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Abstract — A boundary-value problem with a nonlocal integral condition is con-
sidered for a two-dimensional elliptic equation with constant coefficients and a mixed
derivative. The existence and uniqueness of a weak solution of this problem are proved
in a weighted Sobolev space. A difference scheme is constructed using the Steklov aver-
aging operators. It is proved that the difference scheme converges in discrete W 1
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norm with the rate O(hm−1), m ∈ (1; 3], when the solution of the problem belongs to
the space Wm

2 (Ω).
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1. Introduction

Boundary-value problems for differential equations with a nonlocal condition occur in many
applications. Problems with integral conditions were considered by various authors (see,
e.g., [1, 8, 9]). In the present paper, a nonlocal boundary problem with integral restriction
is considered in a domain Ω = (0, 1)2 for a second order elliptic equation with constant
coefficients.

In Section 2, existence and uniqueness of a weak solution of this problem in the weighted
Sobolev space W 1

2 (Ω, ρ), ρ(x) = xε
1, ε ∈ (0; 1) is proved.

In Section 3, the corresponding difference scheme is constructed. Under the assump-
tion that the solution to the original problem belongs to Sobolev spaces, the estimate of
convergence rate

||y − u||W 1
2 (ω,ρ) 6 chm−1||u||W m

p (Ω), m ∈ (1; 3] (1)

is obtained, where ω is a uniform grid in Ω with the step h, p = 2 for ε ∈ (0.5; 1), p > 1/ε
for ε ∈ (0; 0.5].

2. Solvability of a nonlocal problem

Let Ω = {(x1, x2) : 0 < xk < 1, k = 1, 2} be a unit square with a boundary Γ, and let
Γ1 = {(0, x2) : 0 < x2 < 1}, Γ∗ = Γ\Γ1.
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Consider the nonlocal boundary-value problem with constant coefficients

Lu = f(x), x ∈ Ω, u(x) = 0, x ∈ Γ∗, l(u) = 0, 0 < x2 < 1, (2)

where

Lu = −
2∑

i,j=1

aij
∂2u

∂xi∂xj

+ a0u, l(u) =

1∫

0

β(x1)u(x) dx1, β(t) = εtε−1, ε ∈ (0; 1)

and with the coefficients satisfying the following conditions:

2∑
i,j=1

aijtitj > ν1(t
2
1 + t22), ν1 > 0, a0 > 0. (3)

Let

(u, v) =

∫

Ω

u(x)v(x) dx, ||u|| = (u, u)1/2.

By L2(Ω, ρ) we denote the weighted Lebesgue space of all real-valued functions u(x) on Ω
with the inner product and the norm

(u, v)L2(Ω,ρ) =

∫

Ω

ρ(x)u(x)v(x) dx, ||u||L2(Ω,ρ) = (u, u)
1/2
L2(Ω,ρ).

The weighted Sobolev space W 1
2 (Ω, ρ) is usually defined as a linear set of all functions

u(x) ∈ L2(Ω, ρ), whose derivatives ∂u/∂xk, k = 1, 2 (in the generalized sense) belong to
L2(Ω, ρ). It is a normed linear space if equipped with the norm

||u||W 1
2 (Ω,ρ) =

(
||u||2L2(Ω,ρ) + |u|2W 1

2 (Ω,ρ)

)1/2

, |u|2W 1
2 (Ω,ρ) =

∥∥∥∥
∂u

∂x1

∥∥∥∥
2

L2(Ω,ρ)

+

∥∥∥∥
∂u

∂x2

∥∥∥∥
2

L2(Ω,ρ)

.

Let us choose weight function ρ(x) in the following way: ρ(x) = ρ(x1) =

x1∫

0

β(t) dt = xε
1.

It is well-known (see, e.g., [4, p.10], [5, Theorem 3.1]) that W 1
2 (Ω, ρ) is a Banach space

and C∞(Ω̄) is dense in W 1
2 (Ω, ρ) and in L2(Ω, ρ). As an immediate consequence, we can

define the space W 1
2 (Ω, ρ) as the closure of C∞(Ω̄) with respect to the norm || · ||W 1

2 (Ω,ρ), and
these both definitions are equivalent.

