ON A NONLOCAL BOUNDARY-VALUE PROBLEM FOR TWO-DIMENSIONAL ELLIPTIC EQUATION

GIVI BERIKELASHVILI
A.Razmadze Mathematical Institute, Georgian Academy of Sciences
1, M.Aleksidze Str., Tbilisi 380093, Georgia
E-mail: bergi@rmi.acnet.ge

Dedicated to Raytcho Lazarov on the occasion of his 60th birthday.

Abstract

A boundary-value problem with a nonlocal integral condition is considered for a two-dimensional elliptic equation with constant coefficients and a mixed derivative. The existence and uniqueness of a weak solution of this problem are proved in a weighted Sobolev space. A difference scheme is constructed using the Steklov averaging operators. It is proved that the difference scheme converges in discrete $W_{2}^{1}(\omega, \rho)$ norm with the rate $O\left(h^{m-1}\right), m \in(1 ; 3]$, when the solution of the problem belongs to the space $W_{2}^{m}(\Omega)$.

2000 Mathematics Subject Classification: 65N10, 35J25.
Keywords: nonlocal boundary-value problem, difference scheme, elliptic equation, weighted spaces.

1. Introduction

Boundary-value problems for differential equations with a nonlocal condition occur in many applications. Problems with integral conditions were considered by various authors (see, e.g., $[1,8,9]$). In the present paper, a nonlocal boundary problem with integral restriction is considered in a domain $\Omega=(0,1)^{2}$ for a second order elliptic equation with constant coefficients.

In Section 2, existence and uniqueness of a weak solution of this problem in the weighted Sobolev space $W_{2}^{1}(\Omega, \rho), \quad \rho(x)=x_{1}^{\varepsilon}, \quad \varepsilon \in(0 ; 1)$ is proved.

In Section 3, the corresponding difference scheme is constructed. Under the assumption that the solution to the original problem belongs to Sobolev spaces, the estimate of convergence rate

$$
\begin{equation*}
\|y-u\|_{W_{2}^{1}(\omega, \rho)} \leqslant c h^{m-1}\|u\|_{W_{p}^{m}(\Omega)}, \quad m \in(1 ; 3] \tag{1}
\end{equation*}
$$

is obtained, where ω is a uniform grid in Ω with the step $h, p=2$ for $\varepsilon \in(0.5 ; 1), p>1 / \varepsilon$ for $\varepsilon \in(0 ; 0.5]$.

2. Solvability of a nonlocal problem

Let $\Omega=\left\{\left(x_{1}, x_{2}\right): 0<x_{k}<1, k=1,2\right\}$ be a unit square with a boundary Γ, and let $\Gamma_{1}=\left\{\left(0, x_{2}\right): 0<x_{2}<1\right\}, \quad \Gamma_{*}=\Gamma \backslash \Gamma_{1}$.

Consider the nonlocal boundary-value problem with constant coefficients

$$
\begin{equation*}
L u=f(x), x \in \Omega, \quad u(x)=0, x \in \Gamma_{*}, \quad l(u)=0,0<x_{2}<1, \tag{2}
\end{equation*}
$$

where

$$
L u=-\sum_{i, j=1}^{2} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+a_{0} u, \quad l(u)=\int_{0}^{1} \beta\left(x_{1}\right) u(x) d x_{1}, \quad \beta(t)=\varepsilon t^{\varepsilon-1}, \varepsilon \in(0 ; 1)
$$

and with the coefficients satisfying the following conditions:

$$
\begin{equation*}
\sum_{i, j=1}^{2} a_{i j} t_{i} t_{j} \geqslant \nu_{1}\left(t_{1}^{2}+t_{2}^{2}\right), \quad \nu_{1}>0, \quad a_{0} \geqslant 0 \tag{3}
\end{equation*}
$$

Let

$$
(u, v)=\int_{\Omega} u(x) v(x) d x, \quad\|u\|=(u, u)^{1 / 2}
$$

By $L_{2}(\Omega, \rho)$ we denote the weighted Lebesgue space of all real-valued functions $u(x)$ on Ω with the inner product and the norm

$$
(u, v)_{L_{2}(\Omega, \rho)}=\int_{\Omega} \rho(x) u(x) v(x) d x, \quad\|u\|_{L_{2}(\Omega, \rho)}=(u, u)_{L_{2}(\Omega, \rho)}^{1 / 2}
$$

The weighted Sobolev space $W_{2}^{1}(\Omega, \rho)$ is usually defined as a linear set of all functions $u(x) \in L_{2}(\Omega, \rho)$, whose derivatives $\partial u / \partial x_{k}, k=1,2$ (in the generalized sense) belong to $L_{2}(\Omega, \rho)$. It is a normed linear space if equipped with the norm

$$
\|u\|_{W_{2}^{1}(\Omega, \rho)}=\left(\|u\|_{L_{2}(\Omega, \rho)}^{2}+|u|_{W_{2}^{1}(\Omega, \rho)}^{2}\right)^{1 / 2}, \quad|u|_{W_{2}^{1}(\Omega, \rho)}^{2}=\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L_{2}(\Omega, \rho)}^{2}+\left\|\frac{\partial u}{\partial x_{2}}\right\|_{L_{2}(\Omega, \rho)}^{2} .
$$

