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ABSTRACT. In the present paper we consider the Cauchy problem for systems of linear systems of
differential equations with singularities. The singularity is understood in the sense that the matrix
and vector functions corresponding to the impulsive system, in general, are not integrable at the
initial point. The sufficient conditions are for the unique solvability of the problem. © 20/8 Bull.
Georg. Natl. Acad. Sci.
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1. Statement of the Problem and Basic Notation. Let / — R be an interval non-degenerate
in the point,#, € / and

]fo =1\ {tfo } :
Consider the linear system of impulsive differential equations with infinite and fixed points of impulses
actions
dx o0
E:P(t)x+q(t) fora.a. tel, \{r,}., @)
x(t,+)—x(7,-)=Gx(z,))+g ([=12,.), 2
where

P=(py)isa € L,d, s R™), g=(q,)- €Ly, (, RY), G =(g ) eR™ (1=1,2,.0),
g =g eR (1=12,.0; 7€l ,7,>t,(I=1,2,.), 7,#7, if i # j, and }imr, =t,.

Let
H =diag(h;,hy,....h,): I, > R™

be a diagonal matrix-function with continuous diagonal elements
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b 21, —(0,4%) (k=1,2,...,n).
We consider the problem of finding of solutionx:/, — R" of the system (1), (2) satisfying the

condition
lim(H ™' () x(t)) = 0. 3)

11+
The analogous problem for the systems of ordinary differential equations (1) with singularities is
investigated in [1-3].
The singularity of the system (1) is considered in the sense that the matrix P and vector ¢g functions, in
general, are not integrable at the point f,. So that, in general, the solution of the problem (1), (2); (3) is not
continuous at the point #,and, therefore, it cannot be the solution in the classical sense. But its restriction

on every interval from / is a solution of the system (1).

In connection with this we give the example from [1]. Consider the problem
dx
dt

e-l-a
b

t

o
=——x+¢
t

lim(#“x(£)) = 0.

t—0
The problem has the unique solution x(¢) = |t|g_a sgnt if o >0and ¢ €(0,a). This function is not
solution of the considered equation on the set I = R, but its restrictions on (—0;0) and (0;+) are the

solutions of equation one.

We give sufficient conditions for the unique solvability of the problem (1), (2); (3).The analogous results
belong to I. Kiguradze [2, 3] for the Cauchy problem for the systems of ordinary differential equations with
singularities.

Some boundary value problems for linear impulsive systems with singularities are investigated in [4-6]
(see, also the references therein).

In the paper the following notation and definitions will be used:
R= ]—oo; +oo[, R = [O; +oo[; [a,b] and ]a,b[ are closed and open intervals, respectively.

n,m
i,j=1

n
= max 3} |
j=lm =Y

R™" is the space of all real nxm matrices X =(x, )., with the norm

O,,,, (or O ) isthe zero nx m matrix.
if X =(x,)}",,then

_|xl+x [X]-x

NI

R = {(x) ix, 20 (i =Ly j=Lom)} .

Lj=1 "

|X|=(x, Dy, and [X],

R" = R™' is the space of all real column 7 _ vectors x = (x,)", .
If XeR™, then X', derX and r(X) are, the matrix inverse to X, the determinant of X and the

spectral radius of X respectively; [, is the identity nxn - matrix.

The inequalities between the matrices are understood component wise.
A matrix-function is said to be continuous, integrable, non decreasing, etc., if each of its components is

such.
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b
If X:R—R"™ 1is a matrix-function, then V(X) is the sum of total variations on [a,b] of its

components x, (i=1,...,n; k=1,..,m); if a >b, then we assume li/(X) = —I:/(X)
X(r-) and X(t+) are, respectively, the left and the right limits of the martix-function
X :[a,b] > R"" at the point t; A(¢) =X (t+)-X(1);
s, and s, are the operators defined, respectively, by
55 (X)) =5, (X)) = 0; 5,(X)(0) =5, (X)) + . AX(2)

s<ret
S(X)(0) = 5. (X)(8) + X (1) = X (5) = (5, (X)) = 5,(X)(s)) ifty <5 <1,
where g, >, is some fixed point.
é([a,b],D), where D < R™, is the set of all absolutely continuous matrix-functions X :[a,b]— D.
C,.(I;R™™) is the set of all matrix-functions X : / — R"™" for which the restriction on[a,b] belongs to
C’loc([a,b];R”x"’) for every closed interval [a,b] from L

C,. (1, \{r;}/2;; D) is the set of all matrix-functions X :/, — D whose restrictions to an arbitrary
closed interval [a,b] from I, \{z,}/, belong to C ([a;b];D).

L([a,b]; D) is the set of all integrable matrix-functions X :[a,b] — D.

L, (1 o ; D) is the set of all matrix-functions X : /, ., —>D whose restrictions to an arbitrary closed interval
[a,b] from /, belong to L([a,b]; D).

