On the convergence rate of a difference solution of the Poisson equation with fully nonlocal constraints

Givi Berikelashvilia ${ }^{\text {a,b }}$, Nodar Khomeriki ${ }^{\text {b }}$
${ }^{\text {a }}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tamarashvili str. 6, Tbilisi 0177, Georgia
bergi@rmi.ge; berikela@yahoo.com
${ }^{\mathrm{b}}$ Department of Mathematics, Georgian Technical University Kostava str. 77, Tbilisi 0175, Georgia
n.khomeriki@gtu.ge

Received: 2 February 2014 / Revised: 26 March 2014 / Published online: 30 June 2014

Abstract

We consider the Poisson equation in a rectangular domain. Instead of the classical specification of boundary data, we impose an integral constraints on the inner stripe adjacent to boundary having the width ξ. The corresponding finite-difference scheme is constructed on a mesh, which selection does not depend on the value ξ. It is proved the unique solvability of the scheme. An a priori estimate of the discretization error is obtained with the help of energy inequality method. It is proved that the scheme is convergent with the convergence rate of order $s-1$, when the exact solution belongs to the fractional Sobolev space of order $s(1<s \leqslant 3)$.

Keywords: integral conditions, energy inequalities, difference scheme, convergence rate.

1 Introduction

Nonlocal boundary-value problems naturally arise in the mathematical modeling of many problems of ecology, physics, and engineering, when it is impossible to determine the boundary values of the unknown function (see, e.g., $[1-5]$ and the references therein). At the same time, they are a very interesting generalization of classical boundary-value problems (see, e.g., [6]). The investigation of boundary-value problems with integral conditions goes back to Cannon [7]. The systematic investigation of a certain class of spatial nonlocal problems was carried out by Bitsadze and Samarskii [8]. Later, for elliptic equations, were posed and analyzed nonlocal boundary-value problems of various types (see, e.g., [9-14]).

In [15], we considered the nonlocal problem for the Poisson equation, when the Dirichlet-Neumann conditions are posed on a pair of adjacent sides of a rectangle, and integral constraints $\int_{0}^{l_{k}} u(x) \mathrm{d} x_{k}=0, k=1,2$, were given instead of classical boundary conditions on the other pair. It is proved that corresponding difference scheme converges in the energy norm at the rate $O\left(|h|^{s-1}\right)$, when the desired solution belongs to the Sobolev
space $W_{2}^{s}(1<s \leqslant 3)$. The proof bases on procedure of obtaining convergence estimate (compatible with smoothness of the exact solution) developed by Samarskii et al. [16] (see, also [17, 18]).

In this paper, we study the case, when the classical boundary conditions are completely replaced by nonlocal ones:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=-f(x), \quad x \in \Omega, \tag{1}\\
\int_{0}^{\xi_{k}} u(x) \mathrm{d} x_{k}=0, \quad \int_{l_{k}-\xi_{k}}^{k} u(x) \mathrm{d} x_{k}=0, \quad 0 \leqslant x_{3-k} \leqslant l_{3-k}, k=1,2, \tag{2}
\end{gather*}
$$

where $\Omega=\left\{\left(x_{1}, x_{2}\right): 0<x_{k}<l_{k}, k=1,2\right\}$ be the rectangle; $l=\max \left\{l_{1}, l_{2}\right\}$. We assume that the solution u of the nonlocal boundary-value problem (1), (2) belongs to the fractional-order Sobolev space $W_{2}^{s}(\Omega), s>1$. For the corresponding difference scheme, estimate of convergence similar to [15], is obtained. Besides the fact that the operator of the difference scheme is not positive definite, basic difficulties comparing with [15] are as follows:

- It is not required that points with coordinates ξ_{k} or $l_{k}-\xi_{k}$ belong to the mesh, which complicates investigation;
- Full disregard of classical boundary conditions complicates obtaining a priori estimates.

2 Finite-difference scheme and main results

Consider the following grid domains on $\bar{\Omega}: \bar{\omega}=\bar{\omega}_{1} \times \bar{\omega}_{2}, \omega=\omega_{1} \times \omega_{2}$, where $\bar{\omega}_{k}=$ $\left\{x_{k, i_{k}}=i_{k} h_{k}: i_{k}=0,1, \ldots, n_{k}, h_{k}=l_{k} / n_{k}\right\}, \omega_{k}=\bar{\omega}_{k} \cap\left(0, l_{k}\right), \omega_{k}^{+}=\bar{\omega}_{k} \cap\left(0, l_{k}\right]$, $\hbar_{k}=h_{k}$ for $x_{k} \in \omega_{k}, \hbar_{k}=h_{k} / 2$ for $x_{k}=0, l_{k},|h|=\left(h_{1}^{2}+h_{2}^{2}\right)^{1 / 2}$.

For the values of net function in several points, we apply the notation $y_{i j}=y\left(i h_{1}, j h_{2}\right)$. When it does not lead to ambiguity, for simplicity, we use the notations $y_{i}=y\left(i h_{1}, x_{2}\right)$, $y_{j}=y\left(x_{1}, j h_{2}\right)$.

We define the finite-difference operators

$$
v_{x_{k}}=\frac{v\left(x+h_{k} r_{k}\right)-v(x)}{h_{k}}, \quad v_{\bar{x}_{k}}=\frac{v(x)-v\left(x-h_{k} r_{k}\right)}{h_{k}}, \quad k=1,2,
$$

where r_{k} is the unit vector on the x_{k} axis.
Let

$$
\xi_{k}=\left(m_{k}+\theta_{k}\right) h_{k}, \quad 0 \leqslant \theta_{k}<1, h_{k} \leqslant \xi_{k} \leqslant l_{k} / 2, k=1,2
$$

where m_{k} is positive integer.
By H we denote the set of all discrete functions $v=v(x)$, defined on the grid $\bar{\omega}$ and satisfying conditions

$$
\begin{equation*}
\check{\mathcal{P}}^{\prime}(v)=0, \quad \hat{\mathcal{P}}^{\prime}(v)=0, \quad x_{2} \in \bar{\omega}_{2}, \quad \check{\mathcal{P}}^{\prime \prime}(v)=0, \quad \hat{\mathcal{P}}^{\prime \prime}(v)=0, \quad x_{1} \in \omega_{1}, \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\check{\mathcal{P}}^{\prime}\left(v_{j}\right):= & \sum_{i=0}^{m_{1}} h_{1} v_{i j}-\frac{h_{1}}{2}\left(y_{0 j}+v_{m_{1} j}\right)+\frac{\theta_{1} h_{1}}{2}\left(\left(2-\theta_{1}\right) v_{m_{1} j}+\theta_{1} v_{m_{1}+1, j}\right), \\
\check{\mathcal{P}}^{\prime \prime}\left(v_{i}\right):= & \sum_{j=0}^{m_{2}} h_{2} v_{i j}-\frac{h_{2}}{2}\left(v_{i 0}+v_{i m_{2}}\right)+\frac{\theta_{2} h_{2}}{2}\left(\left(2-\theta_{2}\right) v_{i m_{2}}+\theta_{2} v_{i, m_{2}+1}\right), \\
\hat{\mathcal{P}}^{\prime}\left(v_{j}\right):= & \sum_{i=n_{1}-m_{1}}^{n_{1}} h_{1} v_{i j}-\frac{h_{1}}{2}\left(v_{n_{1}-m_{1}, j}+v_{n_{1} j}\right) \\
& +\frac{\theta_{1} h_{1}}{2}\left(\left(2-\theta_{1}\right) v_{n_{1}-m_{1}, j}+\theta_{1} v_{n_{1}-m_{1}-1, j}\right), \\
\hat{\mathcal{P}}^{\prime \prime}\left(v_{i}\right):= & \sum_{j=n_{2}-m_{2}}^{n_{2}} h_{2} v_{i j}-\frac{h_{2}}{2}\left(v_{i, n_{2}-m_{2}}+v_{i n_{2}}\right) \\
& +\frac{\theta_{2} h_{2}}{2}\left(\left(2-\theta_{2}\right) v_{i, n_{2}-m_{2}}+\theta_{2} v_{i, n_{2}-m_{2}-1}\right) .
\end{aligned}
$$