Let us choose weight function $\rho(x)$ in the following way: $\rho(x)=\rho\left(x_{1}\right)=\int_{0}^{x_{1}} \beta(t) d t=x_{1}^{\varepsilon}$.
It is well-known (see, e.g., [4, p.10], [5, Theorem 3.1]) that $W_{2}^{1}(\Omega, \rho)$ is a Banach space and $C^{\infty}(\bar{\Omega})$ is dense in $W_{2}^{1}(\Omega, \rho)$ and in $L_{2}(\Omega, \rho)$. As an immediate consequence, we can define the space $W_{2}^{1}(\Omega, \rho)$ as the closure of $C^{\infty}(\bar{\Omega})$ with respect to the norm $\|\cdot\|_{W_{2}^{1}(\Omega, \rho)}$, and these both definitions are equivalent.

Define the subspace of the space $W_{2}^{1}(\Omega, \rho)$ which can be obtained by closing the set

$$
C^{*}(\bar{\Omega})=\left\{u \in C^{\infty}(\bar{\Omega}): \operatorname{supp} u \cap \Gamma_{*}=\emptyset, \int_{0}^{1} \beta\left(x_{1}\right) u(x) d x_{1}=0,0<x_{2}<1\right\}
$$

with the norm $\|\cdot\|_{W_{2}^{1}(\Omega, \rho)}$. Denote it by $\stackrel{*}{W}_{2}^{1}(\Omega, \rho)$.
Let the right-hand side $f(x)$ in equation (2) be a linear continuous functional on ${ }_{W_{2}^{1}}^{*}(\Omega, \rho)$ which can be represented as

$$
\begin{equation*}
f=f_{0}+\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}, \quad f_{k}(x) \in L_{2}(\Omega, \rho), \quad k=0,1,2 \tag{4}
\end{equation*}
$$

We say that the function $u \in W_{2}^{*}(\Omega, \rho)$ is a weak solution of problem (2)-(4), if the relation

$$
\begin{equation*}
a(u, v)=\langle f, v\rangle, \quad \forall v \in \stackrel{*}{W_{2}^{1}}(\Omega, \rho) \tag{5}
\end{equation*}
$$

holds, where

$$
\begin{align*}
a(u, v) & =\int_{\Omega}\left(a_{11} x_{1}^{\varepsilon} \frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+\left(a_{12}+a_{21}\right) x_{1}^{\varepsilon} \frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{1}}+a_{22} \frac{\partial u}{\partial x_{2}} G \frac{\partial v}{\partial x_{2}}+a_{0} u G v\right) d x \tag{6}\\
\langle f, v\rangle & =\int_{\Omega} f_{0} G v d x-\int_{\Omega} x_{1}^{\varepsilon} f_{1} \frac{\partial v}{\partial x_{1}} d x-\int_{\Omega} f_{2} G \frac{\partial v}{\partial x_{2}} d x \tag{7}\\
G v(x) & =\rho v(x)-\int_{0}^{x_{1}} \beta(t) v\left(t, x_{2}\right) d t . \tag{8}
\end{align*}
$$

Equality (5) formally is obtained from $(L u-f, G v)=0$ by integration by parts.
To prove the existence of the unique solution of problem (5) (weak solution of problem (2)-(4)) we will apply the Lax-Milgram lemma [2]. First we will prove some auxiliary results.

Lemma 1. Let $u, v \in L_{2}(\Omega, \rho)$ and v satisfy the condition $l(v)=0$. Then

$$
\begin{align*}
|(u, G v)| & \leqslant \frac{1+\varepsilon}{1-\varepsilon}\|u\|_{L_{2}(\Omega, \rho)}\|v\|_{L_{2}(\Omega, \rho)} \tag{9}\\
\|v\|_{L_{2}(\Omega, \rho)}^{2} & \leqslant(v, G v) \tag{10}\\
\|v\|_{L_{2}\left(\Omega, \rho^{2}\right)} & \leqslant\|G v\| \leqslant(2 \varepsilon+1)\|v\|_{L_{2}\left(\Omega, \rho^{2}\right)} \tag{11}
\end{align*}
$$

Proof. Due to the density $C^{\infty}(\bar{\Omega})$ in $L_{2}(\Omega, \rho)$ it suffices to prove the lemma for an arbitrary functions from the class $C^{\infty}(\bar{\Omega})$. By virtue of the Cauchy inequality we have

$$
\begin{equation*}
|(u, G v)| \leqslant\|u\|_{L_{2}(\Omega, \rho)}\left(\|v\|_{L_{2}(\Omega, \rho)}+\varepsilon J_{1}(v)\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
J_{1}^{2}(v) & =\int_{\Omega} x_{1}^{-\varepsilon}\left(\int_{0}^{x_{1}} t^{\varepsilon-1} v\left(t, x_{2}\right) d t\right)^{2} d x=-\frac{2}{1-\varepsilon} \int_{\Omega} v(x) \int_{0}^{x_{1}} t^{\varepsilon-1} v\left(t, x_{2}\right) d t d x \\
& \leqslant \frac{2}{1-\varepsilon}\|v\|_{L_{2}(\Omega, \rho)} \cdot J_{1}(v)
\end{aligned}
$$

