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Abstract — A boundary-value problem with a nonlocal integral condition is con-
sidered for a two-dimensional elliptic equation with constant coefficients and a mixed
derivative. The existence and uniqueness of a weak solution of this problem are proved
in a weighted Sobolev space. A difference scheme is constructed using the Steklov aver-
aging operators. It is proved that the difference scheme converges in discrete W3 (w, p)
norm with the rate O(h™=1), m € (1;3], when the solution of the problem belongs to
the space W3 ().
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1. Introduction

Boundary-value problems for differential equations with a nonlocal condition occur in many
applications. Problems with integral conditions were considered by various authors (see,
e.g., [1,8,9]). In the present paper, a nonlocal boundary problem with integral restriction
is considered in a domain ©Q = (0,1)? for a second order elliptic equation with constant
coefficients.

In Section 2, existence and uniqueness of a weak solution of this problem in the weighted
Sobolev space W3 (82, p), p(x) =25, €€ (0;1) is proved.

In Section 3, the corresponding difference scheme is constructed. Under the assump-
tion that the solution to the original problem belongs to Sobolev spaces, the estimate of
convergence rate

ly— ullwe < ™Ml m e (1:3 1)

is obtained, where w is a uniform grid in © with the step h, p =2 for ¢ € (0.5;1), p > 1/¢
for e € (0;0.5].
2. Solvability of a nonlocal problem

Let Q = {(z1,22) : 0 < 2 < 1, k = 1,2} be a unit square with a boundary I', and let
I'y = {(0,$2) 0< e < 1}, I', = F\Fl
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Consider the nonlocal boundary-value problem with constant coefficients

Lu=f(z), €, wux)=0,zel,, l(u)=0,0<z<1, (2)
where
, 1
0*u e—1
Lu— — ;aijm bagu,  I(u) = /ﬁ(ml)u(x) doi, B(t) =<t e € (0;1)
“)= 0

and with the coefficients satisfying the following conditions:

Z aijtit; = (3 +13), 11 >0, ag > 0. (3)

Let
(u,v) = /u(x)v(x) dz, ||lu|| = (u,u)l/Q.
Q

By L2(2, p) we denote the weighted Lebesgue space of all real-valued functions u(z) on 2
with the inner product and the norm

1/2
(1, 0) 1) = / p@)u(@)o(@) de, fullon = ()2, .
Q

The weighted Sobolev space W3 (€, p) is usually defined as a linear set of all functions
u(z) € Lo(S2, p), whose derivatives du/0xy, k = 1,2 (in the generalized sense) belong to
Lo(2, p). It is a normed linear space if equipped with the norm

ou
8x1

ou
81’2

LQ(va)

1/
by = (Il + i) s Tofigan = |
LQ(va)

£

Let us choose weight function p(x) in the following way: p(z) = p(x1) = /ﬁ(t) dt = 7.

0

It is well-known (see, e.g., [4, p.10], [5, Theorem 3.1]) that W3 (£, p) is a Banach space
and C*°(Q) is dense in W}(Q,p) and in Ly(Q, p). As an immediate consequence, we can
define the space W1 (2, p) as the closure of C*(£2) with respect to the norm || - w2, and
these both definitions are equivalent.

Define the subspace of the space W3 (€2, p) which can be obtained by closing the set

C:kOO(Q):{uECOO(Q) suppun T, =0, /ﬁxl z)dx; =0, 0<x2<1}

with the norm || - ||y (q,,) - Denote it by W5 (€, p).

Let the right-hand side f(z) in equation (2) be a linear continuous functional on W3 (£, p)
which can be represented as
ofr | 0/

f=Jfo+ g + Oy’ fe(z) € La(Q,p), k=0,1,2. (4)
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We say that the function u €W, (Q,p) is a weak solution of problem (2)-(4), if the
relation

a(u,v) = (f,v), Yo eW; (Q,p) (5)
holds, where

ou Ov ou Ov ou _ Ov
a(u,v) = / (allxl . Er. o + (a1g + ag)xs 05 011 +a228$2 G’&E2 +a0qu) dx, (6)

fv:Q/fOGvdx—/xlfl dx—/fg o0, 1 (7)
Gu(z /5 v(t, x5) d (8)

Equality (5) formally is obtained from (Lu — f,Gv) = 0 by integration by parts.
To prove the existence of the unique solution of problem (5) (weak solution of problem
(2)—(4)) we will apply the Lax-Milgram lemma [2]. First we will prove some auxiliary results.