We need the following averaging operators for functions defined on Ω :

$$
\begin{aligned}
& T_{1} u(x)=\frac{1}{h_{1}^{2}} \int_{x_{1}-h_{1}}^{x_{1}+h_{1}}\left(h_{1}-\left|x_{1}-t_{1}\right|\right) u\left(t_{1}, x_{2}\right) \mathrm{d} t_{1} \\
& T_{2} u(x)=\frac{1}{h_{2}^{2}} \int_{x_{2}-h_{2}}^{x_{2}+h_{2}}\left(h_{2}-\left|x_{2}-t_{2}\right|\right) u\left(x_{1}, t_{2}\right) \mathrm{d} t_{2} .
\end{aligned}
$$

We approximate the problem (1), (2) by the difference scheme

$$
\begin{equation*}
\Lambda y=-\varphi, \quad x \in \omega_{1} \times \omega_{2}, y \in H \tag{4}
\end{equation*}
$$

where

$$
\Lambda:=\Lambda_{1}+\Lambda_{2}, \quad \Lambda_{\alpha} y:=y_{\bar{x}_{\alpha} x_{\alpha}}, \quad \varphi:=T_{1} T_{2} f
$$

Theorem 1. A solution of difference scheme (4) exists and is unique.
Indeed, according to the Lemma 7, the homogeneous problem $\Lambda y=0$ has only trivial solution $y=0$. Therefore, the nonhomogeneous problem is uniquely solvable.

Theorem 2. Let a solution $u(x)$ of the problem (1), (2) belong to the space $W_{2}^{s}(\Omega)$, $s>1$. Then the convergence rate of the difference scheme (4) in the discrete weighted W_{2}^{1}-norm is determined by the estimate

$$
\begin{equation*}
\|y-u\|_{W_{2}^{1}(\omega, \rho)} \leqslant c|h|^{s-1}\|u\|_{W_{2}^{s}(\Omega)}, \quad 1<s \leqslant 3 . \tag{5}
\end{equation*}
$$

3 Auxiliary statements

Lemma 1. For every discrete function $v \in H$, the following identities hold:

$$
\check{\mathcal{P}}^{\prime \prime}\left(v_{i}\right)=0, \quad \hat{\mathcal{P}}^{\prime \prime}\left(v_{i}\right)=0, \quad i=0, n_{1} .
$$

Proof. Indeed,

$$
\begin{aligned}
\check{\mathcal{P}}^{\prime \prime}\left(v_{0}\right)= & \check{\mathcal{P}}^{\prime \prime}\left(v_{0}\right)+\check{\mathcal{P}}^{\prime \prime}\left(v_{m_{1}}\right) \\
= & \sum_{j=1}^{m_{2}-1} h_{2}\left(v_{0 j}+v_{m_{1} j}\right)+\frac{h_{2}}{2}\left(v_{00}+v_{0 m_{2}}+v_{m_{1} 0}+v_{m_{1} m_{2}}\right) \\
& +\frac{\theta_{2} h_{2}}{2}\left(\left(2-\theta_{2}\right) v_{0 m_{2}}+\theta_{2} v_{0, m_{2}+1}+\left(2-\theta_{2}\right) v_{m_{1} m_{2}}+\theta_{2} v_{m_{1}, m_{2}+1}\right) .
\end{aligned}
$$

Hence using the relation

$$
\begin{aligned}
\sum_{j=1}^{m_{2}-1}\left(v_{0 j}+v_{m_{1} j}\right)= & \sum_{i=1}^{m_{1}-1}\left(v_{i 0}+v_{i m_{2}}\right)+\sum_{i=1}^{m_{1}-1} \theta_{2}\left(\left(2-\theta_{2}\right) v_{i m_{2}}+\theta_{2} v_{i, m_{2}+1}\right) \\
& -\sum_{j=1}^{m_{2}-1} \theta_{1}\left(\left(2-\theta_{1}\right) v_{m_{1} j}+\theta_{1} v_{m_{1}+1, j}\right)
\end{aligned}
$$

which follows from the equality

$$
h_{2} \sum_{j=1}^{m_{2}-1} \check{\mathcal{P}}^{\prime}\left(v_{j}\right)=h_{1} \sum_{i=1}^{m_{1}-1} \check{\mathcal{P}}^{\prime \prime}\left(v_{i}\right),
$$

we obtain

$$
\begin{equation*}
\frac{1}{h_{2}} \check{\mathcal{P}}^{\prime \prime}\left(v_{0}\right)=\frac{1}{h_{1}}\left(\check{\mathcal{P}}^{\prime}\left(v_{0}\right)+\check{\mathcal{P}}^{\prime}\left(v_{m_{2}}\right)\right)+\mathcal{Q}=\mathcal{Q} \tag{6}
\end{equation*}
$$

Here

$$
\begin{aligned}
\mathcal{Q}:= & \theta_{2}\left(2-\theta_{2}\right)\left(\sum_{i=1}^{m_{1}-1} v_{i m_{2}}+\frac{1}{2}\left(v_{0 m_{2}}+v_{m_{1} m_{2}}\right)\right) \\
& +\theta_{2}^{2}\left(\sum_{i=1}^{m_{1}-1} v_{i, m_{2}+1}+\frac{1}{2}\left(v_{0, m_{2}+1}+v_{m_{1}, m_{2}+1}\right)\right) \\
& -\theta_{1}\left(2-\theta_{1}\right)\left(\sum_{j=1}^{m_{2}-1} v_{m_{1} j}+\frac{1}{2}\left(v_{m_{1} 0}+v_{m_{1} m_{2}}\right)\right) \\
& -\theta_{1}^{2}\left(\sum_{j=1}^{m_{2}-1} v_{m_{1}+1, j}+\frac{1}{2}\left(v_{m_{1}+1,0}+v_{m_{1}+1, m_{2}}\right)\right) .
\end{aligned}
$$

By applying nonlocal conditions we see that

$$
\begin{aligned}
\mathcal{Q}= & -\theta_{1} \theta_{2}\left(2-\theta_{2}\right)\left(\left(2-\theta_{1}\right) v_{m_{1} m_{2}}+\theta_{1} v_{m_{1}+1, m_{2}}\right) \\
& -\theta_{1} \theta_{2}^{2}\left(\left(2-\theta_{1}\right) v_{m_{1}, m_{2}+1}+\theta_{1} v_{m_{1}+1, m_{2}+1}\right) \\
& +\theta_{1} \theta_{2}\left(2-\theta_{1}\right)\left(\left(2-\theta_{2}\right) v_{m_{1} m_{2}}+\theta_{2} v_{m_{1}, m_{2}+1}\right) \\
& +\theta_{1}^{2} \theta_{2}\left(\left(2-\theta_{2}\right) v_{m_{1}+1, m_{2}}+\theta_{2} v_{m_{1}+1, m_{2}+1}\right)=0 .
\end{aligned}
$$

From here and (6) follows the first identity of Lemma 1. The proof of the last part leads analogously.