Thus, $J_{1}(v) \leqslant 2(1-\varepsilon)^{-1}\|v\|_{L_{2}(\Omega, \rho)}$ and the estimate (9) follows from (12).
Inequality (10) follows from the easily verifiable identity

$$
(v, G v)=\|v\|_{L_{2}(\Omega, \rho)}^{2}+\frac{\varepsilon(1-\varepsilon)}{2} J_{1}^{2}(v)
$$

The first inequality in (11) is sequent of the identity

$$
\|G v\|^{2}=\int_{\Omega} x_{1}^{2 \varepsilon} v^{2}(x) d x+\left(\varepsilon^{2}+\varepsilon\right) J_{2}(v), \quad J_{2}(v)=\int_{\Omega}\left(\int_{0}^{x_{1}} t^{\varepsilon-1} v\left(t, x_{2}\right) d t\right)^{2} d x
$$

and in order to prove the second inequality of (11), it is enough to observe that

$$
J_{2}(v)=-2 \int_{\Omega} x_{1}^{\varepsilon} v(x) \int_{0}^{x_{1}} t^{\varepsilon-1} v\left(t, x_{2}\right) d t d x \leqslant 2\|v\|_{L_{2}\left(\Omega, \rho^{2}\right)}\left(J_{2}(v)\right)^{1 / 2}
$$

i.e., $J_{2}(v) \leqslant 4\|v\|_{L_{2}\left(\Omega, \rho^{2}\right)}^{2}$. This completes the proof of the lemma.

Lemma 2. Let $u \in W_{2}^{*}(\Omega, \rho)$. Then

$$
|u|_{W_{2}^{1}(\Omega, \rho)} \leqslant\|u\|_{W_{2}^{1}(\Omega, \rho)} \leqslant c_{1}|u|_{W_{2}^{1}(\Omega, \rho)}, \quad c_{1}=\left(4(1+\varepsilon)^{-2}+1\right)^{1 / 2} .
$$

Proof. Due to the density $C^{*}(\bar{\Omega})$ in $\stackrel{*}{W}_{2}^{1}(\Omega, \rho)$, it is sufficient to prove the lemma for an arbitrary $u \in C^{*}(\bar{\Omega})$. The first inequality of the lemma is obvious. Integrating by parts, we obtain

$$
\int_{\Omega} x_{1}^{\varepsilon} u^{2}(x) d x=-\int_{\Omega}\left(\varepsilon x_{1}^{\varepsilon} u^{2}(x)+2 x_{1}^{\varepsilon+1} u(x) \frac{\partial u}{\partial x_{1}}\right) d x .
$$

Therefore,

$$
(1+\varepsilon) \int_{\Omega} x_{1}^{\varepsilon} u^{2}(x) d x=-2 \int_{\Omega} x_{1}^{\varepsilon+1} u \frac{\partial u}{\partial x_{1}} d x \leqslant 2\|u\|_{L_{2}(\Omega, \rho)}\left(\int_{\Omega} x_{1}^{\varepsilon+2}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x\right)^{1 / 2}
$$

that is

$$
\|u\|_{L_{2}(\Omega, \rho)} \leqslant \frac{2}{1+\varepsilon}\left(\int_{\Omega} x_{1}^{\varepsilon+2}\left|\frac{\partial u}{\partial x_{1}}\right|^{2} d x\right)^{1 / 2}
$$

which proves the lemma.
Application of both lemmas 1, 2 and condition (3), (6) gives the continuity

$$
|a(u, v)| \leqslant c_{2}\|u\|_{W_{2}^{1}(\Omega, \rho)}\|v\|_{W_{2}^{1}(\Omega, \rho)}, \quad c_{2}>0, \quad \forall u, v \in \stackrel{*}{W_{2}^{1}}(\Omega, \rho)
$$

and W_{2}^{1}-ellipticity

$$
a(u, u) \geqslant c_{3}\|u\|_{W_{2}^{1}(\Omega, \rho)}^{2}, \quad c_{3}>0, \quad \forall u \in \stackrel{*}{W_{2}^{1}}(\Omega, \rho)
$$

of the bilinear form $a(u, v)$.
By appliyng lemmas 1,2 from (7) we obtain the continuity of linear form $\langle f, v\rangle$:

$$
|\langle f, v\rangle| \leqslant c_{4}\|v\|_{W_{2}^{1}(\Omega, \rho)}, \quad c_{4}>0, \quad \forall v \in W_{2}^{1}(\Omega, \rho) .
$$

Thus, all conditions of the Lax-Milgram lemma are fulfilled. Therefore, the following theorem is true.

Theorem 1. The problem (2)-(4) has unique weak solution from $\stackrel{*}{W}_{2}^{1}(\Omega, \rho)$.

3. Finite-difference scheme

Consider the following grid domains in Ω : $\bar{\omega}_{\alpha}=\left\{x_{\alpha}=i_{\alpha} h: i_{\alpha}=0,1, \cdots, n, h=1 / n\right\}$, $\omega_{\alpha}=\bar{\omega}_{\alpha} \cap(0,1), \omega_{\alpha}^{+}=\bar{\omega}_{\alpha} \cap(0 ; 1], \omega_{\alpha}^{-}=\bar{\omega}_{\alpha} \cap[0 ; 1), \alpha=1,2, \omega=\omega_{1} \times \omega_{2}, \bar{\omega}=\bar{\omega}_{1} \times \bar{\omega}_{2}$, $\gamma_{*}=\Gamma_{*} \cap \bar{\omega}$. Let us denote $\hbar=h / 2$ for $x_{1}=0$, and $\hbar=h$ for $x_{1} \neq 0$.