Lemma 1. Let u,v € Ly(2, p) and v satisfy the condition I(v) = 0. Then

1+e
[(w, Gl < T lullza@p 0] 220 (9)
1] 2,00 < (v, Gv), (10)
v]lLa,) < NGOl < (26 + D[ol]Ly0,2)- (11)

Proof. Due to the density C>(€2) in Ly(£2, p) it suffices to prove the lemma for an arbi-

trary functions from the class C*(€2). By virtue of the Cauchy inequality we have

|(w, Go)| < [ull Lo (V] 222 + € (V) (12)
where
x1 2 z1
Ji(v) = /xfa(/te_lv(t,xg)dt) dx = —136/0@) /755_1 v(t, zo) dt dz
Q 0 Q 0
< Il - h ()
I —e 2(p) * <1

Thus, Ji(v) < 2(1 —&)7Y|v|| 1,0, and the estimate (9) follows from (12).
Inequality (10) follows from the easily verifiable identity

e(l1—¢)
(v, Gv) = |[olf2yp + =5 L (V).

The first inequality in (11) is sequent of the identity

1

HGUHz:/ 23 v (x) dx + (% + €) Jo(v), JQ(U):/(/

Q

2
o (t, 29) dt) dx
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and in order to prove the second inequality of (11), it is enough to observe that

x1

JQ(U):—Q/JﬁU(x)/tE Lot a) dt do < 2|Jo]| 100 (Fa(0)) 72,

Q 0

ie., Jo(v) < 4||v||%2(91p2). This completes the proof of the lemma. O

Lemma 2. Let u €W, (Q,p). Then

ulwi < llullwgion < alulwy@,), e =@1+e) " +1)"2

Proof. Due to the density C*° () in Wi (€2, p), it is sufficient to prove the lemma for
an arbitrary u €C> (). The first inequality of the lemma is obvious. Integrating by parts,

we obtain 5
/xiuQ(x) dr = —/ <5x§ 2(z) + 205 u(w )0;1)0[96
Q Q
Therefore,
du ] 12
(1+¢) /a: w?(x) dr = —2/ EHu%daz 2|‘UHL2(QP)(/$i+2 6’_;:1 dx) :
Q Q Q
that is , "
2 ou
< = e+2| T d
ol < o ([ a5 | ac)
Q
which proves the lemma. O

Application of both lemmas 1, 2 and condition (3), (6) gives the continuity

|a(u, v)| < cal[ullwppllvllwi@m, €2 >0, Yu, v €Wy (Q,p)

and Wj-ellipticity

a(u,w) > esllullga,, s >0, Vu €W ()

of the bilinear form a(u,v) .
By appliyng lemmas 1, 2 from (7) we obtain the continuity of linear form (f, v):

(f,0)] < callvllwyops €1 >0, Yo eWy (Qp).

Thus, all conditions of the Lax-Milgram lemma are fulfilled. Therefore, the following
theorem is true.

Theorem 1. The problem (2)-(4) has unique weak solution from Wy (£, p).
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3. Finite-difference scheme

Consider the following grid domains in : @, = {z4 = ish : ia, = 0,1,--- ' n, h = 1/n},
Wo =0 N(0,1), wh =w0,N(0;1], w, =0, N[0;1), a=1,2, w=w; Xwsy, ©=0w1 XWy,
Y = ['x N@. Let us denote A = h/2 for x; =0, and h = h for z; # 0.

For grid functions and difference ratios, we use the standard notation from [6].