We define the weight functions

$$
\begin{aligned}
& \rho^{(k)}=\rho^{(k)}\left(i_{k} h_{k}\right)= \begin{cases}\left(i_{k}-\frac{1}{2}\right) \frac{h_{k}}{\xi_{k}}, & i_{k}=1,2, \ldots, m_{k} \\
1, & i=m_{k}+2, \ldots, n_{k}-m_{k}-1 \\
\left(n_{k}-i_{k}+\frac{1}{2}\right) \frac{h_{k}}{\xi_{k}}, & i_{k}=n_{k}-m_{k}+1, \ldots, n_{k} \\
1-\frac{\theta_{k}^{2} h_{k}}{2 \xi_{k}}, & i_{k}=m_{k}+1, i_{k}=n_{k}-m_{k}\end{cases} \\
& \bar{\rho}^{(k)}=\bar{\rho}^{(k)}\left(i_{k} h_{k}\right)= \begin{cases}\frac{h_{k}}{4 \xi_{k}}, & i_{k}=0, n_{k}, \\
\frac{i_{k} h_{k}}{\xi_{k}}, & i_{k}=1,2, \ldots, m_{k} \\
1, & i_{k}=m_{k}+1, \ldots, n_{k}-m_{k}-1 \\
\frac{\left(n_{k}-i_{k}\right) h_{k}}{\xi_{k}}, & i_{k}=n_{k}-m_{k}, \ldots, n_{k}-1\end{cases}
\end{aligned}
$$

In H, we introduce the inner product and norm as

$$
(y, v)=\sum_{\bar{\omega}} \hbar_{1} \hbar_{2}\left(\bar{\rho}^{(1)}+\bar{\rho}^{(2)}\right) y v, \quad\|y\|=(y, y)^{1 / 2} .
$$

Let, in addition,

$$
\begin{gathered}
(y, v)_{\omega}=\sum_{\omega} h_{1} h_{2} y v, \\
\|\nabla y\|^{2}=\sum_{\omega_{1}^{+} \times \bar{\omega}_{2}} h_{1} \hbar_{2} \rho^{(1)} \bar{\rho}^{(2)}\left(y_{\bar{x}_{1}}\right)^{2}+\sum_{\bar{\omega}_{1} \times \omega_{2}^{+}} \hbar_{1} h_{2} \bar{\rho}^{(1)} \rho^{(2)}\left(y_{\bar{x}_{2}}\right)^{2}, \\
\|y\|_{W_{2}^{1}(\rho, \omega)}^{2}=\|y\|^{2}+\|\nabla y\|^{2},
\end{gathered} G_{1} y_{i j}= \begin{cases}\frac{1}{\xi_{1}}\left(i h_{1} y_{i j}-h_{1} \sum_{k=0}^{i} y_{k j}+\frac{h_{1}}{2}\left(y_{i j}+y_{0 j}\right)\right), & 0 \leqslant i \leqslant m_{1}, \\
y_{i j}, & m_{1}+1 \leqslant i \leqslant n_{1}-m_{1}-1, \\
\frac{1}{\xi_{1}}\left(\left(n_{1}-i\right) h_{1} y_{i j}-h_{1} \sum_{k=i}^{n_{1}} y_{k j}+\frac{h}{2}\left(y_{i j}+y_{n_{1} j}\right)\right), & n_{1}-m_{1} \leqslant i \leqslant n_{1}, \\
G_{2} y_{i j}= \begin{cases}\frac{1}{\xi_{2}}\left(j h_{2} y_{i j}-h_{2} \sum_{k=0}^{j} y_{i k}+\frac{h_{2}}{2}\left(y_{i j}+y_{i 0}\right)\right), & 0 \leqslant j \leqslant m_{2}, \\
y_{i j}, & m_{2}+1 \leqslant i \leqslant n_{2}-m_{2}-1, \\
\frac{1}{\xi_{2}}\left(\left(n_{2}-j\right) h_{2} y_{i j}-h_{2} \sum_{k=j}^{n_{2}} y_{i k}+\frac{h_{2}}{2}\left(y_{i j}+y_{i n_{2}}\right)\right), & n_{2}-m_{2} \leqslant j \leqslant n_{2} .\end{cases} \end{cases}
$$

Lemma 2. Let grid functions $v(x), y(x)$ be defined on $\bar{\omega}$, and $y(x)$ satisfy the conditions

$$
\check{\mathcal{P}}^{\prime}(y)=0, \hat{\mathcal{P}}^{\prime}(y)=0, \quad x_{2} \in \bar{\omega}_{2} \quad \text { or } \quad \check{\mathcal{P}}^{\prime \prime}(y)=0, \hat{\mathcal{P}}^{\prime \prime}(y)=0, \quad x_{1} \in \bar{\omega}_{1} .
$$

Then

$$
\sum_{\omega_{k}} h_{k} v_{\bar{x}_{k} x_{k}} G_{k} y=-\sum_{\omega_{k}^{+}} h_{k} \rho^{(k)} v_{\bar{x}_{k}} y_{\bar{x}_{k}}
$$

for $k=1$ or $k=2$, respectively.
Proof. Using the summation by parts, we obtain

$$
\begin{align*}
\sum_{i=1}^{m_{1}} h_{1}\left(v_{\bar{x}_{1} x_{1}}\right)_{i} G_{1} y_{i}= & -\sum_{i=1}^{m_{1}} h_{1} \rho^{(1)}\left(i h_{1}\right)\left(v_{\bar{x}_{1}}\right)_{i}\left(y_{\bar{x}_{1}}\right)_{i}+\left(v_{\bar{x}_{1}}\right)_{m_{1}+1} G_{1} y_{m_{1}}, \tag{7}\\
\sum_{i=m_{1}+1}^{n_{1}-m_{1}-1} h_{1}\left(v_{\bar{x}_{1} x_{1}}\right)_{i} G_{1} y_{i}= & -\sum_{i=m_{1}+1}^{n_{1}-m_{1}} h_{1}\left(v_{\bar{x}_{1}}\right)_{i}\left(y_{\bar{x}_{1}}\right)_{i}+\left(v_{\bar{x}_{1}}\right)_{n_{1}-m_{1}} y_{n_{1}-m_{1}} \\
& -\left(v_{\bar{x}_{1}}\right)_{m_{1}+1} y_{m_{1}} \tag{8}\\
\sum_{i=n_{1}-m_{1}}^{n_{1}-1} h_{1}\left(v_{\bar{x}_{1} x_{1}}\right)_{i} G_{1} y_{i}= & -\sum_{i=n_{1}-m_{1}+1}^{n_{1}} h_{1} \rho^{(1)}\left(i h_{1}\right)\left(v_{\bar{x}_{1}}\right)_{i}\left(v_{\bar{x}_{1}}\right)_{i} \\
& -\left(v_{\bar{x}_{1}}\right)_{n_{1}-m_{1}} G_{1} y_{n_{1}-m_{1}} . \tag{9}
\end{align*}
$$

Adding the equalities (7)-(9) and applying following from the nonlocal conditions identities

$$
G_{1} y_{m_{1}}=y_{m_{1}}+\frac{\theta_{1}^{2} h_{1}^{2}}{2 \xi_{1}}\left(y_{\bar{x}_{1}}\right)_{m_{1}+1}, \quad G_{1} y_{n_{1}-m_{1}}=y_{n_{1}-m_{1}}-\frac{\theta_{1}^{2} h_{1}^{2}}{2 \xi_{1}}\left(y_{\bar{x}_{1}}\right)_{n_{1}-m_{1}}
$$

we verify the validity of the Lemma 2 in the case $k=1$. The case $k=2$ may be proved analogously.