For grid functions and difference ratios, we use the standard notation from [6].
Define the following averaging operators:

$$
\begin{array}{ll}
S_{1}^{-} u=\frac{1}{h} \int_{x_{1}-h}^{x_{1}} u\left(t, x_{2}\right) d t, & S_{1}^{+} u=\frac{1}{h} \int_{x_{1}}^{x_{1}+h} u\left(t, x_{2}\right) d t, \quad T_{1} u=\frac{1}{2}\left(T_{1}^{-}+T_{1}^{+}\right) u, \\
T_{1}^{+} u=\frac{2}{h^{2}} \int_{x_{1}}^{x_{1}+h}\left(h+x_{1}-t\right) u\left(t, x_{2}\right) d t, & T_{1}^{-} u=\frac{2}{h^{2}} \int_{x_{1}-h}^{x_{1}}\left(h-x_{1}+t\right) u\left(t, x_{2}\right) d t .
\end{array}
$$

The operators $S_{2}^{ \pm}, T_{2}$ are defined likewise.
We introduce the notation

$$
\begin{aligned}
& \beta^{+}=T_{1}^{+} \beta, \quad \beta^{-}=T_{1}^{-} \beta, \quad \beta_{k}=\frac{1}{2}\left(\beta^{+}(k h)+\beta^{-}(k h)\right), \quad \beta_{0}^{-}=\beta_{n}^{+}=0, \\
& \rho^{+}=\rho+\frac{h}{2} \beta^{+}, \quad \rho^{-}=\rho-\frac{h}{2} \beta^{-}, \quad \rho_{i}=\sum_{k=0}^{i} h \beta_{k}-\frac{h}{2} \beta_{i}^{+}, \quad \bar{\rho}=\frac{1}{2}\left(\rho^{+}+\rho^{-}\right) .
\end{aligned}
$$

It is not hard to check that

$$
\rho_{i}=\rho(i h), \quad \rho^{+}=S_{1}^{+} \rho, \quad \rho^{-}=S_{1}^{-} \rho, \quad \bar{\rho}_{0}=\frac{h}{4} \beta_{0}^{+} .
$$

We will define the difference analogue of the operator G from (8) in the following way:

$$
\begin{equation*}
G_{h} y=\bar{\rho} y-P y, \quad P y\left(i h, x_{2}\right)=\sum_{k=0}^{i} h \beta_{k} y\left(k h, x_{2}\right)-\frac{h}{2} \beta_{i} y\left(i h, x_{2}\right) . \tag{13}
\end{equation*}
$$

A set of grid-functions given on $\bar{\omega}$ and satisfying the condition

$$
\begin{equation*}
y=0, \quad x \in \gamma_{*}, \quad l_{h}(y) \equiv \sum_{k=0}^{n} \beta_{k} y\left(k h, x_{2}\right)=0, \quad x_{2} \in \omega_{2} \tag{14}
\end{equation*}
$$

will be denoted by H. On the set H let us introduce the inner product and the norm

$$
(y, v)_{\widetilde{\omega}}=\sum_{\widetilde{\omega}} h^{2} y v, \quad\|y\|_{\widetilde{\omega}}=(y, y)_{\widetilde{\omega}}^{1 / 2}, \quad \widetilde{\omega} \subseteq \bar{\omega} .
$$

Let, moreover,

$$
\begin{gathered}
(y, v)_{0}=\sum_{\omega_{1}^{-} \times \omega_{2}} \hbar h y v, \quad\|y\|_{0}=(y, y)_{0}^{1 / 2}, \quad\|y\|_{\rho}^{2}=\sum_{\omega_{1}^{-} \times \omega_{2}} \hbar h \bar{\rho} y^{2}, \quad\|y\|_{\rho}^{2}=\sum_{\omega_{1}^{-} \times \omega_{2}^{+}} \hbar h \bar{\rho} y^{2}, \\
\|y\|_{1}^{2}=\|y\|_{0}^{2}+\|\nabla y\|^{2}, \quad\|\nabla y\|^{2}=\left\|y_{\bar{x}_{1}}\right\|_{(1)}^{2}+\left\|y_{\bar{x}_{2}}\right\|_{(2)}^{2}, \quad\left\|y_{\bar{x}_{1}}\right\|_{(1)}^{2}=\left(\rho^{-} y_{\bar{x}_{1}}, y_{\bar{x}_{1}}\right)_{\omega_{1}^{+} \times \omega_{2}}, \\
\left.\left\|y_{\bar{x}_{2}}\right\|_{(2)}=\| y_{\bar{x}_{2}} \mid\right]_{\rho}, \quad\|y\|_{*}^{2}=\sum_{\omega_{2}} h y^{2}, \quad\|y\|_{*}^{2}=\sum_{\omega_{2}^{+}} h y^{2} .
\end{gathered}
$$