Define the subspace of the space W 1
2 (Ω, ρ) which can be obtained by closing the set

∗
C∞ (Ω̄) =

{
u ∈ C∞(Ω̄) : supp u ∩ Γ∗ = ∅,

1∫

0

β(x1) u(x) dx1 = 0, 0 < x2 < 1

}

with the norm || · ||W 1
2 (Ω,ρ) . Denote it by

∗
W 1

2 (Ω, ρ).

Let the right-hand side f(x) in equation (2) be a linear continuous functional on
∗

W 1
2 (Ω, ρ)

which can be represented as

f = f0 +
∂f1

∂x1

+
∂f2

∂x2

, fk(x) ∈ L2(Ω, ρ), k = 0, 1, 2. (4)
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We say that the function u ∈
∗

W 1
2 (Ω, ρ) is a weak solution of problem (2)–(4), if the

relation

a(u, v) = 〈f, v〉, ∀v ∈
∗

W 1
2 (Ω, ρ) (5)

holds, where

a(u, v) =

∫

Ω

(
a11x

ε
1

∂u

∂x1

∂v

∂x1

+ (a12 + a21)x
ε
1

∂u

∂x2

∂v

∂x1

+ a22
∂u

∂x2

G
∂v

∂x2

+ a0uGv

)
dx, (6)

〈f, v〉 =

∫

Ω

f0 Gv dx−
∫

Ω

xε
1 f1

∂v

∂x1

dx−
∫

Ω

f2 G
∂v

∂x2

dx, (7)

Gv(x) = ρv(x)−
x1∫

0

β(t) v(t, x2) dt. (8)

Equality (5) formally is obtained from (Lu− f,Gv) = 0 by integration by parts.
To prove the existence of the unique solution of problem (5) (weak solution of problem

(2)–(4)) we will apply the Lax-Milgram lemma [2]. First we will prove some auxiliary results.

Lemma 1. Let u, v ∈ L2(Ω, ρ) and v satisfy the condition l(v) = 0. Then

|(u,Gv)| 6 1 + ε

1− ε
||u||L2(Ω,ρ)||v||L2(Ω,ρ), (9)

||v||2L2(Ω,ρ) 6 (v, Gv), (10)

||v||L2(Ω,ρ2) 6 ||Gv|| 6 (2ε + 1)||v||L2(Ω,ρ2). (11)

Proof. Due to the density C∞(Ω̄) in L2(Ω, ρ) it suffices to prove the lemma for an arbi-
trary functions from the class C∞(Ω̄). By virtue of the Cauchy inequality we have

|(u,Gv)| 6 ||u||L2(Ω,ρ)

(||v||L2(Ω,ρ) + ε J1(v)
)
, (12)

where

J2
1 (v) =

∫

Ω

x−ε
1

( x1∫

0

tε−1 v(t, x2) dt

)2

dx = − 2

1− ε

∫

Ω

v(x)

x1∫

0

tε−1 v(t, x2) dt dx

6 2

1− ε
||v||L2(Ω,ρ) · J1(v).

Thus, J1(v) 6 2(1− ε)−1||v||L2(Ω,ρ) and the estimate (9) follows from (12).
Inequality (10) follows from the easily verifiable identity

(v,Gv) = ||v||2L2(Ω,ρ) +
ε(1− ε)

2
J2

1 (v).

The first inequality in (11) is sequent of the identity

||Gv||2 =

∫

Ω

x2ε
1 v2(x) dx + (ε2 + ε)J2(v), J2(v) =

∫

Ω

( x1∫

0

tε−1 v(t, x2) dt

)2

dx



38 G. Berikelashvili

and in order to prove the second inequality of (11), it is enough to observe that

J2(v) = −2

∫

Ω

xε
1 v(x)

x1∫

0

tε−1 v(t, x2) dt dx 6 2||v||L2(Ω,ρ2)(J2(v))1/2,

i.e., J2(v) 6 4||v||2L2(Ω,ρ2). This completes the proof of the lemma.