Lemma 3. If a grid function $y(x)$, defined on $\bar{\omega}$, satisfies the conditions

$$
\check{\mathcal{P}}^{\prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime}(y)=0, \quad x_{2} \in \bar{\omega}_{2} \quad \text { or } \quad \check{\mathcal{P}}^{\prime \prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime \prime}(y)=0, \quad x_{1} \in \bar{\omega}_{1},
$$

then

$$
\frac{7}{8} \sum_{\bar{\omega}_{k}} \hbar_{k} \bar{\rho}^{(k)} y^{2} \leqslant \sum_{\omega_{k}} h_{k} y G_{k} y \leqslant \sum_{\bar{\omega}_{k}} \hbar_{k} \bar{\rho}^{(k)} y^{2}
$$

for $k=1$ or $k=2$, respectively.
Proof. It may be showed that the identity

$$
\begin{align*}
\sum_{i=1}^{n_{1}-1} h_{1} y_{i j} G_{1} y_{i j}= & \frac{h_{1}^{2}}{\xi_{1}} \sum_{i=1}^{m_{1}} i y_{i j}^{2}+h_{1} \sum_{i=m_{1}+1}^{n_{1}-m_{1}-1} y_{i j}^{2}+\frac{h_{1}^{2}}{\xi_{1}} \sum_{i=n_{1}-m_{1}}^{n_{1}-1}\left(n_{1}-i\right) y_{i j}^{2} \\
& +\frac{h_{1}^{2}}{8 \xi_{1}}\left(y_{0 j}^{2}+y_{n_{1} j}^{2}-\check{S}^{2}-\hat{S}^{2}\right) \tag{10}
\end{align*}
$$

holds, where

$$
\check{S}:=2 \sum_{k=0}^{m_{1}} y_{k j}-y_{0 j}, \quad \hat{S}:=2 \sum_{k=n_{1}-m_{1}}^{n_{1}} y_{k j}-y_{n_{1} j} .
$$

Let us note that, according to nonlocal conditions,

$$
\check{S}=\left(1-\theta_{1}\right)^{2} y_{m_{1} j}-\theta_{1}^{2} y_{m_{1}+1, j} .
$$

In addition, the inequality

$$
\begin{equation*}
\check{S}^{2} \leqslant\left(1-\theta_{1}\right)^{2} y_{m_{1} j}^{2}+\theta_{1}^{2} y_{m_{1}+1, j}^{2}:=A \tag{11}
\end{equation*}
$$

follows from

$$
A-\check{S}^{2} \geqslant\left(\left(1-\theta_{1}\right)^{2}+\theta_{1}^{2}\right) A-\check{S}^{2}=\left(1-\theta_{1}\right)^{2} \theta_{1}^{2}\left(y_{m_{1} j}+y_{m_{1}+1, j}\right)^{2} \geqslant 0 .
$$

We can obtain analogously that

$$
\begin{equation*}
\hat{S}^{2} \leqslant\left(1-\theta_{1}\right)^{2} y_{n_{1}-m_{1}, j}^{2}+\theta_{1}^{2} y_{n_{1}-m_{1}-1, j}^{2} . \tag{12}
\end{equation*}
$$

Adding inequalities (11), (12) and replacing in the right-hand side $\left(1-\theta_{1}\right)^{2} \leqslant m_{1}$ and $\theta_{1}^{2} \leqslant \xi_{1} / h_{1}$, we obtain

$$
\begin{aligned}
\frac{h_{1}^{2}}{8 \xi_{1}}\left(\check{S}^{2}+\hat{S}^{2}\right) & \leqslant \frac{m_{1} h_{1}^{2}}{8 \xi_{1}}\left(y_{m_{1} j}^{2}+y_{n_{1}-m_{1}, j}^{2}\right)+\frac{h_{1}}{8}\left(y_{m_{1}+1, j}^{2}+y_{n_{1}-m_{1}-1, j}^{2}\right) \\
& \leqslant \frac{1}{8} \sum_{i=0}^{n_{1}} \hbar_{1} \bar{\rho}_{i}^{(1)} y_{i j}^{2} .
\end{aligned}
$$

From this inequality and (10) follows the validity of Lemma 3 in the case $k=1$. We can consider the case $k=2$ analogously.

Lemma 4. If a grid function $y(x)$, defined on $\bar{\omega}$, satisfies the conditions

$$
\check{\mathcal{P}}^{\prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime}(y)=0, \quad x_{2} \in \bar{\omega}_{2} \quad \text { or } \quad \check{\mathcal{P}}^{\prime \prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime \prime}(y)=0, \quad x_{1} \in \bar{\omega}_{1},
$$

then

$$
\sum_{\bar{\omega}_{k}} \hbar_{k} y^{2} \leqslant l_{k}^{2} \sum_{\omega_{k}^{+}} h_{k} \rho^{(k)} y_{\bar{x}_{k}}^{2}
$$

for $k=1$ or $k=2$, respectively.
Proof. For arbitrary $y(x)$, defined on $\bar{\omega}$, the identity

$$
\begin{equation*}
\|y\|_{(1)}^{2}:=\sum_{i=0}^{n_{1}} \hbar_{1} y_{i}^{2}=J+\frac{l_{1}}{2}\left(y_{m_{1}}^{2}+y_{n_{1}-m_{1}}^{2}\right) \tag{13}
\end{equation*}
$$

is true, where

$$
\begin{aligned}
J= & -\sum_{i=1}^{m_{1}} h_{1}\left(i-\frac{1}{2}\right)\left(y_{i}^{2}-y_{i-1}^{2}\right)+\sum_{i=m_{1}+1}^{n_{1}-m_{1}} h_{1}\left(\frac{n_{1}}{2}-i+\frac{1}{2}\right)\left(y_{i}^{2}-y_{i-1}^{2}\right) \\
& +\sum_{i=n_{1}-m_{1}+1}^{n_{1}} h_{1}\left(n_{1}-i+\frac{1}{2}\right)\left(y_{i}^{2}-y_{i-1}^{2}\right) .
\end{aligned}
$$

Let us estimate this sum.
If

$$
\begin{aligned}
J_{1}:= & \sum_{i=1}^{m_{1}} h_{1}^{3}\left(i-\frac{1}{2}\right)^{2} y_{\bar{x}_{1}, i}^{2}+\sum_{i=m_{1}+1}^{n_{1}-m_{1}} h_{1}^{3}\left(\frac{n_{1}}{2}-i+\frac{1}{2}\right)^{2} y_{\bar{x}_{1}, i}^{2} \\
& +\sum_{i=n_{1}-m_{1}+1}^{n_{1}} h_{1}^{3}\left(n-i+\frac{1}{2}\right)^{2} y_{\bar{x}_{1}, i}^{2},
\end{aligned}
$$

then

$$
\begin{aligned}
|J| & \leqslant\left(\sum_{i=1}^{n_{1}} h_{1}\left(y_{i}+y_{i-1}\right)^{2}\right)^{1 / 2}\left(J_{1}\right)^{1 / 2} \leqslant \frac{1}{8} \sum_{i=1}^{n_{1}} h_{1}\left(y_{i}+y_{i-1}\right)^{2}+2 J_{1} \\
& \leqslant \frac{1}{2}\|y\|_{(1)}^{2}+2 J_{1} .
\end{aligned}
$$

Applying this inequality to (13), we have

$$
\begin{equation*}
\|y\|_{(1)}^{2} \leqslant 4 J_{1}+l_{1}\left(y_{m_{1}}^{2}+y_{n_{1}-m_{1}}^{2}\right) . \tag{14}
\end{equation*}
$$

