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ON IMPROVED APPROXIMATE SOLUTION OF THE

FREDHOLM INTEGRAL EQUATION

G.BERIKELASHVILI1 AND G.KARKARASHVILI1

Abstract — A method of approximate solution of the linear one-dimensional Fred-
holm integral equation of the second kind is constructed. With the help of the Steklov
averaging operator the integral equation is approximated by a system of linear alge-
braic equations. On the basis of the approximation used an increased order convergence
solution has been obtained.
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1. Introduction

A one-dimensional Fredholm integral equation of the second kind with solution u from the
Sobolev space W 1

2 (0, 1) is constructed in the paper. The integral equation is approximated
by a system of linear algebraic equations obtained on the basis of the Steklov averaging
operator P . For the solution v of the system, the estimate

‖v − Pu‖L2(ω) � ch2‖u‖W 1
2 (0,1) (1.1)

is valid; here ‖ · ‖L2(ω) represents the norm of the mesh functions defined on ω, h is a
mesh step. But this is convergence to average of the exact solution and the difference
between the exact solution and its average Pu is O(h), if u ∈ W 1

2 (0, 1). The estimate
‖v − u‖L2(ω) = O(h2) is valid only in the case u ∈ W 2

2 (0, 1).
The main result of the paper is the construction of such a mesh function ṽ (on the basis

of the already found v) for which the estimate

‖ṽ − u‖L2(ω) � ch2‖u‖W 1
2 (0,1) (1.2)

is true.

2. Basic Mesh Scheme

Consider the one-dimensional Fredholm integral equation of the second kind

u(x) − λ

1∫
0

K(x, y)u(y) dy = f(x), x ∈ [0, 1], (2.1)
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where λ is a real parameter which is not a characteristic number. It is known (see, e.g., [1])
that for f ∈ W α

2 (0, 1) and K ∈ W α
2 (0, 1)2, α � 0, there exists a unique solution u ∈ W α

2 (0, 1).
Consider the following mesh in [0, 1] : ω = {xi = ih : i = 1, 2, . . . , N}, where h = 1/N .

Let ω2 = ω×ω. For the mesh functions defined on ω and ω2 we use the notation vi = v(ih),
aij = a(ih, jh). For the one-dimensional mesh functions let us introduce the norm

‖v‖L2(ω) =

( N∑
i=1

h|vi|2
)1/2

.

Define the following averaging operator

Pu =
1

h

x∫
x−h

u(t) dt, x ∈ ω.

In order to indicate the integration variable in operator P , sometimes we will write Pxi
, Pyi

,
Pti , . . . , where xi = yi = ti = . . . = ih.

We approximate equation (2.1) by the linear algebraic system of equations

vi − λ

N∑
j=1

haijvj = ϕi, i = 1, 2, . . . , N, (2.2)

where aij = Pxi
Pyj

K, ϕi = Pxi
f. This approximation was studied in [1] and estimate (1.1)

was obtained for it, though under the requirement of symmetry of the kernel K. Therefore
we will state here shortly the proof of this estimate with the help of an improved method.

Lemma 2.1. If the kernel K satisfies the condition

|λ| ‖K‖L2(0,1)2 < 1, (2.3)

then system (2.2) has a unique solution.

Proof. Multiplying both parts of (2.2) by hvi and summing up by i = 1, 2, . . . , N , we
obtain

‖v‖2
L2(ω) − λ

N∑
i,j=1

h2aijvivj =

N∑
i=1

hϕivi.

From here

‖v‖2
L2(ω) − |λ|

( N∑
i,j=1

h2a2
ij

)1/2( N∑
i=1

hv2
i

)1/2( N∑
j=1

hv2
j

)1/2

� ‖ϕ‖L2(ω) ‖v‖L2(ω),

that is (
1 − |λ|

( N∑
i,j=1

h2a2
ij

)1/2)
‖v‖L2(ω) � ‖ϕ‖L2(ω). (2.4)

On the other hand, applying the Cauchy — Buniakovski inequality, we come to

N∑
i,j=1

h2a2
ij =

N∑
i,j=1

h−2

( xi∫
xi−1

yj∫
yj−1

K(x, y)dxdy

)2

�
N∑

i,j=1

h−2

xi∫
xi−1

yj∫
yj−1

dxdy

xi∫
xi−1

yj∫
yj−1

K2(x, y)dxdy=‖K‖2
L2(0,1)2 .
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Therefore, from (2.4) follows