Lemma 2. Let u ∈
∗

W 1
2 (Ω, ρ). Then

|u|W 1
2 (Ω,ρ) 6 ||u||W 1

2 (Ω,ρ) 6 c1|u|W 1
2 (Ω,ρ), c1 = (4(1 + ε)−2 + 1)1/2.

Proof. Due to the density
∗

C∞ (Ω̄) in
∗

W 1
2 (Ω, ρ), it is sufficient to prove the lemma for

an arbitrary u ∈
∗

C∞ (Ω̄). The first inequality of the lemma is obvious. Integrating by parts,
we obtain ∫

Ω

xε
1u

2(x) dx = −
∫

Ω

(
εxε

1 u2(x) + 2xε+1
1 u(x)

∂u

∂x1

)
dx.

Therefore,

(1 + ε)

∫

Ω

xε
1 u2(x) dx = −2

∫

Ω

xε+1
1 u

∂u

∂x1

dx 6 2||u||L2(Ω,ρ)

( ∫

Ω

xε+2
1

∣∣∣∣
∂u

∂x1

∣∣∣∣
2

dx

)1/2

,

that is

||u||L2(Ω,ρ) 6 2

1 + ε

( ∫

Ω

xε+2
1

∣∣∣∣
∂u

∂x1

∣∣∣∣
2

dx

)1/2

,

which proves the lemma.

Application of both lemmas 1, 2 and condition (3), (6) gives the continuity

|a(u, v)| 6 c2||u||W 1
2 (Ω,ρ)||v||W 1

2 (Ω,ρ), c2 > 0, ∀u, v ∈
∗

W 1
2 (Ω, ρ)

and W 1
2 -ellipticity

a(u, u) > c3||u||2W 1
2 (Ω,ρ), c3 > 0, ∀u ∈

∗
W 1

2 (Ω, ρ)

of the bilinear form a(u, v) .
By appliyng lemmas 1, 2 from (7) we obtain the continuity of linear form 〈f, v〉:

|〈f, v〉| 6 c4||v||W 1
2 (Ω,ρ), c4 > 0, ∀v ∈

∗
W 1

2 (Ω, ρ).

Thus, all conditions of the Lax-Milgram lemma are fulfilled. Therefore, the following
theorem is true.

Theorem 1. The problem (2)–(4) has unique weak solution from
∗

W 1
2 (Ω, ρ).
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3. Finite-difference scheme

Consider the following grid domains in Ω: ω̄α = {xα = iαh : iα = 0, 1, · · · , n, h = 1/n},
ωα = ω̄α ∩ (0, 1) , ω+

α = ω̄α ∩ (0; 1], ω−α = ω̄α ∩ [0; 1), α = 1, 2, ω = ω1× ω2, ω̄ = ω̄1× ω̄2 ,
γ∗ = Γ∗ ∩ ω̄. Let us denote ~ = h/2 for x1 = 0, and ~ = h for x1 6= 0.

For grid functions and difference ratios, we use the standard notation from [6].
Define the following averaging operators:

S−1 u =
1

h

x1∫

x1−h

u(t, x2) dt, S+
1 u =

1

h

x1+h∫

x1

u(t, x2) dt, T1u =
1

2
(T−

1 + T+
1 )u,

T+
1 u =

2

h2

x1+h∫

x1

(h + x1 − t)u(t, x2) dt, T−
1 u =

2

h2

x1∫

x1−h

(h− x1 + t)u(t, x2) dt.

The operators S±2 , T2 are defined likewise.
We introduce the notation

β+ = T+
1 β, β− = T−

1 β, βk =
1

2
(β+(kh) + β−(kh)), β−0 = β+

n = 0,

ρ+ = ρ +
h

2
β+, ρ− = ρ− h

2
β−, ρi =

i∑

k=0

hβk − h

2
β+

i , ρ̄ =
1

2
(ρ+ + ρ−).

It is not hard to check that

ρi = ρ(ih), ρ+ = S+
1 ρ, ρ− = S−1 ρ, ρ̄0 =

h

4
β+

0 .