We approximate problem (2)-(4) by the difference scheme

$$
\begin{equation*}
L_{h} y=-a_{11} y_{\bar{x}_{1} x_{1}}-2 a_{12} y_{\grave{x}_{1} \circ_{2}}-a_{22} y_{\bar{x}_{2} x_{2}}+a_{0} y=\varphi(x), \quad x \in \omega, \quad y \in H \tag{15}
\end{equation*}
$$

where

$$
\varphi=T_{1} T_{2} f_{0}+\left(S_{1}^{-} T_{2} f_{1}\right)_{x_{1}}+\left(T_{1} S_{2}^{-} f_{2}\right)_{x_{2}}
$$

Lemma 3. The estimates

$$
\left(y, G_{h} y\right)_{\omega} \geqslant\|y\|_{\rho}^{2}, \quad\left(y, G_{h} y\right)_{\omega_{1} \times \omega_{2}^{+}} \geqslant\|y\|_{\rho}^{2}
$$

are true for grid functions $y(x)$, satisfying the conditions $l_{h}(y)=0, y\left(1, x_{2}\right)=0, \quad x_{2} \in \omega_{2}$.
Proof. It is not difficult to verify that

$$
\begin{equation*}
-\sum_{i=1}^{n-1} h y\left(i h, x_{2}\right) P y\left(i h, x_{2}\right)=\frac{1}{2 \beta_{1}}\left(\frac{h}{2} \beta_{0}^{+} y\left(0, x_{2}\right)\right)^{2}+J_{3} \tag{16}
\end{equation*}
$$

where

$$
J_{3}=0, \quad n=2, \quad J_{3}=\frac{1}{2} \sum_{i=2}^{n-1}\left(\frac{1}{\beta_{i}}-\frac{1}{\beta_{i-1}}\right)\left(P y\left(i h, x_{2}\right)-\frac{h}{2} \beta_{i} y\left(i h, x_{2}\right)\right)^{2}, \quad n>2 .
$$

Due to $J_{3} \geqslant 0$ because of $\left(1 / \beta_{i}\right)-\left(1 / \beta_{i-1}\right)>0$, and also $\beta_{0}^{+}>\beta_{1}$, the validity of Lemma 3 follows from (16).

Lemma 4. For any $y \in H$ the inequality

$$
\begin{equation*}
\left(L_{h} y, G_{h} y\right)_{\omega} \geqslant c_{5}\|y\|_{1}^{2}, \quad c_{5}=\nu / 4 \tag{17}
\end{equation*}
$$

holds.
Proof. Using summation by parts, we get

$$
\sum_{\omega_{1}} h v_{x_{1}} G_{h} y=-\sum_{\omega_{1}^{+}} h \rho^{-} v y_{\bar{x}_{1}}, \quad \sum_{\omega_{1}} h v_{\bar{x}_{1}} G_{h} y=-\sum_{\omega_{1}^{-}} h \rho^{+} v y_{x_{1}},
$$

where v is an arbitrary grid function. Hence

$$
\begin{align*}
& -\left(y_{\bar{x}_{1} x_{1}}, G_{h} y\right)_{\omega}=\frac{1}{2} \sum_{\omega_{1}^{+} \times \omega_{2}} h^{2} \rho^{-}\left(y_{\bar{x}_{1}}\right)^{2}+\frac{1}{2} \sum_{\omega_{1}^{-} \times \omega_{2}} h^{2} \rho^{+}\left(y_{x_{1}}\right)^{2} \tag{18}\\
& -\left(y_{\left.{x_{1} 夭_{2}}, G_{h} y\right)_{\omega}=}=\frac{1}{2} \sum_{\omega_{1}^{-} \times \omega_{2}} h^{2} \rho^{+} y_{x_{1}} y_{\grave{x}_{2}}+\frac{1}{2} \sum_{\omega_{1}^{+} \times \omega_{2}} h^{2} \rho^{-} y_{\bar{x}_{1}} y_{\grave{x}_{2}}\right. \tag{19}
\end{align*}
$$

Besides, applying Lemma 3, we have

$$
\begin{equation*}
-\left(y_{\bar{x}_{2} x_{2}}, G_{h} y\right)_{\omega} \geqslant\left\|y_{\bar{x}_{2}}\right\|_{(2)}^{2} . \tag{20}
\end{equation*}
$$

Let

$$
\hat{\rho}=\rho+\frac{h}{2} \beta^{+}-\frac{h}{4} \beta_{0}^{+}, \quad \check{\rho}=\rho-\frac{h}{2} \beta^{-}+\frac{h}{4} \beta_{0}^{+} .
$$

Then $\bar{\rho}=\frac{1}{2}(\hat{\rho}+\check{\rho}), \quad \hat{\rho}_{0}=\frac{h}{4} \beta_{0}^{+}$, and after some transformations we obtain