From the nonlocal condition follows

$$
\xi y_{m_{1}}=\sum_{i=1}^{m_{1}} h_{1}\left(i-\frac{1}{2}\right)\left(y_{i}-y_{i-1}\right)-\frac{\theta_{1}^{2} h_{1}}{2}\left(y_{m_{1}+1}-y_{m_{1}}\right)
$$

and, therefore,

$$
\begin{equation*}
y_{m_{1}}^{2} \leqslant \frac{1}{2}\left(\sum_{i=1}^{m_{1}} h_{1}^{2}\left(i-\frac{1}{2}\right) y_{\bar{x}_{1}, i}^{2}+\frac{\theta_{1}^{2} h_{1}^{2}}{2} y_{\bar{x}_{1}, m_{1}+1}^{2}\right) \tag{15}
\end{equation*}
$$

Based on the nonlocal condition, we have as well

$$
\begin{equation*}
y_{n_{1}-m_{1}}^{2} \leqslant \frac{1}{2}\left(\sum_{i=n_{1}-m_{1}+1}^{n_{1}} h_{1}^{2}\left(n_{1}-i+\frac{1}{2}\right) y_{\bar{x}_{1}, i}^{2}+\frac{\theta_{1}^{2} h_{1}^{2}}{2} y_{\bar{x}_{1}, n_{1}-m_{1}}^{2}\right) \tag{16}
\end{equation*}
$$

From (14) with the help of (15), (16) we obtain

$$
\begin{aligned}
\|y\|_{(1)}^{2} \leqslant & \frac{9 l_{1}}{2} \sum_{i=1}^{m_{1}} h_{1}^{2}\left(i-\frac{1}{2}\right) y_{\bar{x}_{1}, i}^{2}+\frac{9 l_{1}}{2} \sum_{i=n_{1}-m_{1}+1}^{n_{1}} h_{1}^{2}\left(n-i+\frac{1}{2}\right) y_{\bar{x}_{1}, i}^{2} \\
& +l_{1}^{2} \sum_{i=m_{1}+1}^{n_{1}-m_{1}} h_{1} y_{\bar{x}_{1}, i}^{2}+\frac{l_{1}^{2}}{8 \xi} \theta_{1}^{2} h_{1}^{2}\left(y_{\bar{x}_{1}, m+1}^{2}+y_{\bar{x}_{1}, n_{1}-m_{1}}^{2}\right) .
\end{aligned}
$$

If we increase the first and second sums by multiplication on the quantity $l_{1} /\left(2 \xi_{1}\right)>1$ and apply the inequality

$$
1+\frac{\theta_{1}^{2} h_{1}}{8 \xi_{1}}<\frac{9}{4}\left(1-\frac{\theta_{1}^{2} h_{1}}{2 \xi_{1}}\right)
$$

in the summands with the indices $i=m_{1}+1, n_{1}-m_{1}$, we will be sure that the Lemma 4 is true.

Lemma 5. If a grid function $y(x)$, defined on $\bar{\omega}$, satisfies the conditions

$$
\check{\mathcal{P}}^{\prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime}(y)=0, \quad x_{2} \in \bar{\omega}_{2} \quad \text { or } \quad \check{\mathcal{P}}^{\prime \prime}(y)=0, \quad \hat{\mathcal{P}}^{\prime \prime}(y)=0, \quad x_{1} \in \bar{\omega}_{1},
$$

then

$$
\sum_{\omega_{k}} h_{k}\left(G_{k} y\right)^{2} \leqslant 10 \sum_{\bar{\omega}_{k}} \hbar_{k} \bar{\rho}_{k} y^{2}, \quad k=1,2,
$$

for $k=1$ or $k=2$, respectively.
Proof. Let

$$
\check{S}_{i}:=\sum_{k=0}^{i} h_{1} y_{k}-\frac{h_{1}}{2}\left(y_{i}+y_{0}\right), \quad \hat{S}_{i}:=\sum_{k=i}^{n_{1}} h_{1} y_{k}-\frac{h_{1}}{2}\left(y_{i}+y_{n_{1}}\right) .
$$

According to the definition of the operator G_{1},

$$
\begin{aligned}
\sum_{i=1}^{n_{1}-1} h_{1}\left(G_{1} y_{i}\right)^{2}= & \sum_{i=1}^{m_{1}} \frac{h_{1}}{\xi^{2}}\left(i h_{1} y_{i}-\check{S}_{i}\right)^{2}+\sum_{i=m_{1}+1}^{n_{1}-m_{1}-1} h_{1}\left(y_{i}\right)^{2} \\
& +\sum_{i=n_{1}-m_{1}}^{n_{1}-1} \frac{h_{1}}{\xi_{1}^{2}}\left(\left(n_{1}-i\right) y_{i}-\hat{S}_{i}\right)^{2} .
\end{aligned}
$$

We have from here

$$
\begin{align*}
\sum_{i=1}^{n_{1}-1} h_{1}\left(G_{1} y_{i}\right)^{2} \leqslant & \sum_{i=1}^{m_{1}} \frac{2 h_{1}}{\xi_{1}^{2}}\left(i h_{1}\right)^{2}\left(y_{i}\right)^{2}+\sum_{i=m_{1}+1}^{n_{1}-m_{1}-1} h_{1}\left(y_{i}\right)^{2}+\sum_{i=n_{1}-m_{1}}^{n_{1}-1} \frac{2 h_{1}}{\xi_{1}^{2}}\left(n_{1}-i\right)^{2} h_{1}^{2} y_{i}^{2} \\
& +\sum_{i=1}^{m_{1}} \frac{2 h_{1}}{\xi_{1}^{2}}\left(\check{S}_{i}\right)^{2}+\sum_{i=n_{1}-m_{1}}^{n_{1}-1} \frac{2 h_{1}}{\xi_{1}^{2}}\left(\hat{S}_{i}\right)^{2} . \tag{17}
\end{align*}
$$

It is not difficult to verify that

$$
\sum_{i=1}^{m_{1}} h_{1}\left(\check{S}_{i}\right)^{2}=\left(m_{1}+\frac{1}{2}\right) h_{1}\left(\check{S}_{m_{1}}\right)^{2}-\sum_{i=1}^{m_{1}} \frac{h_{1}^{2}}{2}\left(i-\frac{1}{2}\right)\left(y_{i}+y_{i-1}\right)\left(\check{S}_{i}+\check{S}_{i-1}\right) .
$$

We have from here

$$
\begin{equation*}
2 \sum_{i=1}^{m_{1}} h_{1}\left(\check{S}_{i}\right)^{2} \leqslant\left(4 m_{1}+1\right) h_{1}\left(\check{S}_{m_{1}}\right)^{2}+2 \sum_{i=1}^{m_{1}} h_{1}\left(h_{1}\left(i-\frac{1}{2}\right)\left(y_{i}+y_{i-1}\right)\right)^{2} . \tag{18}
\end{equation*}
$$

Noting that

$$
\left(\check{S}_{m_{1}}\right)^{2} \leqslant \frac{h_{1}^{2}}{2}\left(y_{m_{1}}^{2}+y_{m_{1}+1}^{2}\right)
$$

we obtain from (18)

$$
\begin{equation*}
2 \sum_{i=1}^{m_{1}} h_{1} \check{S}_{i}^{2} \leqslant 8 \sum_{i=1}^{m_{1}} h_{1}^{2} i \xi_{1} y_{i}^{2}+3 h_{1} \xi_{1}^{2} y_{m_{1}+1}^{2}+h_{1}^{3} y_{0}^{2} . \tag{19}
\end{equation*}
$$

We can obtain analogously that

$$
\begin{equation*}
2 \sum_{i=n_{1}-m_{1}}^{n_{1}-1} h_{1}\left(\hat{S}_{i}\right)^{2} \leqslant 8 \sum_{i=n_{1}-m_{1}}^{n_{1}-1} h_{1}^{2}\left(n_{1}-i\right) \xi_{1} y_{i}^{2}+3 h_{1} \xi_{1}^{2} y_{n_{1}-m_{1}-1}^{2}+h_{1}^{3} y_{n_{1}}^{2} \tag{20}
\end{equation*}
$$

From the inequalities (17), (19), (20) follows validity of the Lemma 5 in the case $k=1$. We can consider the case $k=2$ analogously.