‖v‖L2(ω) � c1‖ϕ‖L2(ω), c1 = |λ|(1 − |λ| ‖K‖L2(0,1)2)
−1. (2.5)

Thus, if ϕ(x) = 0, x ∈ ω, then v(x) = 0, x ∈ ω and, consequently, the solution of system
(2.2) exists and is unique. This completes the proof of the lemma. �

Let u be a solution of the integral equation (2.1) and v — a solution of the mesh scheme
(2.2). Then for the error z = v − Pu ve obtain the problem

zi − λ

N∑
j=1

haijzj = λψi, i = 1, 2, . . . , N (2.6)

where ψi =
∑N

j=1 hPxi
Pyj

K(x, y) Ptju(t) − ∑N
j=1 hPxi

Pyj
K(x, y)u(y), i = 1, 2, . . . , N. It fol-

lows from (2.5) that the a priori estimate

‖z‖L2(ω) � c1|λ| ‖ψ‖L2(ω) (2.7)

is valid for the solution of problem (2.6).
In order to estimate the convergence rate of the mesh scheme (2.2), it is enough to

estimate the norm of the approximation error ψ. To this end, we apply the well-known
tecnique (see e.g. [2, 3]).

It is easy to verify that the approximation error can be written in the form

ψi = 0.5

N∑
j=1

hPxi
Pyj

Ptj

(
K(x, y) − K(x, t)

)(
u(t) − u(y)

)
.

This gives the following ‖ψ‖L2(ω) � (h2/2)‖∂K/∂y‖L2(0,1)2 ‖u′‖L2(0,1) and therefore (2.7)
implies

‖v − Pu‖L2(ω) � ch2‖u‖W 1
2 (0,1). (2.8)

3. Emprovement of the Approximate Solution

Let v be a solution of problem (2.2); let us define one more approximation:

ṽi = f(xi) + λ

N∑
j=1

hPtjK(xi, t)vj, i = 1, 2, . . . , N. (3.1)

Theorem 3.1. If f ∈ W 1
2 (0, 1), K ∈ W 1

2 (0, 1)2 and condition (2.3) holds, then the
function ṽ determined from the (3.1) converges to the solution of equation (2.1) and estimate
(1.2) is valid.

Proof. Taking into account (2.1), (2.2), (3.1), we can write for the error ṽ − u as follows:

ṽi − u(xi) = λ
N∑

j=1

hPyj
K(xi, y)vj − λ

1∫
0

K(xi, y)u(y) dy =

λ

N∑
j=1

hPyj
K(xi, y)vj − λ

N∑
j=1

hPyj
K(xi, y)u(y) = λ(Ai + 0.5Bi), (3.2)
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where

Ai =
N∑

j=1

hPyj
K(xi, y)(vj − Pxj

u(x)), Bi =
N∑

j=1

hPyj
Ptj

(
K(xi, y) − K(xi, t)

)(
u(t) − u(y)

)
.

It follows from (3.2) that

‖ṽ − u‖L2(ω) � |λ|
( N∑

i=1

hA2
i

)1/2

+ 0.5|λ|
( N∑

i=1

hB2
i

)1/2

. (3.3)

By virtue of the Cauchy — Buniakovski inequality we have

N∑
i=1

hA2
i �

N∑
i=1

h

N∑
j=1

h
(
Pyj

K(xi, y)
)2

N∑
j=1

h
(
vj − Pyj

u(y)
)2 �

N∑
i=1

h
N∑

j=1

yj∫
yj−1

(K(xi, y))2 dy ‖v − Pu‖2
L2(ω) =

N∑
i=1

h

1∫
0

(K(xi, y))2 dy ‖v − Pu‖2
L2(ω). (3.4)

Further, it is easy to see that

K(xi, y) =
1

h

xi∫
xi−1

xi∫
x

∂K(ξ, y)

∂ξ
dξdx +

1

h

xi∫
xi−1

K(x, y) dx,

Therefore,

|K(xi, y)|2 � h

xi∫
xi−1

∣∣∣∣∂K(x, y)