Define the following averaging operators:

T1 z1+h
1 1 1
STu= - / u(t, z5) dt, Sfu = W / u(t, xy) dt, Tiu = §(Tf + T, u,
x1—h T
z1+h 1
2 2
THu = 3 / (h+x1 — tu(t,xe)dt, Ty u= 73 / (h — x1 + t)u(t, xq) dt.
1 x1—h

The operators S;E, T, are defined likewise.
We introduce the notation

_ _ 1 _ _
h B ho : h 1 B
pr=p+BY p=p—587 =) hoi— A p=50p"+p)
k=0
It is not hard to check that

_ . h
pi=plih), p"=Sp. p~=Sip, po= 5

We will define the difference analogue of the operator G from (8) in the following way:

h .
Gry = py — Py, Py(ih,zs) Zhﬁky (kh,z2) — 5@9(”% T3). (13)
A set of grid-functions given on w and satisfying the condition
Yy = 07 T € Vs, lh(y) = Zﬂky<kh7x2) - 07 T2 € W (14>

will be denoted by H. On the set H let us introduce the inner product and the norm

(.v)e = hyv, |lylle = (w.v)s", ©Co.
e

Let, moreover,

(y0)o = Y hhyo, lyllo=(w.9)d> lwlla =D hhoy’s [lwlly= > hhpy’,

- - -t
W] Xws2 W] Xw2 W] Xwy

Iyl = Iyl + 1Vyll%, IIV?JIIQZII’yaelII2 +||y:z2||?2>7 IIyamll2 =(p_yazl,yaz1)wl+ma
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We approximate problem (2)—(4) by the difference scheme

Lyy = —a11Yzyzy — 2&12951;;2 — a2Yrye, + a0y = ¢(7), TEW, yEH, (15)

where

o =TTsfo+ (ST Taf1)e + (1155 fo)us
Lemma 3. The estimates
(¥, Gry)ow = Y112, (U Gry)y <t = Y115
are true for grid functions y(x), satisfying the conditions l,(y) =0, y(1,22) =0, x5 € wy.
Proof. Tt is not difficult to verify that

n—1 2
i=1 1
where
n—1 2
1 1 1 h
J3=0, n=2, J3 == - — Py(ih,x9) — =B;y(ih, x , n> 2.
3 3 5 ; <5¢ 6i_1) < y( 2) 25 y( 2))

Due to J3 > 0 because of (1/8;) — (1/8;_1) > 0, and also 37 > (31, the validity of Lemma
3 follows from (16). O

Lemma 4. For any y € H the inequality
(Lhya Ghy)w = C5H?/H%> C5 = V/4 (17)
holds.

Proof. Using summation by parts, we get
> hog, Gy == hp vys,, Y hva Gy =—Y hptoy,,,
w1 wi “1 wy

where v is an arbitrary grid function. Hence

1 _ 1
_(yﬂhxn Ghy)w = 5 Z th (y51)2 + 5 Z h2p+(yx1)27 (18)
wi Xwa Wy Xwa
1 1 _
~Wg,5,, G)o =5 D WMy +5 D B0 us,. (19)
wy Xw2 MTXWQ

Besides, applying Lemma 3, we have

_(yfzwahy)w > Hy@H%Q)' (20)

Let ho. h Lk
A Tt ot 5 e Tt
p—p+25 450, p=p 2ﬂ +4ﬂo-
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~

Then p = %(ﬁ +p), po= %ﬁgf , and after some transformations we obtain

1 R
~(Ys121, Gad)e Z Rp(ye ) + 5 D Wp(us)*, (21)
wl X w2 wy Xw2
1 R
—(ys.0,,G Z Wy, +5 D hhynvs,, (22)
w1 X w2 Wy Xw2
1 .
~(Yzaws> Giy o Z B p(ys,) + 5 D W p(ye,)” (23)
wl ><cu2 W1 XWwy

from (18), (19), and (20) respectively.
Taking into account (21)—(23), from (15) we have

WLy, Guy)o = Y W*PF ey yan) + > W2 AF (yz,. Ys,)

+ + ot
wl ><w2 wl ><w2

(24)
+ ) RO (Yay Yes) + > BPAF(Ysy s Us,) + a0(y Gry)es
Wy Xwy wy Xw;'
where F(tl, t2> = ant% + 2(112t1t2 + aggtg.
Taking into account
T h x1+h h
5= 1 / () dt + — / Bdt>0, =~ / (£) dt — — / (t)dt >0
xz1—h 0 T 0
due to the condition of ellipticity the estimate
(Lny; Gry)w = 0| Vyl[?
follows from (24), which together with (see [1])
lylle < 4llya |1 < 4]Vl
prove Lemma 4. ]

Thus, if p(z) =0, € w, then y(z) =0, x € & and, consequently, the solution of difference
scheme (15) exists and it is unique.

