G. Berikelashvili

ON THE FOURTH-ORDER ACCURATE DIFFERENCE SCHEME FOR POISSON'S EQUATION WITH NONLOCAL BOUNDARY CONDITION

Let $\Omega=\left\{\left(x_{1}, x_{2}\right): 0<x_{k}<1, k=1,2\right\}$ be a square with the boundary Γ, and $\Gamma_{1}=\left\{\left(1, x_{2}\right): 0<x_{2}<1\right\}, \Gamma_{0}=\Gamma \backslash \Gamma_{1}$.

We consider a nonlocal boundary value problem with Bitsadze-Samarskii condition and with Dirichlet conditions on a part of the boundary for Poisson's equation

$$
\begin{align*}
& \Delta u=f(x), x \in \Omega \\
& u(x)=0, x \in \Gamma_{0}, \quad u\left(1, x_{2}\right)=\alpha u\left(\xi, x_{2}\right), \quad 0<x_{2}<1, \tag{1}
\end{align*}
$$

where $\xi, \alpha \in(0,1)$ are fixed numbers.
Consider the following grid domains in $\bar{\Omega}: \bar{\omega}_{\alpha}=\left\{x_{\alpha}=i_{\alpha} h: i_{\alpha}=\right.$ $0,1, \ldots, n, h=1 / n\}, \omega_{\alpha}=\bar{\omega}_{\alpha} \cap(0,1), \omega_{\alpha}^{+}=\bar{\omega}_{\alpha} \cap(0,1], \alpha=1,2, \omega=$ $\omega_{1} \times \omega_{2}, \bar{\omega}=\bar{\omega}_{1} \times \bar{\omega}_{2}, \gamma=\bar{\omega} \cap \bar{\Omega}, \gamma_{0}=\Gamma_{0} \cap \bar{\omega}$.

For grid functions and difference ratios, we use the notation

$$
v_{x_{i}}=\left(v^{\left(+1_{i}\right)}-v\right) / h, \quad v_{\bar{x}_{i}}=\left(v-v^{\left(-1_{i}\right)}\right) / h,
$$

where $v^{\left(\pm 1_{1}\right)}(x)=v\left(x_{1} \pm h, x_{2}\right), v^{\left(\pm 1_{2}\right)}(x)=v\left(x_{1}, x_{2} \pm h\right)$. For simplicity let us assume, that the index written below grid functions corresponds to the first coordinate: $y_{i}=y\left(i h, x_{2}\right)$.

Let us introduce the weighted inner product and the norm

$$
\begin{gathered}
(y, v)_{r}=\sum_{\omega} h^{2} r y v, \quad\|y\|_{r}=(y, y)_{r}^{1 / 2}, \\
\|y\|_{W_{2}^{1}(\omega, r)}^{2}=\left\|y_{\bar{x}_{1}}\right\|_{r}^{2}+\left\|y_{\bar{x}_{2}}\right\|_{r}^{2}, \quad r=1-x_{1} .
\end{gathered}
$$

Assume that the inner product and the norm containing the index ρ have the analogously meaning.

Let

$$
\xi=(k+\theta) h, \quad 0 \leq \theta<1
$$

where k is positive integer, $2 \leq k<n-2$.

[^0]We approximate problem (1) by the difference scheme

$$
\begin{align*}
& y_{\bar{x}_{1} x_{1}}+y_{\bar{x}_{2} x_{2}}+\frac{h^{2}}{6} y_{\bar{x}_{1} x_{1} \bar{x}_{2} x_{2}}=\varphi(x), \quad x \in \omega \tag{2}\\
& y=0, \quad x \in \gamma_{0}, \quad y\left(1, x_{2}\right)=\alpha Y\left(x_{2}\right), \quad x_{2} \in \omega_{2} \tag{3}
\end{align*}
$$

where φ is some average of the right-hand side of equation (1) and

$$
\begin{gather*}
Y\left(x_{2}\right):=\frac{(1+\theta)(2-\theta)}{2}\left((1-\theta) y_{k}+\theta y_{k+1}\right)- \\
-\frac{\theta(1-\theta)}{6}\left((1+\theta) y_{k+2}+(2-\theta) y_{k-1}\right) . \tag{4}
\end{gather*}
$$

Significant moment in obtaining the main result is the selection of the weight function and establishment of estimate for the $\left(y_{\bar{x}_{1} x_{1}}, y\right)_{\rho}$.