∂x

∣∣∣∣2 dx +
2

h

xi∫
xi−1

|K(x, y)|2 dx

and we obtain
N∑

i=1

h(K(xi, y))2 �
N∑

i=1

h2

xi∫
xi−1

∣∣∣∣∂K(x, y)

∂x

∣∣∣∣2 dx+

N∑
i=1

2

xi∫
xi−1

|K(x, y)|2dx � 2

1∫
0

(∣∣∣∣∂K(x, y)

∂x

∣∣∣∣2 + |K(x, y)|2
)

dx. (3.5)

Substituting (3.5) into (3.4), we get

N∑
i=1

hA2
i � 2‖K‖2

W 1
2 (0,1)2 ‖v − Pu‖2

L2(ω). (3.6)

Estimate now the second addend in the right hand side of (3.3)

N∑
i=1

hB2
i =

N∑
i=1

h

[ N∑
j=1

1

h

yj∫
yj−1

tj∫
tj−1

(
K(xi, y)− K(xi, t)

)(
u(t) − u(y)

)
dydt

]2

�
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N∑
i=1

h

[ N∑
j=1

1

h

( yj∫
yj−1

tj∫
tj−1

(
K(xi, y) − K(xi, t)

)2
dy dt

)1/2( yj∫
yj−1

tj∫
tj−1

(
u(t) − u(y)

)2
dy dt

)1/2 ]2

�

N∑
i=1

1

h

[ N∑
j=1

1

h

yj∫
yj−1

tj∫
tj−1

|K(xi, y) − K(xi, t)|2 dy dt

N∑
j=1

yj∫
yj−1

tj∫
tj−1

|u(t) − u(y)|2 dy dt

]
�

n∑
i=1

h2
N∑

j=1

yj∫
yj−1

tj∫
tj−1

(
K(xi, y) − K(xi, t)

)2
dy dt‖u′‖2

L2(0,1). (3.7)

It is easy to see that

K(xi, y)−K(xi, t)=
1

h

ξi∫
ξi−1

xi∫
ξ

∂K(x, y)

∂x
dxdξ+

1

h

ξi∫
ξi−1

y∫
t

∂K(ξ, ζ)

∂ζ
dξdζ+

1

h

ξi∫
ξi−1

ξ∫
xi

∂K(x, t)

∂x
dxdξ

from which

|K(xi, y)− K(xi, t)| �
xi∫

xi−1

∣∣∣∣∂K(x, y)

∂x

∣∣∣∣ dx +
1

h

xi∫
xi−1

ζj∫
ζj−1

∣∣∣∣∂K(x, ζ)

∂ζ

∣∣∣∣ dxdζ +

xi∫
xi−1

∣∣∣∣∂K(x, t)

∂x

∣∣∣∣ dx.

Therefore, from (3.7) we have

N∑
i=1

hB2
i �

N∑
i=1

h2
N∑

j=1

yj∫
yj−1

tj∫
tj−1

[
3h

xi∫
xi−1

∣∣∣∣∂K(x, y)

∂x

∣∣∣∣2 dx+

3

xi∫
xi−1

ζj∫
ζj−1

∣∣∣∣∂K(x, ζ)

∂ζ

∣∣∣∣2 dxdζ + 3h

xi∫
xi−1

∣∣∣∣∂K(x, t)

∂x

∣∣∣∣2 dx

]
dy dt‖u′‖2

L2(0,1) �

(
6h4

1∫
0

1∫
0

∣∣∣∣∂K(x, y)

∂x

∣∣∣∣2 dxdy + 3h4

1∫
0

1∫
0

∣∣∣∣∂K(x, y)

∂y

∣∣∣∣ dxdy

)
‖u′‖2

L2(0,1). (3.8)

Due to (2.8), (3.6), (3.8) estimate (1.2) follows from (3.3). The theorem has been
proved. �

References

1. V. L. Makarov and G. S. Karkarashvili, Solution of integral equations in fractional Sobolev spaces,
Vychisl. Prikl. Mat., 63 (1987), pp. 3–19 (in Russian); J. Soviet Math. 66 (1993), no. 2, pp. 2125–2138
(English).

2. A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference schemes for differential equations with
generalized solutions, Vysshaja Shkola, Moskow, 1987 (in Russian).
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