Lemma 6. For every $y \in H$, the following inequalities hold:

$$
\begin{gather*}
\frac{7}{8}\|\nabla y\|^{2} \leqslant\left(-\Lambda y, G_{1} G_{2} y\right)_{\omega} \leqslant\|\nabla y\|^{2}, \tag{21}\\
\|y\|_{W_{2}^{1}(\rho, \omega)}^{2} \leqslant c\left(-\Lambda y, G_{1} G_{2} y\right)_{\omega}, \quad c=\frac{8}{7}+l^{2} .
\end{gather*}
$$

Proof. Based on the Lemma 2,

$$
\left(-\Lambda y, G_{1} G_{2} y\right)_{\omega}=\sum_{\omega_{1}^{+} \times \omega_{2}} h_{1} h_{2} \rho^{(1)} y_{\bar{x}_{1}} G_{2} y_{\bar{x}_{1}}+\sum_{\omega_{1} \times \omega_{2}^{+}} h_{1} h_{2} \rho^{(2)} y_{\bar{x}_{2}} G_{1} y_{\bar{x}_{2}} .
$$

Taking into account in addition following from the Lemma 3 inequalities

$$
\begin{aligned}
& \frac{7}{8} \sum_{\bar{\omega}_{1} \times \omega_{2}^{+}} \hbar_{1} h_{2} \bar{\rho}^{(1)} \rho^{(2)}\left(y_{\bar{x}_{2}}\right)^{2} \\
& \quad \leqslant \sum_{\omega_{1} \times \omega_{2}^{+}} h_{1} h_{2} \rho^{(2)} y_{\bar{x}_{2}} G_{1} y_{\bar{x}_{2}} \leqslant \sum_{\bar{\omega}_{1} \times \omega_{2}^{+}} \hbar_{1} h_{2} \bar{\rho}^{(1)} \rho^{(2)}\left(y_{\bar{x}_{2}}\right)^{2}, \\
& \overline{7} \sum_{\omega_{1}^{+} \times \bar{\omega}_{2}} h_{1} \hbar_{2} \rho^{(1)} \bar{\rho}^{(2)}\left(y_{\bar{x}_{1}}\right)^{2} \\
& \quad \leqslant \sum_{\omega_{1}^{+} \times \omega_{2}} h_{1} h_{2} \rho^{(1)} y_{\bar{x}_{1}} G_{2} y_{\bar{x}_{1}} \leqslant \sum_{\omega_{1}^{+} \times \bar{\omega}_{2}} h_{1} \hbar_{2} \rho^{(1)} \bar{\rho}^{(2)}\left(y_{\bar{x}_{1}}\right)^{2},
\end{aligned}
$$

we ensure the validity for the first inequality of lemma.
According to Lemma 4,

$$
\|y\|^{2} \leqslant c_{1}\|\nabla y\|^{2}, \quad c_{1}=\max \left(l_{1}^{2} ; l_{2}^{2}\right) .
$$

From here and (21) it follows Lemma 6.

To determine the convergence rate of the finite-difference scheme (4), we apply the following lemma.
Lemma 7. Assume that the linear functional $\eta(u)$ is bounded in $W_{2}^{s}(E)$, where $s=\bar{s}+\epsilon$, \bar{s} is an integer, $0<\epsilon \leqslant 1$, and $\eta(P)=0$ for every polynomial P of degree $\leqslant \bar{s}$ in two variables. Then there exists a constant c, independent of u, such that $|\eta(u)| \leqslant$ $c\|u\|_{W_{2}^{s}(E)}$.

This lemma is a particular case of Dupont-Scott approximation theorem [19] and it represents a generalization of the Bramble-Hilbert lemma [20] (see also [16, p. 29]).

4 The problem for the error

Let us define on the particular subintervals the components of approximation errors for the integral conditions (2):

$$
\begin{aligned}
\zeta_{i j}^{\prime}:= & \int_{(j-1) h_{2}}^{j h_{2}} u\left(i h_{1}, t_{2}\right) \mathrm{d} t_{2}-\frac{h_{2}}{2}\left(u_{i, j-1}+u_{i j}\right), \quad j \neq m_{2}+1, n_{2}-m_{2}, \\
\zeta_{i, m_{2}+1}^{\prime}:= & \int_{m_{2} h_{2}}^{\left(m_{2}+\theta_{2}\right) h_{2}} u\left(i h_{1}, t_{2}\right) \mathrm{d} t_{2}-\frac{\theta_{2} h_{2}}{2}\left(\left(2-\theta_{2}\right) u_{i, m_{2}}+\theta_{2} u_{i, m_{2}+1}\right), \\
\zeta_{i, n_{2}-m_{2}}^{\prime}:= & \int_{\left(n_{2}-m_{2}\right) h_{2}} \int_{\left(n_{2}-m_{2}-\theta_{2}\right) h_{2}} u\left(i h_{1}, t_{2}\right) \mathrm{d} t_{2}-\frac{\theta_{2} h_{2}}{2}\left(\left(2-\theta_{2}\right) u_{i, n_{2}-m_{2}}+\theta_{2} u_{i, n_{2}-m_{2}-1}\right), \\
\zeta_{i j}^{\prime \prime}:= & \int_{(i-1) h_{1}}^{i h_{1}} u\left(t_{1}, j h_{2}\right) \mathrm{d} t_{1}-\frac{h_{1}}{2}\left(u_{i-1, j}+u_{i j}\right), \quad i \neq m_{1}+1, n_{1}-m_{1}, \\
& \left(m_{1}+\theta_{1}\right) h_{1} \\
\zeta_{m_{1}+1, j}^{\prime \prime}:= & \int_{m_{1}} u\left(t_{1}, j h_{2}\right) \mathrm{d} t_{1}-\frac{\theta_{1} h_{1}}{2}\left(\left(2-\theta_{1}\right) u_{m_{1}, j}+\theta_{1} u_{\left.m_{1}+1, j\right),}\right. \\
\zeta_{n_{1}-m_{1}, j}^{\prime \prime}:= & \int_{\left(n_{1}-m_{1}\right) h_{1}} \int_{\left(n_{1}-m_{1}-\theta_{1}\right) h_{1}} u\left(t_{1}, j h_{2}\right) \mathrm{d} t_{1}-\frac{\theta_{1} h_{1}}{2}\left(\left(2-\theta_{1}\right) u_{\left.n_{1}-m_{1}, j+\theta_{1} u_{n_{1}-m_{1}-1, j}\right) .}\right.
\end{aligned}
$$