Lemma 1. For any $\theta \in[0,1]$ the estimate

$$
\begin{equation*}
Y^{2} \leq \frac{45}{32}\left((1-\theta) y_{k}^{2}+\theta y_{k+1}^{2}\right)+\frac{5}{96}\left((1+\theta) y_{k+2}^{2}+(2-\theta) y_{k-1}^{2}\right) \tag{5}
\end{equation*}
$$

is valid.
Proof. Let $A:=(1-\theta) y_{k}+\theta y_{k+1}$ and $B:=(1+\theta) y_{k+2}+(2-\theta) y_{k-1}$.
Then

$$
|Y| \leq \frac{9}{8}|A|+\frac{1}{24}|B| .
$$

Consequently,

$$
\begin{equation*}
Y^{2} \leq \frac{90}{64} A^{2}+\frac{10}{24^{2}} B^{2} \tag{6}
\end{equation*}
$$

Moreover, from equations

$$
\begin{gathered}
(1-\theta) a^{2}+\theta b^{2}-((1-\theta) a+\theta b)^{2}=(1-\theta) \theta(a-b)^{2}, \\
3(1+\theta) a^{2}+3(2-\theta) b^{2}-((1+\theta) a+(2-\theta) b)^{2}=(1+\theta)(2-\theta)(a-b)^{2}
\end{gathered}
$$

it follows that

$$
\begin{gathered}
((1-\theta) a+\theta b)^{2} \leq(1-\theta) a^{2}+\theta b^{2} \\
((1+\theta) a+(2-\theta) b)^{2} \leq 3(1+\theta) a^{2}+3(2-\theta) b^{2} .
\end{gathered}
$$

Thus from (6) we get

$$
Y^{2} \leq \frac{90}{64}\left((1-\theta) y_{k}^{2}+\theta y_{k+1}^{2}\right)+\frac{10}{24^{2}}\left(3(1+\theta) y_{k+2}^{2}+3(2-\theta) y_{k-1}^{2}\right),
$$

which proves the validity of Lemma 1.
Let us pass now to the construction of a weighted function. Let

$$
\beta_{i}=\left\{\begin{array}{l}
(2-\theta) i h+\theta+1-3 \xi, \quad i \leq k-1 \\
(1+\theta)(1-(k+2) h), \quad i=k, k+1 \\
(\theta+1)(1-i h), \quad i \geq k+2
\end{array}\right.
$$

$$
\gamma_{i}=\left\{\begin{array}{l}
(1-\sigma) i h+m-\xi, \quad i \leq k \\
\sigma(1-i h), \quad i \geq k+1
\end{array}\right.
$$

where σ is undefined yet parameter. It can be verified that

$$
\begin{gathered}
\beta_{\bar{x}_{1} x_{1}, i}=-\frac{2-\theta}{h} \delta_{i, k-1}-\frac{1+\theta}{h} \delta_{i, k+2} \\
\gamma_{\bar{x}_{1} x_{1}, i}=-\frac{1-\theta}{h} \delta_{i, k}-\frac{\theta}{h} \delta_{i, k+1}
\end{gathered}
$$

where $\delta_{\text {,, }}$ is the Kronecker symbol.
Choose

$$
\begin{equation*}
\rho_{i}=c_{1} \beta_{i}+c_{2} \gamma_{i}, \quad c_{1}=\frac{5}{96}, \quad c_{2}=\frac{45}{32} . \tag{7}
\end{equation*}
$$