We will define the difference analogue of the operator G from (8) in the following way:

Ghy = ρ̄y − Py, Py(ih, x2) =
i∑

k=0

hβky(kh, x2)− h

2
βiy(ih, x2). (13)

A set of grid-functions given on ω̄ and satisfying the condition

y = 0, x ∈ γ∗, lh(y) ≡
n∑

k=0

βky(kh, x2) = 0, x2 ∈ ω2 (14)

will be denoted by H. On the set H let us introduce the inner product and the norm

(y, v)eω =
∑

eω
h2yv, ||y||eω = (y, y)

1/2
eω , ω̃ ⊆ ω̄.

Let, moreover,

(y, v)0 =
∑

ω−1 ×ω2

~hyv, ||y||0 = (y, y)
1/2
0 , ||y||2ρ =

∑

ω−1 ×ω2

~hρ̄y2, ||y|]2ρ =
∑

ω−1 ×ω+
2

~hρ̄y2,

||y||21 = ||y||20 + ||∇y||2, ||∇y||2 = ||yx̄1||2(1) + ||yx̄2||2(2), ||yx̄1||2(1) = (ρ−yx̄1 , yx̄1)ω+
1 ×ω2

,

||yx̄2||(2) = ||yx̄2|]ρ, ||y||2∗ =
∑
ω2

hy2, ||y|]2∗ =
∑

ω+
2

hy2.
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We approximate problem (2)–(4) by the difference scheme

Lhy = −a11yx̄1x1 − 2a12y◦x1
◦
x2
− a22yx̄2x2 + a0y = ϕ(x), x ∈ ω, y ∈ H, (15)

where
ϕ = T1T2f0 + (S−1 T2f1)x1 + (T1S

−
2 f2)x2 .

Lemma 3. The estimates

(y, Ghy)ω > ||y||2ρ, (y,Ghy)ω1×ω+
2

> ||y|]2ρ
are true for grid functions y(x), satisfying the conditions lh(y) = 0, y(1, x2) = 0, x2 ∈ ω2.

Proof. It is not difficult to verify that

−
n−1∑
i=1

hy(ih, x2)Py(ih, x2) =
1

2β1

(
h

2
β+

0 y(0, x2)

)2

+ J3, (16)

where

J3 = 0, n = 2, J3 =
1

2

n−1∑
i=2

(
1

βi

− 1

βi−1

)(
Py(ih, x2)− h

2
βiy(ih, x2)

)2

, n > 2.

Due to J3 > 0 because of (1/βi)− (1/βi−1) > 0, and also β+
0 > β1, the validity of Lemma

3 follows from (16).

Lemma 4. For any y ∈ H the inequality

(Lhy, Ghy)ω > c5||y||21, c5 = ν/4 (17)

holds.

Proof. Using summation by parts, we get

∑
ω1

hvx1Ghy = −
∑

ω+
1

hρ−vyx̄1 ,
∑
ω1

hvx̄1Ghy = −
∑

ω−1

hρ+vyx1 ,

where v is an arbitrary grid function. Hence

−(yx̄1x1 , Ghy)ω =
1

2

∑

ω+
1 ×ω2

h2ρ−(yx̄1)
2 +

1

2

∑

ω−1 ×ω2

h2ρ+(yx1)
2, (18)

−(y◦
x1
◦
x2

, Ghy)ω =
1

2

∑

ω−1 ×ω2

h2ρ+yx1y◦x2
+

1

2

∑

ω+
1 ×ω2

h2ρ−yx̄1y◦x2
. (19)

Besides, applying Lemma 3, we have

−(yx̄2x2 , Ghy)ω > ||yx̄2||2(2). (20)

Let

ρ̂ = ρ +
h

2
β+ − h

4
β+

0 , ρ̌ = ρ− h

2
β− +

h

4
β+

0 .
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Then ρ̄ = 1
2
(ρ̂ + ρ̌), ρ̂0 = h

4
β+

0 , and after some transformations we obtain

−(yx̄1x1 , Ghy)ω =
1

2

∑

ω+
1 ×ω2

h2ρ̌(yx̄1)
2 +

1

2

∑

ω−1 ×ω2

h2ρ̂(yx1)
2, (21)

−(y◦
x1
◦
x2

, Ghy)ω =
1

2

∑

ω+
1 ×ω2

h2ρ̌yx̄1y◦x2
+

1

2

∑

ω−1 ×ω2

h2ρ̂yx1y◦x2
, (22)

−(yx̄2x2 , Ghy)ω > 1

2

∑

ω−1 ×ω+
2

h2ρ̂(yx̄2)
2 +

1

2

∑

ω1×ω−2

h2ρ̌(yx2)
2 (23)

from (18), (19), and (20) respectively.