A vector-functions x € C,, (I, \r,}74;R") is said to be a solution of the system (1), (2) if

X'(¢) = P(t)x(¢t)+q(t) for a. a. te I, \{r,}., and there exist the onesided limits x(7,—) and x(z,+)
[ =1,2,... such that the equalities (2) hold.

We will assume, without loss of generality that the solution x of the impulsive differential system (1),
(2) is continuous from the left in the points of the impulses actions 7, (I =1,2,...), i.e. x(z,) = x(z,-)
(=12,.).

We assume that

det(/,+G,) =0 (/=12,..). 4)

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding
nonsingular systems, i.e. for the case when P€ L, (I;R"")andq € L, ,(I;R") (See [7]).

LetB e L, (I, ;R"™)and G, e R™" (I =1,2,...). Then a matrix-function C, : I, x1, — R™"is said to be

loc \" 1, [/

the Cauchy matrix of the homogeneous impulsive system

dx
E - Po(t)xa (5)

x(7,+)—x(7,-) = Gyx(r,) (1=1,2,..), (6)
if for every interval / C /, andt € J, the restriction of the matrix-function C, (.7): I, —> R"" onJis the
fundamental matrix of the system (5),(6) satisfying the condition C, (T, T) = I . Therefore, C, is the Cauchy
matrix of the system (5),(6) if and only if the restriction of CyonJxJ, for every interval J 1, , is the

Cauchy matrix of the system in the sense of definition given in [7].
We assume
1 (8) =1, + 6|01,

o
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for every s > 0.
2. Formulation of Main Results

Theorem 1. Let there exist a matrix-function By € L, (I, ,R™") and constant matrices G, € R™"

(!=12,..) and B,,B€ R" such that the conditions (4),
r(B) <1 (7N
and the estimates
|C,(t.0|< HO)BH ' (t) forr <t, 7,0 € 1, (6),

j|C0(t,r)-(P(r)—PO(T))-H(s)|ds+ > |C0(t,r1)~(1n+G0,)“(G,—G0,)|£H(t)-Bfor tel () hold for

some § >0 where C,is the Cauchy matrix of the system (3),(6).

Let, moreover,
-1

[ (e Ja(r)dr+ Y H'(z,)C,(t.7,)(1,+Gy) &

t ty<t <t

lim =0.

1+

Then the problem (1), (2); (3) has the unique solution.
Theorem?2. Let there exist a constant matrix B = (b, )!,_, € R""" such that the condition (4) and

[gu] <1(1=12..) ®)

hold, and the estimates

¢ (67)<h h(t) fort <t t,T e[,: (5),

b, l() fortel (5) ( :1,2,...n)

T)|:p” } dr + Z (4,,7,)h (7, [g,”]

f ty<t <t

and

t

J. (t,7)h, |sz |dz'+ Z |c (t,7) | |1+g0”| h () gy

f ty<t <t

Jor tel(5) (#k; ik=1,..,n)

< b (1)

hold for some b, >0 and § > 0. Let, moreover,
.| fe@) c.(t,1,) .
lim| | —Zq(r)dr + S (4 g, =0 (i=1...n),
HWU hy(2) 90) ,U;<, h(2) (+gule ( )

where C; is the Cauchy function of the impulsive differential equations

dx
dt pOIl( ) X,

x(7 +)— ( )= 8ux(7) (1=12...)
P ()= pi(1)] » g ()=—[gu(t)] foriefl,..n} and 1€{1,2,..}.

Then the problem (1),(2); (3) has the unique solution.
Remark 1. The Cauchy functionsc, (,7) (i =1,...,n)mentioned in the theorem, for 7,7 € I (6), have

the form:
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eijl’o” (s)ds - H (I+gy;) for t>t1

<1, <t

C (tr)= expjpoll (s)ds- H (I+g,:)" for t<rt.

T<T, <t

1 for t=t

Corollary 1. Let there exist a constant matrix B=(b, );, , € R’ such that the conditions
(7) and (8) hold, and the estimates

J.p()u (r)dr + Z ln|1+g01”|_ A ln

<7<t 0

j[p )], dr+ Y. [g,],|<b; for tel (6) (i=1,...n)

<1<t

fOI” t<t, t,tel] (6),

lim

T

and

lim

T+

j|pk(r)|d7+ |+ gy gy < by for 11 (8) (i#kiik=1,...n)

<7, <t

hold for some p; >0 (i =1,. n) ands > 0. Let moreover,
1+ gy 7lgi‘
im j M:o (i=1,...n)

t,,<1,<t |T1 — 0|
Then the system (1), (2) has the unique solution satisfying the initial condition

limLt)y’:O (i=1,...m). 9)

t—1)+ |l —t

ol
Remark 2. Let, in addition, of conditions of the Corollary 1, the condition
lim supé ( ) <+ (j=L12; i=1,...,n)

-

holds, where

t)= Zih_tow |gik|+|gl| for teI[: (5) (j=12; i=1..,n).

rel; k=1
I, =]t.t,+6] and I, =]t.t,+5[, and s is a small position number.

Then the solution of the problem (1), (2); (9) belongs to C,, (I ,R" )
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