$$
\begin{align*}
& -\left(y_{\bar{x}_{1} x_{1}}, G_{h} y\right)_{\omega}=\frac{1}{2} \sum_{\omega_{1}^{+} \times \omega_{2}} h^{2} \check{\rho}\left(y_{\bar{x}_{1}}\right)^{2}+\frac{1}{2} \sum_{\omega_{1}^{-} \times \omega_{2}} h^{2} \hat{\rho}\left(y_{x_{1}}\right)^{2}, \tag{21}\\
& -\left(y_{\grave{x}_{1} \circ_{2}}, G_{h} y\right)_{\omega}=\frac{1}{2} \sum_{\omega_{1}^{+} \times \omega_{2}} h^{2} \check{\rho} y_{\bar{x}_{1}} y_{\grave{x}_{2}}+\frac{1}{2} \sum_{\omega_{1}^{-} \times \omega_{2}} h^{2} \hat{\rho} y_{x_{1}} y_{\grave{x}_{2}}, \tag{22}\\
& -\left(y_{\bar{x}_{2} x_{2}}, G_{h} y\right)_{\omega} \geqslant \frac{1}{2} \sum_{\omega_{1}^{-} \times \omega_{2}^{+}} h^{2} \hat{\rho}\left(y_{\bar{x}_{2}}\right)^{2}+\frac{1}{2} \sum_{\omega_{1} \times \omega_{2}^{-}} h^{2} \check{\rho}\left(y_{x_{2}}\right)^{2} \tag{23}
\end{align*}
$$

from (18), (19), and (20) respectively.
Taking into account (21)-(23), from (15) we have

$$
\begin{align*}
4\left(L_{h} y, G_{h} y\right)_{\omega} \geqslant & \sum_{\omega_{1}^{+} \times \omega_{2}^{-}} h^{2} \check{\rho} F\left(y_{\bar{x}_{1}}, y_{x_{2}}\right)+\sum_{\omega_{1}^{+} \times \omega_{2}^{+}} h^{2} \check{\rho} F\left(y_{\bar{x}_{1}}, y_{\bar{x}_{2}}\right) \tag{24}\\
& +\sum_{\omega_{1}^{-} \times \omega_{2}^{-}} h^{2} \hat{\rho} F\left(y_{x_{1}}, y_{x_{2}}\right)+\sum_{\omega_{1}^{-} \times \omega_{2}^{+}} h^{2} \hat{\rho} F\left(y_{x_{1}}, y_{\bar{x}_{2}}\right)+a_{0}\left(y, G_{h} y\right)_{\omega}
\end{align*}
$$

where $F\left(t_{1}, t_{2}\right)=a_{11} t_{1}^{2}+2 a_{12} t_{1} t_{2}+a_{22} t_{2}^{2}$.
Taking into account

$$
\check{\rho}=\frac{1}{h} \int_{x_{1}-h}^{x_{1}} \rho(t) d t+\frac{1}{2 h} \int_{0}^{h} \rho(t) d t>0, \quad \hat{\rho}=\frac{1}{h} \int_{x_{1}}^{x_{1}+h} \rho(t) d t-\frac{1}{2 h} \int_{0}^{h} \rho(t) d t>0,
$$

due to the condition of ellipticity the estimate

$$
\left(L_{h} y, G_{h} y\right)_{\omega} \geqslant \nu_{1}\|\nabla y\|^{2}
$$

follows from (24), which together with (see [1])

$$
\|y\|_{0}^{2} \leqslant 4\left\|y_{\bar{x}_{1}}\right\|^{2} \leqslant 4\|\nabla y\|^{2}
$$

prove Lemma 4.
Thus, if $\varphi(x)=0, x \in \omega$, then $y(x)=0, x \in \bar{\omega}$ and, consequently, the solution of difference scheme (15) exists and it is unique.

Lemma 5. If the grid function y defined on $\bar{\omega}$ satisfies the conditions $l_{h}(y)=0$, $y\left(1, x_{2}\right)=0, \quad x_{2} \in \omega_{2}$, then

$$
\left|\sum_{\omega_{1}} h v G_{h} y\right| \leqslant c\left(\sum_{\omega_{1}} h \bar{\rho} v^{2}\right)^{1 / 2}\left(\sum_{\omega_{1}} h \bar{\rho} y^{2}\right)^{1 / 2}
$$

where $v(x)$ is an arbitrary grid function.

Proof. By the definition of the operator G_{h}, we have

$$
\begin{equation*}
\left|\sum_{\omega_{1}} h v G_{h} y\right| \leqslant\left(\sum_{\omega_{1}} h \bar{\rho} v^{2}\right)^{1 / 2}\left[\left(\sum_{\omega_{1}} h \bar{\rho} y^{2}\right)^{1 / 2}+J_{4}(y)\right] \tag{25}
\end{equation*}
$$

where

$$
J_{4}^{2}(y)=\sum_{\omega_{1}} h(\bar{\rho})^{-1}(P y)^{2} .
$$

Let

$$
2(\widetilde{P} y)_{i}=\sum_{k=0}^{i} h \beta_{k} y\left(k h, x_{2}\right), \quad \sigma_{i}=\sum_{k=1}^{i} \frac{h}{\bar{\rho}_{k}}, \quad \sigma_{0}=0 .
$$

Then
$(\widetilde{P} y)_{i}+(\widetilde{P} y)_{i-1}=(P y)_{i}, \quad(\widetilde{P} y)_{i}-(\widetilde{P} y)_{i-1}=\frac{h \beta_{i}}{2} y\left(i h, x_{2}\right), \quad(\widetilde{P} v)_{n-1}=0, \quad \sigma_{i}-\sigma_{i-1}=\frac{h}{\bar{\rho}_{i}}$ and we will have

$$
\begin{align*}
J_{4}^{2}(y) & \leqslant 2 \sum_{i=1}^{n-1}\left(\sigma_{i}-\sigma_{i-1}\right)\left((\widetilde{P} y)_{i}^{2}+(\widetilde{P} y)_{i-1}^{2}\right)=-2 \sum_{i=1}^{n-1}\left(\sigma_{i}+\sigma_{i-1}\right)\left((\widetilde{P} y)_{i}^{2}-(\widetilde{P} y)_{i-1}^{2}\right) \tag{26}\\
& =-\sum_{i=1}^{n-1}\left(\sigma_{i}+\sigma_{i-1}\right) h \beta_{i} y\left(i h, x_{2}\right)(P y)_{i} .
\end{align*}
$$

