVx̄1x1Vx̄kxk ≥∑
ω+

1

∑
ω+

k

h2ρ̄(Vx̄1x̄k)
2, k= 2,3. (10)

Indeed, ifV ∈
◦
H, then functionsVx̄k,k= 2,3, satisfy the

conditions of Lemma 2

Vx̄k(0,x2,x3) = 0, Vx̄k(1,x2,x3) =
m

∑
j=1

α jVx̄k(ξ j ,x2,x3),

and the validity of (10) follows from the identity

∑
ω1

∑
ωk

h2ρVx̄1x1Vx̄kxk =−∑
ω1

∑
ω+

k

h2ρ
(

Vx̄k

)

x̄1x1
Vx̄k.

3 Difference Scheme, Correction Procedure,
and Main Result

At the first stage, we approximate problem (1) by the
difference scheme

∆hŨ = ϕ(x), x∈ ω , Ũ ∈
◦
H, (11)

where ∆hY := Yx̄1x1 +Yx̄2x2 +Yx̄3x3 and ϕ = T f is the
average of functionf .

Lemma 3.Finite difference scheme (11) is uniquely
solvable.

Proof.Define the operators

A :=A1+A2+A3, AkY :=−
◦
Yx̄kxk, k= 1,2,3, x∈ω ,

where

Y ∈ H,
◦
Y∈

◦
H and Y(x) =

◦
Y (x) for x∈ ω .

The difference scheme (11) can be rewritten in the
form of operator equation

−AŨ = ϕ(x), x∈ ω , Ũ ∈ H. (12)

OperatorA maps H onto H. Indeed, it suffices to
notice, that operatorA1 on near-boundary point
(1−h,x2,x3) has the form

A1Y(1−h,x2,x3) =−
o
Y x̄1x1(1−h,x2,x3)

=−
( o
Y(1,x2,x3)−2

o
Y(1−h,x2,x3)+

o
Y(1−2h,x2,x3)

)

/h2

=−

( m

∑
j=1

α jY(ξ j ,x2,x3)−2Y(1−h,x2,x3)+Y(1−2h,x2,x3)

)

/h2.

From the estimates (2), (5) and (6), we obtain the
inequality

(A1Y,Y)ρ ≥ c‖Y‖2
ρ , Y ∈ H.

In addition, since weighted functionρ does not depend on
variablesx2,x3, the operatorsA2, A3 are self-adjoint and
positive definite,Ak=A∗

k, and(AkY,Y)ρ ≥ c‖Y‖2
ρ , k= 2,3.

Therefore, the operatorA is positive definite on the space
H,

(AY,Y)ρ ≥ c‖Y‖2
ρ ,

and hence the scheme (12) (i.e. (11)) is uniquely solvable.

At the second stage, we use the earlier-found solution
of the difference scheme (12), define the correction term

RŨ :=
h2

6

(

Ũx̄1x1x̄2x2 +Ũx̄1x1x̄3x3 +Ũx̄2x2x̄3x3

)

and on the same grid solve the difference scheme

∆hU = ϕ −RŨ , x∈ ω , U ∈
◦
H

or
−AU = ϕ −RŨ , x∈ ω , U ∈ H. (13)

The following assertion is the main result of the
present paper.

Theorem 1.Let the solution of problem (1) belong to the
space Ws

2(Ω), s ≥ 2. Then the convergence rate of the
corrected difference scheme (13) in the discrete L2-norm
is defined by the estimate

‖U −u‖L2(ω,r) ≤ chs‖u‖Ws
2(Ω), 2≤ s≤ 4.
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4 A Priori Error Estimates. Proof of
Theorem 1

Let

ζk = T(k)u−u, ηk = T(k)u−u−
h2

12
Λ(k)u, k= 1,2,3.

By Z̃ = Ũ −u andZ = U −u we denote the errors in
the solution of the schemes (12) and (13), respectively.
First, notice that these functions represent solutions of the
following problems:

−AZ̃ = Λ1ζ1+Λ2ζ2+Λ3ζ3, x∈ ω , Z̃ ∈ H (14)

and

−AZ=
3

∑
α=1

Λα ηα − (h2/6)
(

Λ1Λ2+Λ1Λ3+Λ2Λ3
)

Z̃, x∈ ω , Z ∈ H . (15)

Indeed, we have

−AZ=−AU+Au= ϕ −RŨ +Au=−RZ̃+T f −Ru−∆hu,

whence using the relation

T∆u= Λ1(T(1)u)+Λ2(T(2)u)+Λ3(T(3)u)

and the expressions for the operatorsAuandRu, we obtain
(15). Equation (14) is obtained analogously.

Lemma 4.For the solutions of problems (14),(15) the
following a priori estimates hold:

‖Z̃x̄kxk‖ρ ≤ c
(

‖(ζ1)x̄1x1‖+‖(ζ2)x̄2x2‖+‖(ζ3)x̄3x3‖
)

, k= 1,2,
(16)

‖Z‖ρ ≤ c
(

‖η1‖+‖η2‖+‖η3‖+h2‖Z̃x̄1x1‖ρ +h2‖Z̃x̄2x2‖ρ
)

.
(17)

Proof.From (14) it follows
(

Λ1Z̃,ΛkZ̃
)

ρ +
(

Λ2Z̃,ΛkZ̃
)

ρ +
(

Λ3Z̃,ΛkZ̃
)

ρ =
(

Λ1ζ1+Λ2ζ2+Λ3ζ3 ,ΛkZ̃
)

ρ . (18)

From (10) we obtain
(

Z̃x̄kxk
, Z̃x̄1x1

)

ρ ≥ 0, k= 2,3.