Taking into account (21)–(23), from (15) we have

4(Lhy,Ghy)ω >
∑

ω+
1 ×ω−2

h2ρ̌F (yx̄1 , yx2) +
∑

ω+
1 ×ω+

2

h2ρ̌F (yx̄1 , yx̄2)

+
∑

ω−1 ×ω−2

h2ρ̂F (yx1 , yx2) +
∑

ω−1 ×ω+
2

h2ρ̂F (yx1 , yx̄2) + a0(y, Ghy)ω,
(24)

where F (t1, t2) = a11t
2
1 + 2a12t1t2 + a22t

2
2.

Taking into account

ρ̌ =
1

h

x1∫

x1−h

ρ(t) dt +
1

2h

h∫

0

ρ(t) dt > 0, ρ̂ =
1

h

x1+h∫

x1

ρ(t) dt− 1

2h

h∫

0

ρ(t) dt > 0,

due to the condition of ellipticity the estimate

(Lhy, Ghy)ω > ν1||∇y||2

follows from (24), which together with (see [1])

||y||20 6 4||yx̄1||2 6 4||∇y||2

prove Lemma 4.

Thus, if ϕ(x) = 0, x ∈ ω, then y(x) = 0, x ∈ ω̄ and, consequently, the solution of difference
scheme (15) exists and it is unique.

Lemma 5. If the grid function y defined on ω̄ satisfies the conditions lh(y) = 0,
y(1, x2) = 0, x2 ∈ ω2, then

∣∣∣∣∣
∑
ω1

hvGhy

∣∣∣∣∣ 6 c

(∑
ω1

hρ̄v2

)1/2 (∑
ω1

hρ̄y2

)1/2

,

where v(x) is an arbitrary grid function.
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Proof. By the definition of the operator Gh, we have

∣∣∣∣∣
∑
ω1

hvGhy

∣∣∣∣∣ 6
(∑

ω1

hρ̄v2

)1/2



(∑
ω1

hρ̄y2

)1/2

+ J4(y)


 , (25)

where
J2

4 (y) =
∑
ω1

h(ρ̄)−1(Py)2.

Let

2(P̃ y)i =
i∑

k=0

hβky(kh, x2), σi =
i∑

k=1

h

ρ̄k

, σ0 = 0.

Then

(P̃ y)i + (P̃ y)i−1 = (Py)i, (P̃ y)i − (P̃ y)i−1 =
hβi

2
y(ih, x2), (P̃ v)n−1 = 0, σi − σi−1 =

h

ρ̄i

and we will have

J2
4 (y) 6 2

n−1∑
i=1

(σi − σi−1)
(
(P̃ y)2

i + (P̃ y)2
i−1

)
= −2

n−1∑
i=1

(σi + σi−1)
(
(P̃ y)2

i − (P̃ y)2
i−1

)

= −
n−1∑
i=1

(σi + σi−1)hβiy(ih, x2)(Py)i.

(26)

It is possible to show that (σi + σi−1)βi 6 c. Consequently, the inequality

J2
4 (y) 6 c

∑
ω1

h|y Py| 6 c

( ∑
ω1

hρ̄y2

)1/2

J4(y), i.e. J4(y) 6 c

( ∑
ω1

hρ̄y2

)1/2

follows from (26). This together with (25) completes the proof of Lemma 5.