It is possible to show that $\left(\sigma_{i}+\sigma_{i-1}\right) \beta_{i} \leqslant c$. Consequently, the inequality

$$
J_{4}^{2}(y) \leqslant c \sum_{\omega_{1}} h|y P y| \leqslant c\left(\sum_{\omega_{1}} h \bar{\rho} y^{2}\right)^{1 / 2} J_{4}(y), \text { i.e. } J_{4}(y) \leqslant c\left(\sum_{\omega_{1}} h \bar{\rho} y^{2}\right)^{1 / 2}
$$

follows from (26). This together with (25) completes the proof of Lemma 5.
To investigate the convergence and accuracy of scheme (15), we consider the error of the method $z=y-u$, where y is a solution to problem (15) and $u=u(x)$ is a solution to problem (2)-(4). Substituting $y=u+z$ into (15), we obtain the problem

$$
\begin{equation*}
L_{h} z=\psi, x \in \omega, \quad z=0, x \in \gamma_{*}, \quad l_{h}(z)=\chi\left(x_{2}\right), x_{2} \in \omega_{2}, \tag{27}
\end{equation*}
$$

where

$$
\begin{gathered}
\psi=a_{11} \eta_{11 \bar{x}_{1} x_{1}}+a_{12} \eta_{12 x_{1} x_{2}}+a_{22} \eta_{22 \bar{x}_{2} x_{2}}+a_{0} \eta_{0} \\
\eta_{0}=T_{1} T_{2} u-u, \quad \eta_{\alpha \alpha}=u-T_{3-\alpha} u, \quad \alpha=1,2, \\
\eta_{12}=\frac{1}{2}\left(u+u^{\left(-1_{1}\right)}+u^{\left(-1_{2}\right)}+u^{\left(-1_{1},-1_{2}\right)}\right)-2 S_{1}^{-} S_{2}^{-} u(x), \quad \chi=l(u)-l_{h}(u) .
\end{gathered}
$$

If we notice that

$$
l_{h}(u)=\sum_{\omega_{1}^{+}} \int_{x_{1}-h}^{x_{1}} \beta(t)\left(\frac{x_{1}-t}{h} u\left(x_{1}-h, x_{2}\right)+\frac{t-x_{1}+h}{h} u\left(x_{1}, x_{2}\right)\right) d t
$$

then we can write the error χ as follows:

$$
\begin{aligned}
\chi=\sum_{\omega_{1}^{+}} \eta, \quad \eta= & \int_{x_{1}-h}^{x_{1}} \beta(t) \frac{t-x_{1}}{h} \int_{x_{1}-h}^{t}\left(\xi-x_{1}+h\right) \frac{\partial^{2} u\left(\xi, x_{2}\right)}{\partial \xi^{2}} d \xi d t \\
& +\int_{x_{1}-h}^{x_{1}} \beta(t) \frac{t-x_{1}+h}{h} \int_{t}^{x_{1}}\left(\xi-x_{1}\right) \frac{\partial^{2} u\left(\xi, x_{2}\right)}{\partial \xi^{2}} d \xi d t .
\end{aligned}
$$

It is evident that $\chi=0$ for $u(x)=1-x_{1}$. Consequently, $l_{h}\left(1-x_{1}\right)=l\left(1-x_{1}\right)=1 /(1+\varepsilon)$ and the substitution

$$
\begin{equation*}
z(x)=\widetilde{z}(x)+\frac{1-x_{1}}{1+\varepsilon} \chi\left(x_{2}\right) \tag{28}
\end{equation*}
$$

turns problem (27) (in which the nonlocal condition is not homogeneous) into the problem with the homogeneous conditions

$$
\begin{equation*}
L_{h} \widetilde{z}=\widetilde{\psi}, \quad x \in \omega, \quad \widetilde{z}=0, \quad x \in \gamma_{*}, \quad l_{h}(\widetilde{z})=0, \quad x_{2} \in \omega_{2} \tag{29}
\end{equation*}
$$

where

$$
\widetilde{\psi}=\psi+2 a_{12}\left(\frac{1-x_{1}}{1+\varepsilon} \chi\right)_{{\stackrel{\circ}{x_{1}} 夭_{2}}+a_{22}\left(\frac{1-x_{1}}{1+\varepsilon} \chi\right)_{\bar{x}_{2} x_{2}}-a_{0} \frac{1-x_{1}}{1+\varepsilon} \chi . . ~ . ~ . ~}^{\text {. }}
$$

Applying Lemma 4 to the solution of problem (29) we come to

$$
\|\widetilde{z}\|_{1}^{2} \leqslant c\left(\widetilde{\psi}, G_{h} \widetilde{z}\right)_{\omega} .
$$