It is easy to see that
(

Z̃x̄2x2, Z̃x̄3x3

)

ρ ≥ 0.

Therefore, from (18) we obtain the validity of (16).

Now, represent the solution of the problem (15) in the form
of sum

Z = Z(1)+Z(2)+Z(3),

whereZ(k), k = 1,2,3, are the solutions of the following
problems

−AZ(1) = Λ1η1, x∈ ω , Z(1) ∈ H, (19)

−AZ(2) = Λ2η2−
h2

6
Λ1Λ2Z̃, x∈ ω , Z(2) ∈ H. (20)

−AZ(3)=Λ3η3−
h2

6

(

Λ1Λ3+Λ2Λ3
)

Z̃, x∈ω , Z(3) ∈H.

(21)
From (19) we have

Z(1)+A−1
1 (A2+A3)Z

(1) = η1,

‖Z(1)‖2
ρ +

(

A−1
1 (A2+A3)Z

(1),Z(1))

ρ =
(

η1,Z
(1))

ρ .

The operatorAk, k = 2,3 is self-adjoint and positive

definite, therefore, there exists quadratic rootA1/2
k , which

is self-adjoint, positive definite and commutable withA−1
1 .

Thus
(

A−1
1 AkZ

(1),Z(1))

ρ =
(

A−1
1 (A1/2

k Z(1)),(A1/2
k Z(1))

)

ρ ≥ 0

and, therefore
‖Z(1)‖ρ ≤ ‖η1‖. (22)

From (20) it follows

A−1
2 (A1+A3)Z

(2)+Z(2) = η2− (h2/6)Z̃x̄1x1,

and since
(

A−1
2 (A1+A3)Z

(2),Z(2))

ρ =
(

(A1+A3)(A
−1/2
2 Z(2)),(A−1/2

2 Z(2))
)

ρ ≥ 0,

we obtain

‖Z(2)‖ρ ≤ ‖η2‖+(h2/6)‖Z̃x̄1x1‖ρ . (23)

From (21) we obtain

(

(A−1
3 A1+A−1

3 A2)Z
(3)+Z(3),Z(3))

ρ = (η3,Z
(3))ρ − (h2/6)

(

Z̃x̄1x1 + Z̃x̄2x2 ,Z
(3))

ρ

and, therefore,

‖Z(3)‖2
ρ ≤‖η3‖‖Z(3)‖ρ +(h2/6)

(

‖Z̃x̄1x1+Z̃x̄2x2‖ρ
)

‖Z(3)‖ρ .

(24)
(22), (23) and (24) prove (17) and thus lemma 4.1 is
established.

Due to lemma 4.1

‖Z‖ρ ≤ c
3

∑
α=1

(

‖ηα‖+h2‖(ζα)x̄α xα ‖
)

. (25)

To determine the rate of convergence of the proposed
two-stage finite difference method it is sufficient to
estimate the terms on the right-hand sides of (25). For that
purpose we use the following lemma.

Lemma 5.Assume that the linear functional l(u) is
bounded in Ws

2(E), where s= s̄+ ε, s̄ is an integer,
0< ε ≤ 1, and l(P) = 0 for every polynomial P of degree
s̄ in three variables. Then, there exists a constant c,
independent of u, such that|l(u)| ≤ c|u|Ws

2(E)
.
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This lemma is a particular case of the Dupont–Scott
approximation theorem [20] and represents a
generalization of the Bramble–Hilbert lemma [21].
Quantities (ζk)x̄kxk , ηk, k = 1,2,3, as linear
functionals with respect tou, vanish on the third order
polynomials and are bounded inWs

2(Ω), s≥ 2. Using the
well known methodology, based on lemma 3, one may
obtain the estimates [22]

‖(ζk)x̄kxk‖ ≤ chs−2‖u‖Ws
2 (Ω), ‖ηk‖ ≤ chs‖u‖Ws

2 (Ω), 2≤ s≤ 4,

which together with (25) completes the proof of Theorem
1.

5 Perspective

In this paper, we consider Bitsadze-Samarskii type
nonlocal boundary value problems for a three–
dimensional Poisson equation and study a two-stage finite
difference method for improving the accuracy of the
approximate solution.The differential operator is
approximated on the minimally acceptable seven- point
stencil.Although this is a two-stage method, nevertheless
it requires matrix inversion only once because on the
second stage we change only the right-hand side of the
equation while the operator is kept unchanged. We
establish the convergence by obtaining the compatible
estimates of convergence rates of difference schemes. The
convergence of the corrected difference scheme is proved
to be O(hs) in the discreteL2 -norm, assuming that the
exact solution belongs to the Sobolev spaceWs

2 , s∈ [2,4].
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