To investigate the convergence and accuracy of scheme (15), we consider the error of the
method z = y − u, where y is a solution to problem (15) and u = u(x) is a solution to
problem (2)–(4). Substituting y = u + z into (15) , we obtain the problem

Lhz = ψ, x ∈ ω, z = 0, x ∈ γ∗, lh(z) = χ(x2), x2 ∈ ω2, (27)

where

ψ = a11η11x̄1x1 + a12η12x1x2 + a22η22x̄2x2 + a0η0,

η0 = T1T2u− u, ηαα = u− T3−αu, α = 1, 2,

η12 =
1

2
(u + u(−11) + u(−12) + u(−11,−12))− 2S−1 S−2 u(x), χ = l(u)− lh(u).

If we notice that

lh(u) =
∑

ω+
1

x1∫

x1−h

β(t)

(
x1 − t

h
u(x1 − h, x2) +

t− x1 + h

h
u(x1, x2)

)
dt,
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then we can write the error χ as follows:

χ =
∑

ω+
1

η, η =

x1∫

x1−h

β(t)
t− x1

h

t∫

x1−h

(ξ − x1 + h)
∂2u(ξ, x2)

∂ξ2
dξ dt

+

x1∫

x1−h

β(t)
t− x1 + h

h

x1∫

t

(ξ − x1)
∂2u(ξ, x2)

∂ξ2
dξ dt.

It is evident that χ = 0 for u(x) = 1−x1. Consequently, lh(1−x1) = l(1−x1) = 1/(1+ε)
and the substitution

z(x) = z̃(x) +
1− x1

1 + ε
χ(x2) (28)

turns problem (27) (in which the nonlocal condition is not homogeneous) into the problem
with the homogeneous conditions

Lhz̃ = ψ̃, x ∈ ω, z̃ = 0, x ∈ γ∗, lh(z̃) = 0, x2 ∈ ω2, (29)

where

ψ̃ = ψ + 2a12

(
1− x1

1 + ε
χ

)
◦
x1
◦
x2

+ a22

(
1− x1

1 + ε
χ

)

x̄2x2

− a0
1− x1

1 + ε
χ.

Applying Lemma 4 to the solution of problem (29) we come to

||z̃||21 6 c(ψ̃, Ghz̃)ω.

Using Lemma 5 gives

||z̃||1 6 c
(||η11x̄1||ω+

1 ×ω2
+ ||η12x2||ω+

1 ×ω2
+ ||η22x̄2||ω1×ω+

2
+ ||η0||ω + ||χ||∗ + ||χx̄2|]∗

)
. (30)

For the error of the method, according to (28), we can write

||z||1 6 ||z̃||1 + c(||χ||∗ + ||χx̄2|]∗)

which together with (30) gives

||z||1 6 c
(||η11x̄1||ω+

1 ×ω2
+ ||η12x2||ω+

1 ×ω2
+ ||η22x̄2||ω1×ω+

2
+ ||η0||ω + ||χ||∗ + ||χx̄2|]∗

)
. (31)

In order to estimate the convergence rate of finite-difference scheme (15), it is enough to
estimate the norm of error functionals on the right-hand side of (31). For this we apply the
standard technique (see, e.g., [3, 7]).

First, for each summands of χx̄2 we write

|ηx̄2| 6 ch−1

x1∫

x1−h

β(t) dt hm−2/p|u|W m
p (e), pm > 1, m ∈ (1; 3], e = (x1−h, x1)×(x2−h, x2).

Next,

|ηx̄2| 6 c




x1∫

x1−h

t(ε−1)p/(p−1) dt




(p−1)/p

|u|W m
p (e)h

m−1−1/p,
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therefore,

|χx̄2| 6 chm−1−1/p




1∫

0

t(ε−1)p/(p−1) dt




(p−1)/p

|u|W m
p (ē), ē = (0; 1)× (x2 − h; x2).

Taking into account the inequality

∑
ω2

|u|2W m
p (ē) 6 ch−1+2/p|u|2W m

p (Ω),

we will have
||χx̄2|]∗ 6 chm−1|u|W m

p (Ω).

The analogous estimate is obtained for ||χ||∗.
With the well-known estimates for η11, η12, η22, η0 (see [3,7]), (31) yields the convergence

theorem.

Theorem 2. The finite-difference scheme (15) converges and the convergence rate esti-
mate (1) holds.
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izdanja, vol. 16, Matematički institut, Beograd, 1993.
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