Using Lemma 5 gives

$$
\begin{equation*}
\|\widetilde{z}\|_{1} \leqslant c\left(\left\|\eta_{11 \bar{x}_{1}}\right\|_{\omega_{1}^{+} \times \omega_{2}}+\left\|\eta_{12 x_{2}}\left|\left\|_{\omega_{1}^{+} \times \omega_{2}}+\right\| \eta_{22 \bar{x}_{2}}\left\|_{\omega_{1} \times \omega_{2}^{+}}+\right\| \eta_{0}\left\|_{\omega}+\right\| \chi\left\|_{*}+\right\| \chi_{\bar{x}_{2}}\right|\right]_{*}\right) . \tag{30}
\end{equation*}
$$

For the error of the method, according to (28), we can write

$$
\left.\|z\|_{1} \leqslant\|\widetilde{z}\|_{1}+c\left(\|\chi\|_{*}+\| \chi_{\bar{x}_{2}} \mid\right]_{*}\right)
$$

which together with (30) gives

$$
\begin{equation*}
\left.\|z\|_{1} \leqslant c\left(\left\|\eta_{11 \bar{x}_{1}}| |_{\omega_{1}^{+} \times \omega_{2}}+\right\| \eta_{12 x_{2}}| |_{\omega_{1}^{+} \times \omega_{2}}+\left\|\eta_{22 \bar{x}_{2}}| |_{\omega_{1} \times \omega_{2}^{+}}+\right\| \eta_{0}\left\|_{\omega}+\right\| \chi\left\|_{*}+\right\| \chi_{\bar{x}_{2}} \mid\right]_{*}\right) . \tag{31}
\end{equation*}
$$

In order to estimate the convergence rate of finite-difference scheme (15), it is enough to estimate the norm of error functionals on the right-hand side of (31). For this we apply the standard technique (see, e.g., $[3,7]$).

First, for each summands of $\chi_{\bar{x}_{2}}$ we write

$$
\left|\eta_{\bar{x}_{2}}\right| \leqslant c h^{-1} \int_{x_{1}-h}^{x_{1}} \beta(t) d t h^{m-2 / p}|u|_{W_{p}^{m}(e)}, \quad p m>1, \quad m \in(1 ; 3], \quad e=\left(x_{1}-h, x_{1}\right) \times\left(x_{2}-h, x_{2}\right) .
$$

Next,

$$
\left|\eta_{\bar{x}_{2}}\right| \leqslant c\left(\int_{c_{1}-h}^{x_{1}} t^{(\varepsilon-1) p /(p-1)} d t\right)^{(p-1) / p}|u|_{W_{p}^{m}(e)} h^{m-1-1 / p}
$$

therefore,

$$
\left|\chi_{\bar{x}_{2}}\right| \leqslant c h^{m-1-1 / p}\left(\int_{0}^{1} t^{(\varepsilon-1) p /(p-1)} d t\right)^{(p-1) / p}|u|_{W_{p}^{m}(\bar{e})}, \quad \bar{e}=(0 ; 1) \times\left(x_{2}-h ; x_{2}\right) .
$$

Taking into account the inequality

$$
\sum_{\omega_{2}}|u|_{W_{p}^{m}(\bar{e})}^{2} \leqslant c h^{-1+2 / p}|u|_{W_{p}^{m}(\Omega)}^{2}
$$

we will have

$$
\left.\| \chi_{\bar{x}_{2}} \mid\right]_{*} \leqslant c h^{m-1}|u|_{W_{p}^{m}(\Omega)} .
$$

The analogous estimate is obtained for $\|\chi\|_{*}$.
With the well-known estimates for $\eta_{11}, \eta_{12}, \eta_{22}, \eta_{0}$ (see $[3,7]$), (31) yields the convergence theorem.

Theorem 2. The finite-difference scheme (15) converges and the convergence rate estimate (1) holds.

References

[1] G. Berikelashvili, Finite-difference schemes for some mixed boundary-value problems, Proc. A. Razmadze Math. Inst., 127 (2001), pp. 77-87.
[2] P. Ciarlet, The Finite Element Method for Elliptic Problems, Mir, Moscow, 1980, in Russian.
[3] B. S. Jovanović, The finite-difference method for boundary-value problems with weak solutions. Posebna izdanja, vol. 16, Matematički institut, Beograd, 1993.
[4] A. Kufner and A. M. Sändig, Some Applications of Weighted Sobolew Spaces, Teubner, Leipzig, 1987.
[5] A. Nekvinda and L. Pick, A note on the dirichlet problem for the elliptic linear operator in sobolev spaces with weight d_{m}^{ε}, Comment. Math. Univ. Carolinae, 29 (1988), No. 1, pp. 63-71.
[6] A. A. Samarskii, Theory of Difference Schemes, Nauka, Moscow, 1977, in Russian.
[7] A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions, Vysshaya Shkola, Moscow, 1987, in Russian.
[8] M. Sapagovas, Difference scheme for two-dimensional elliptic problem with an integral condition, Liet. Matem. Rink., 23 (1983), No. 3, pp. 155-159.
[9] M. Sapagovas, The solution of the nonlinear ordinary differential equation with an integral condition, Liet. Matem. Rink., 24 (1984), No. 1, pp. 155-166.