Lemma 5. If the grid function y defined on w satisfies the conditions ly(y) = 0,

y(l,29) =0, x5 € wy, then
1/2 1/2
w1 w1

where v(x) is an arbitrary grid function.

Z hvGry| < ¢
w1
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Proof. By the definition of the operator GGy, we have

1/2 1/2
> Gy < (Z hpv2> (Z hpy2> + L) |, (25)

where
=> h(p)~(Py)?
Let
h (kh,x — 09 =0.
Z ﬁky 2 ; Pk 0
Then

. By M ; h
(Bt (Poos = (Pl (Py)i— (Pu)is = "Sylih ), (Pu)ucs =0, oi— 01y = =

and we will have

n—1
22 — o) ((Py)] + (Py)iy) = =2 (0s+0i1) ((Py)} = (Py)i1)
i=1
o (26)
= Z(Ui + 0i-1)hBiy(ih, z2) (Py);.
i=1
It is possible to show that (o; + 0;_1)3; < ¢. Consequently, the inequality
1/2
¢ hly Py < <thy ) Ja(y), ie. Ju(y) < (thy )
w1
follows from (26). This together with (25) completes the proof of Lemma 5. O

To investigate the convergence and accuracy of scheme (15), we consider the error of the
method z = y — u, where y is a solution to problem (15) and u = u(z) is a solution to
problem (2)—(4). Substituting y = u + z into (15) , we obtain the problem

Lyz=v,xc€w, 2=0,x€v, L(z)=x(r), Ta € wo, (27)
where

V= a1z iz, + Q12722120 T 0227225525 + A0T0,
Mo = Ty Tyu — u, Naa = U — T3 qu, a=1,2
1

e = =

S uT T ) = 9875 (), x = 1(u) — ().

If we notice that

—t t—xz1+h
Z / <371 ( Ty — h, .1'2) + leU(I'l,.ﬁEQ)) dt,

"-’1 T1—
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then we can write the error y as follows:

t

1 B 82
D e e
WT xr1—h

—h

1 1

t—x1+h O*u(&, x2)

+ [ o= - T dear
x1—h t

It is evident that x = 0 for u(z) = 1 — ;. Consequently, l(1—z1) =(1—z1) = 1/(1+¢)

and the substitution )
—
28
) (28)

turns problem (27) (in which the nonlocal condition is not homogeneous) into the problem
with the homogeneous conditions

Lyz = QZ, T E€w, z2=0, T €, Ih(z) =0, x93 € wy, (29)
where . . .
= — L1 — L1 — L1
=1+ 2a +a —a )
Y=1 12<1+6X)§1%2 22<1+6X)1212 01+5X

Applying Lemma 4 to the solution of problem (29) we come to
1711} < e(¢, Ga2)e
Using Lemma 5 gives

1111 < eIzl s T 2ol |t s, + 172230y + 0l + [IX[1e + [Ixz211) - (30)

For the error of the method, according to (28), we can write

121l < 1211+ elllxls + [Ixz [])

which together with (30) gives

121l < e(lImia |l s T Mm2eallut s + 172272 sy + 170l + X1 + [Xa]4) - (31)

In order to estimate the convergence rate of finite-difference scheme (15), it is enough to
estimate the norm of error functionals on the right-hand side of (31). For this we apply the
standard technique (see, e.g., [3,7]).

First, for each summands of xz, we write

z1
Mz | < ch™ / B(t) dthm_Q/p|u|W;1(e), pm>1, me(1;3], e=(r1—h,x1)x(x3—h,xs).

r1—h

Next,
T (p—l)/p

1Nz, | < € / $Ee=Dp/(p=1) 4 ‘uywﬁ(e)hm—l—l/p’

1—h
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therefore,

1 (r—1)/p
Xz, | < chm171/p /t(el)p/(pl) dt [ulwme, €= (0;1) x (zg — h;x2).
0
Taking into account the inequality

Z |U|%/ng(é) < Ch_1+2/p|u|124/1;n(9)7

w2

we will have

Xz [+ < ™ Hulwp o).

The analogous estimate is obtained for ||x||.

With the well-known estimates for 11, 112, 722, 70 (see [3,7]), (31) yields the convergence

theorem.

Theorem 2. The finite-difference scheme (15) converges and the convergence rate esti-

mate (1) holds.
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