Then the identity

$$
\begin{equation*}
h \rho_{\bar{x}_{1} x_{1}, i}=-c_{1}\left((2-\theta) \delta_{i, k-1}+(1+\theta) \delta_{i, k+2}\right)-c_{2}\left((1-\theta) \delta_{i, k}+\theta \delta_{i, k+1}\right) \tag{8}
\end{equation*}
$$

holds.
Lemma 2. Let

$$
\frac{25}{16} \xi<c_{1}(1+\theta)+c_{2} \sigma \leq \frac{1}{\alpha^{2}}
$$

Then for every mesh function $y(x)$ satisfying the conditions (3), the estimate

$$
-\left(y_{\bar{x}_{1} x_{1}}, y\right)_{\rho} \geq c\left\|y_{\bar{x}_{1}}\right\|_{\bar{\rho}}^{2}
$$

is valid.
Proof. Let us first show that in the conditions of the lemma the inequality

$$
\begin{equation*}
\rho_{n-1} y^{2}\left(1, x_{2}\right)+h^{2} \sum_{\omega_{1}} \rho_{\bar{x}_{1} x_{1}, i} y^{2} \leq 0 . \tag{9}
\end{equation*}
$$

is valid.
Indeed, according to (8), we have
$h \sum_{\omega_{1}} \rho_{\bar{x}_{1} x_{1}, i} y^{2}=-c_{1}\left((2-\theta) y_{k-1}^{2}+(1+\theta) y_{k+2}^{2}\right)-c_{2}\left((1-\theta) y_{k}^{2}+\theta y_{k+1}^{2}\right)$.
Taking also into account Lemma 1, we can see that for the fulfilment of (9) it suffices that $\rho_{n-1} \alpha^{2} \leq h$, that is,

$$
\left(c_{1}(1+\theta)+c_{2} \sigma\right) \alpha^{2} \leq 1
$$

Let now

$$
\frac{25}{16} \xi<c_{1}(1+\theta)+c_{2} \sigma .
$$

In such a case, ρ_{0} turns out to be positive, and since $\rho_{\bar{x}_{1} x_{1}} \leq 0$, we have $\rho_{i}>0, i=0,1,2, \ldots, n-1$.

Using summation by parts, we obtain

$$
\begin{gathered}
-\sum_{\omega_{1}} h \rho y_{\bar{x}_{1} x_{1}} y=\sum_{\omega_{1}^{+}} h \bar{\rho} y_{\bar{x}_{1}}^{2}- \\
-\frac{1}{2}\left(\rho_{n-1} y^{2}\left(1, x_{2}\right)+h^{2} \sum_{\omega_{1}} y^{2} \rho_{\bar{x}_{1} x_{1}}\right), \bar{\rho}_{i}=0.5\left(\rho_{i}+\rho_{i-1}\right),
\end{gathered}
$$

which together with (9) proves Lemma 2.
It is proved that auxiliary weight function $\rho\left(x_{1}\right)$ is equivalent to $r\left(x_{1}\right)$.
Using procedure proposed in [1], we obtain the following
Theorem 1. The finite difference scheme (2), (3) is uniquely solvable and its convergence rate is determined by the estimate

$$
\|y-u\|_{W_{2}^{1}(\omega, \rho)} \leq c h^{4}\|u\|_{W_{2}^{5}(\Omega)}
$$

References

1. G. K. Berikelashvili, On the rate of convergence of the difference solution of a nonlocal boundary value problem for a second-order elliptic equation. (Russian) Differ. Uravn. 39 (2003), No. 7, 896-903, 1004-1005; translation in Differ. Equ. 39 (2003), No. 7, 945-953.

Author's addresses:
A. Razmadze Mathemetical Institute
I. Javakhishvili Tbilisi State University

2, University Str., Tbilisi 0186
Georgia
Department of Mathematics of Georgian Technical University 77, M.Kostava Str., Tbilisi 0193
Georgia

[^0]: 2010 Mathematics Subject Classification. 65N06, 35J25.
 Key words and phrases. Bitsadze-Samarskii condition, difference scheme, fourth-order accuracy.