Lemma 8. Let u be the solution of the problem (1), (2) and y be the solution of the finite-difference scheme (4). Then discretization error $z=y-u$ satisfies the following problem:

$$
\begin{gather*}
\Lambda z=\eta_{\bar{x}_{1} x_{1}}^{(1)}+\eta_{\bar{x}_{2} x_{2}}^{(2)}, \quad x \in \omega, \tag{22}\\
\check{\mathcal{P}}^{\prime}(z)=\check{\chi}^{(2)}\left(x_{2}\right), \quad \hat{\mathcal{P}}^{\prime}(z)=\hat{\chi}^{(2)}\left(x_{2}\right), \quad x_{2} \in \bar{\omega}_{2}, \tag{23}\\
\check{\mathcal{P}}^{\prime \prime}(z)=\check{\chi}^{(1)}\left(x_{1}\right), \quad \hat{\mathcal{P}}^{\prime \prime}(z)=\hat{\chi}^{(1)}\left(x_{1}\right), \quad x_{1} \in \omega_{1},
\end{gather*}
$$

where

$$
\begin{array}{rlrl}
\eta^{(1)} & :=T_{2} u-u, & \eta^{(2)}: & =T_{1} u-u, \\
\check{\chi}_{i}^{(1)} & :=\sum_{j=1}^{m_{2}+1} \zeta_{i j}, & \hat{\chi}_{i}^{(1)}: & =\sum_{j=n_{2}-m_{2}}^{n_{2}} \zeta_{i j}, \\
\check{\chi}_{j}^{(2)}:=\sum_{i=1}^{m_{1}+1} \zeta_{i j}, & \hat{\chi}_{j}^{(2)}: & =\sum_{i=n_{1}-m_{1}}^{n_{1}} \zeta_{i j} .
\end{array}
$$

Indeed, (22) can be obtained from substituting $y=z+u$ into (4) and taking into account $T_{k}\left(\partial^{2} u / \partial x^{2}\right)=u_{\bar{x}_{k} x_{k}}$.

Further, in view of the conditions (2), (3), we have

$$
\check{\mathcal{P}}^{\prime}(z)=\check{\mathcal{P}}^{\prime}(y)-\check{\mathcal{P}}^{\prime}(u)=\int_{0}^{\xi_{1}} u\left(t_{1}, x_{2}\right) \mathrm{d} t_{1}-\check{\mathcal{P}}^{\prime}(u)=\check{\chi}^{(2)}\left(x_{2}\right) .
$$

We can verify other equalities of (23) analogously.
As we see, the nonlocal conditions for the error problem, unlike the difference scheme, are not homogeneous. Therefore, in order to use the results obtained in the Section 3, we pass to the new unknown function.

First of all, let us define the functions

$$
\check{\beta}^{(k)}\left(x_{k}\right)=\frac{2 l_{k}-\xi_{k}-2 x_{k}}{2 \xi_{k}\left(l_{k}-\xi_{k}\right)}, \quad \hat{\beta}^{(k)}\left(x_{k}\right)=\frac{2 x_{k}-\xi_{k}}{2 \xi_{k}\left(l_{k}-\xi_{k}\right)}, \quad k=1,2 .
$$

For them, the following hold:

$$
\begin{array}{llll}
\check{\mathcal{P}}^{\prime}\left(\check{\beta}^{(1)}\right)=1, & \check{\mathcal{P}}^{\prime \prime}\left(\check{\beta}^{(2)}\right)=1, & \hat{\mathcal{P}}^{\prime}\left(\check{\beta}^{(1)}\right)=0, & \hat{\mathcal{P}}^{\prime \prime}\left(\check{\beta}^{(2)}\right)=0, \\
\check{\mathcal{P}}^{\prime}\left(\hat{\beta}^{(1)}\right)=0, & \check{\mathcal{P}}^{\prime \prime}\left(\hat{\beta}^{(2)}\right)=0, & \hat{\mathcal{P}}^{\prime}\left(\hat{\beta}^{(1)}\right)=1, & \hat{\mathcal{P}}^{\prime \prime}\left(\hat{\beta}^{(2)}\right)=1 .
\end{array}
$$

Let

$$
\begin{align*}
w(x)= & z(x)-\check{\beta}^{(1)}\left(x_{1}\right) \check{\chi}^{(2)}\left(x_{2}\right)-\hat{\beta}^{(2)}\left(x_{2}\right) \hat{\chi}^{(1)}\left(x_{1}\right)-\check{\beta}^{(2)}\left(x_{2}\right) \check{\chi}^{(1)}\left(x_{1}\right) \\
& +\check{\beta}^{(1)}\left(x_{1}\right) \check{\beta}^{(2)}\left(x_{2}\right) \check{\mathcal{P}}^{\prime}\left(\check{\chi}^{(1)}\right)+\check{\beta}^{(1)}\left(x_{1}\right) \hat{\beta}^{(2)}\left(x_{2}\right) \check{\mathcal{P}}^{\prime}\left(\hat{\chi}^{(1)}\right)-\hat{\beta}^{(1)}\left(x_{1}\right) \hat{\chi}^{(2)}\left(x_{2}\right) \\
& +\hat{\beta}^{(1)}\left(x_{1}\right) \check{\beta}^{(2)}\left(x_{2}\right) \hat{\mathcal{P}}^{\prime}\left(\check{\chi}^{(1)}\right)+\hat{\beta}^{(1)}\left(x_{1}\right) \hat{\beta}^{(2)}\left(x_{2}\right) \hat{\mathcal{P}}^{\prime}\left(\hat{\chi}^{(1)}\right) . \tag{24}
\end{align*}
$$

We can verify straightforward that $\check{P}^{\prime}(w)=0$ and $\hat{P}^{\prime}(w)=0$.
For the verification of the conditions $\stackrel{P}{P}^{\prime \prime}(w)=0$ and $\hat{P}^{\prime \prime}(w)=0$, we apply the consequences of (23), respectively,

$$
\check{P}^{\prime \prime}\left(\check{\chi}^{(2)}\right)=\check{P}^{\prime}\left(\check{\chi}^{(1)}\right), \quad \check{P}^{\prime \prime}\left(\hat{\chi}^{(2)}\right)=\hat{P}^{\prime}\left(\check{\chi}^{(1)}\right)
$$

and

$$
\hat{P}^{\prime \prime}\left(\tilde{\chi}^{(2)}\right)=\check{P}^{\prime}\left(\hat{\chi}^{(1)}\right), \quad \hat{P}^{\prime \prime}\left(\hat{\chi}^{(2)}\right)=\hat{P}^{\prime}\left(\hat{\chi}^{(1)}\right) .
$$

It may be proved that the function $w(x)$ represents a solution of the following problem:

$$
\begin{equation*}
\Lambda w=\psi, \quad x \in \omega, w \in H \tag{25}
\end{equation*}
$$

where

$$
\psi:=\sum_{k=1}^{2}\left(\Lambda_{k} \eta^{(k)}-\check{\beta}^{(3-k)} \Lambda_{k} \check{\chi}^{(k)}-\hat{\beta}^{(3-k)} \Lambda_{k} \hat{\chi}^{(k)}\right) .
$$

5 Proof of Theorem 2

It follows from (24)

$$
\begin{equation*}
\|\nabla z\| \leqslant\|\nabla w\|+c\left(J_{1}+J_{2}+J_{3}\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
J_{1} & :=\left\|\tilde{\chi}^{(1)}\right\|_{\bar{\omega}_{1}}+\left\|\check{\chi}^{(2)}\right\|_{\bar{\omega}_{2}}+\left\|\hat{\chi}^{(1)}\right\|_{\bar{\omega}_{1}}+\left\|\hat{\chi}^{(2)}\right\|_{\bar{\omega}_{2}}, \\
J_{2} & :=\left\|\check{\chi}_{\bar{x}_{1}}^{(1)}\right\|_{\omega_{1}^{+}}+\left\|\tilde{\chi}_{\bar{x}_{2}}^{(2)}\right\|_{\omega_{2}^{+}}+\left\|\hat{\chi}_{\bar{x}_{1}}^{(1)}\right\|_{\omega_{1}^{+}}+\left\|\hat{\chi}_{\bar{x}_{2}}^{(2)}\right\|_{\omega_{2}^{+}}, \\
J_{3} & :=\left|\check{\mathcal{P}}^{\prime}\left(\check{\chi}^{(1)}\right)\right|+\left|\check{\mathcal{P}}^{\prime}\left(\hat{\chi}^{(1)}\right)\right|+\left|\hat{\mathcal{P}}^{\prime}\left(\check{\chi}^{(1)}\right)\right|+\left|\hat{\mathcal{P}}^{\prime}\left(\hat{\chi}^{(1)}\right)\right| .
\end{aligned}
$$

According to (25), we have $\left(\Lambda w, G_{1} G_{2} w\right)_{\omega}=\left(\psi, G_{1} G_{2} w\right)_{\omega}$. If we apply the first inequality of Lemma 6 in the left-hand side of this identity, and in the right-hand side the Lemmas 2 and 5, we obtain

$$
\begin{equation*}
\|\nabla w\| \leqslant c\left(\left\|\eta_{\bar{x}_{1}}^{(1)}\right\|_{\omega_{1}^{+} \times \omega_{2}}+\left\|\eta_{\bar{x}_{2}}^{(2)}\right\|_{\omega_{1} \times \omega_{2}^{+}}+J_{2}\right) . \tag{27}
\end{equation*}
$$

The second inequality of the Lemma 6 together with (2), (27) gives an a priori estimate for the problem (22)

$$
\begin{equation*}
\|z\|_{W_{2}^{1}(\omega, \rho)} \leqslant c\left(\left\|\eta_{\bar{x}_{1}}^{(1)}\right\|_{\omega_{1}^{+} \times \omega_{2}}+\left\|\eta_{\bar{x}_{2}}^{(2)}\right\|_{\omega_{1} \times \omega_{2}^{+}}+J_{1}+J_{2}+J_{3}\right) . \tag{28}
\end{equation*}
$$

For the estimation of J_{1}, notice that the summands $\zeta^{\prime}, \zeta^{\prime \prime}$, as linear functionals with respect to $u(x)$, vanish on the polynomials of first order and are bounded on $W_{2}^{s}, s>1$. Consequently, using Lemma 7, we have $J_{1} \leqslant c|h|^{s}\|u\|_{W_{2}^{s}(\Omega)}, 1<s \leqslant 2$, from which $J_{1} \leqslant c|h|^{s-1}\|u\|_{W_{2}^{s}(\Omega)}, 1<s \leqslant 3$.

For the estimation of J_{2}, notice that the summands $\zeta_{\bar{x}_{1}}^{\prime}, \zeta_{\bar{x}_{2}}^{\prime \prime}$, as linear functionals with respect to $u(x)$, vanish on the polynomials of second order and are bounded on W_{2}^{s}, $s>1$. Consequently, using Lemma 7, we receive $J_{2} \leqslant c|h|^{s-1}\|u\|_{W_{2}^{s}(\Omega)}, 1<s \leqslant 3$.

For the estimation of J_{3}, we represent its summands in the expanded form, for example,

$$
\check{\mathcal{P}}^{\prime}\left(\check{\chi}^{(1)}\right)=\frac{h_{1}}{2} \sum_{i=1}^{m_{1}} \sum_{j=1}^{m_{2}+1}\left(\zeta_{i j}^{\prime}+\zeta_{i-1, j}^{\prime}\right)+\frac{\theta_{1} h_{1}}{2} \sum_{j=1}^{m_{2}+1}\left(\left(2-\theta_{1}\right) \chi_{m_{1} j}^{(1)}+\theta_{1} \chi_{m_{1}+1, j}^{(1)}\right) .
$$

This may be estimated analogously to J_{1}.

The norms of the functionals $\eta_{\bar{x}_{k}}^{(k)}, k=1,2$, are less than $c|h|^{s-1}\|u\|_{W_{2}^{s}(\Omega)}$, $1<s \leqslant 3$. The obtaining of these estimates are considered in detail, for example, in [16, pp.148-149].

As a result from (28) it follows the validity of Theorem 2.

6 Conclusion

A nonlocal problem posed for Poisson equation is considered-classical boundary conditions are fully replaced with integral conditions on the inner stripe adjacent to boundary having the width ξ. The corresponding difference scheme is constructed for which convergence with rate $s-1$ is proved when the exact solution belongs to Sobolev space W_{2}^{s}, $1<s \leqslant 3$, with fractional exponent.

The obtained results may be expanded: for a case when the width of the stripe defined by integral conditions is different at all sides of the rectangle; for a system of statical theory of elasticity with constant coefficients, also for three dimensional case.

Acknowledgment. The authors wish to thank the anonymous referee for many significant comments.

References

1. J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, New York, 1978.
2. E. Obolashvili, Nonlocal problems for some partial differential equations, Appl. Anal., 45:269280, 1992.
3. V.V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes fluid, Din. Splosh. Sredy, 107:180-193, 1993.
4. A. Taflove, Computational Electrodynamics. The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 1995.
5. Z.G. Mansourati, L.L. Campbel, Non-classical diffusion equations related to the birth-death processes with two boundaries, Q. Appl. Math., 54(3):423-443, 1996.
6. G.K.Berikelashvili, D.G. Gordeziani, On a nonlocal generalization of the biharmonic Dirichlet problem, Differ. Uravn., 46(3):318-325, 2010 (in Russian). English transl.: Differ. Equ., 46(3):321-328, 2010.
7. J.R. Cannon, The solution of the heat equation subject to the specification of energy, Q. Appl. Math., 21(2):155-160, 1963.
8. A.V. Bitsadze, A.A. Samarskii, On some simplest generalization of linear elliptic problems, Dokl. Akad. Nauk SSSR, 185:739 - 740, 1969 (in Russian).
9. M.P. Sapagovas, R.J. Čiegis, The numerical solution of some nonlocal problems, Lit. Matem. Sb., 27(2):348-356, 1987 (in Russian).
10. V.A. Il'in, E.I. Moiseev, Two-dimensional nonlocal boundary-value problem for the Poisson's operator in differential and difference interpretations, Math. Modelling, 2(8):139-156, 1990 (in Russian).
11. Y. Wang, Solutions to nonlinear elliptic equations with a nonlocal boundary conditions, Electron. J. Differ. Equ., 2002(05):1-16, 2002.
12. G. Berikelashvili, On a nonlocal boundary-value problem for two-dimensional elliptic equation, Comput. Methods Appl. Math., 3(1):35-44, 2003. Dedicated to Raitcho Lazarov.
13. G. Avalishvili, M. Avalishvili, D. Gordeziani, On integral nonlocal boundary-value problem for some partial differential equations, Bull. Georgian Natl. Acad. Sci. (N.S.), 5(1):31-37, 2011.
14. M.Sapagovas, A. Štikonas, and O.Štikonienė, Alternating direction method for the Poisson equation with variable weight coefficients in an integral condition, Differ. Uravn., 47(8):11631174, 2011 (in Russian). English transl.: Differ. Equ.,47(8):1176-1187, 2011
15. G. Berikelashvili, N. Khomeriki, On a numerical solution of one nonlocal boundary value problem with mixed Dirichlet-Neumann conditions, Lith. Math. J., 53(4):367-380, 2013.
16. A.A. Samarskii, R.D. Lazarov, V.L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions, Vysshaya Shkola, Moscow, 1987 (in Russian).
17. G. Berikelashvili, Construction and analysis of difference schemes for some elliptic problems, and consistent estimates of the rate of convergence, Mem. Differ. Equ. Math. Phys., 38:1-131, 2006.
18. B.S. Jovanovi c, E.Süli, Analysis of Finite Difference Schemes. For Linear Partial Differential Equations with Generalized Solutions, Springer Ser. Comput. Math., Vol. 46, Springer, London, 2014.
19. T. Dupont, R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comput., 34:441-463, 1987.
20. J.H. Bramble, S.R. Hilbert, Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math., 16:362-369, 1971.
