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ABSTRACT. The Cauchy-Nicoletti multipoint boundary value problem
dx(t)=dA@)-x@)+df (t) for tela,b],
xt+)=0, x(-)=0, (i=1..,n),
is considered, where x,,...,x, are the components of the desired solutionx, —o<a<t <t  <b<oo,
S=0) [[a,b] > R" is a vector-function the components of which are functions with bounded

variations, and 4 =(a,);_, :[a,b] - R"™" is a matrix-function such that the functions ¢, ,...,a, have

bounded variations on every interval from [a, b] which do not include the point ¢, for every i € {l,...,n}.

The sufficient conditions are established for the unique solvability of this problem in the case when
the considered system is singular, i. e., the components of the matrix-function 4 do not have bounded
variation on the interval [a, b]. © 2012 Bull. Georg. Natl. Acad. Sci.

Key words: systems of linear generalized ordinary differential equations, singularity, the Lebesgue-Stiltjes

integral, a multipoint boundary value problem.

1. Statement of the Problem and Basic Notation

In the paper for the system of linear singular generalized ordinary differential equations
dx(t)=dA@)-x@)+df (t) for tela,b], (D
we consider the Cauchy-Nicoletti multipoint boundary value problem
xt+)=0, x,(-)=0, (i=1..,n), )

where —wo<a<t <t, <b<ow, x,.,x, are the components of the desired solution x,

2n
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f =), :[a,b] > R" isa vector-function the components of which are functions with bounded variations

n

on the interval [a,b], and 4 =(a,);, :[a,b] —> R™ is a matrix-function the components a,,....,a;, of

which have bounded variations on every closed interval contained in [a,z,[U]t,,b] for every i e {l,...,n}. We
have investigated the question of the unique solvability of the problem (1), (2) in the singular case, i.¢., in the
case when the components of the matrix-functions 4 may have unbounded variation on the closed interval
[a,b].

We give a general theorem for solvability of the problem (1), (2). On the basis of this theorem we have
obtained effective criteria for the solvability of this problem.

Analogous and related questions are investigated in [1-7] (see also the references therein) for the singular
boundary value problems for linear and nonlinear systems of ordinary differential equations, and in [8-14] for
regular and singular multipoint boundary value problems for systems of linear and nonlinear generalized
differential equations. As to multipoint singular boundary value problems for generalized differential systems,
they have not been sufficiently studied yet, and, despite some results [13, 14], their theory is far from
completion even in the linear case. Therefore, the problem considered in the paper is actual.

To a considerable extent, the interest in the theory of generalized ordinary differential equations has also
been stimulated by the fact that this theory enables one to investigate ordinary differential, impulsive and
difference equations from a unified point of view [8-18] and the references therein).

Throughout the paper the following notation and definitions will be used. R =]—o0,o0[, [a,b], ]Ja,b[ and

[a,b], Ja,b] (a,b € R) are, respectively, closed, open and semi-open intervals. R”" is the space of all real

n,m

nxm-matrices X =(x;,_;)"" with thenorm

X l= 0% |
i,l=1
R™ ={X =(x)!" :x, 20 (i=1,..,m; [ =1,...m)}; | X |=(x, )]s O,,, (orO) isthezero nxm —
matrix.
If X=(x,)_, €R"™, then X', det(X) and r(X) are, respectively, the matrix inverse to X the

determinant of X and the spectral radius of X; / isthe identity nxn —matrix.

R" = R™' is the space of all real column n-vectors x = (x,)"; R’ =R"™.

V¢ (X), where a < ¢ < d <b, is the total variation of the matrix-function X = (x,);,_, :[a,b] > R"", i.e.,
the sum of total variations of the latter’s components x,(i=1,.,n;/=1..m); if d<c, then
Vcd (X) ==V, (X); V(X)) =(x)@);", where v(x;)(c,) =0, v(x,)(?)= VL; (x,) for a<t<b,
¢, =(a+b)/2; X(t—) and X (¢+) are theleft and the right limits of the matrix-function X :]Ja,b[— R"™" at
the point ¢ €]a,b] (we will assume X (¢)= X(a+) for t<a and X(¢t)=X(b-) for ¢t > b if necessary);
dX()=x({t)-X(t-), d,X([)=X({1+)—-X(®).

BV ([a,b],R™™) is the set of all matrix-functions of bounded variation X :[a,b]— R™" (i.e., such that
V(X) <o0;

BV, ,(Ja,b[,R™™") is the set of all matrix-functions X :]Ja,b[—> R"™" such that V/(X)< o for every

a<c<d<b;
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If I is an arbitrary interval from R and ¢,...,z, € I, then BV, (I,¢,...,t,;R™™) is the set of all matrix-

functions X : 7 — R™" the restrictions of which on every closed interval [¢,d]c I\{¢,....t,} belongs to
BV ([a,b],R™™).

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components is
such.

Ifa function a € BV ([a,b], R) has no more than a finite number of points of discontinuity, and m € {1, 2},

thenby D ={t ...t }({t . <..<t

amng,,

) we denote the set of all points ¢ € [a, b] for which d, a(f) =0;

moreover, we put 4, =max{d, o(t):teD, }.

If B € BV ([a,b],R), then

Vamp; = max{djﬁ(tm,)+ Z d,p(r):l= l,...,nam} (j,m=12),

Lam+1-m <T<lgmls2-m

where ¢, =a-1,1¢ =b+1.

a2ng+1

s; :BV([a,b],R) = BV ([a,b],R) (j =0,1,2) are the operators defined, respectively, by
5, (x)(a) = 5,(x)(b) =0,
5, ()0 =Y. dx(r), s,(x)0)= D dyx(r) for a<t<b

a<t<t ast<t

and
Sy (X)) = x(t) = 5,(x)(t) = 5,(x)(t) for a<t<b.
If g:[a,b] > R is anondecreasing function, and a <s<¢<b, then

t

[x@)dg(e) = [ x(@)ds,(2)@)+ Y. x(D)d\g()+ Y. x(r)d,g(x),

s 1s.1[ S<T<t S<T<t

where j x(t)ds,(g)(t) is the Lebesgue-Stieltjes integral over the open interval Js,#[ with respect to the
Is.dl

t t
measure 1(s,(g)) corresponding to the function s,(g); moreover, we assume jx(r)dg(r) = —J.x(r)dg(r)

and jx(r)dg(r) =0

L([a,b],R;g) isthe space of all functions x:[a,b] - R, measurable and integrable with respect to the

measure u(g) with the norm
b
11X ., = 1 () | dg ().

If g(t)=g,(t)—g,(t), where g, and g, are nondecreasing functions, then

t t t

[x@)dg(z) = [x(0)dg, (0) - [x(0)dg ,(z) for s <t.

s s s

If G=(g, )or_:[a,b] — R"™" is anondecreasing matrix-function and D = R™", then L([a,b], D;G) isthe

ik=1
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setofallmatrix-functions X = (x, )1, :[a,5] > D such that X, € L({@5].R; €, )i = Luvolik = Luest] =1cm);

jdG(r) -X(r)= (ij.xkf (r)dg, (T)J | for a<s<t<b,

k=15

i,j=1

S,(G)(0) = (5,(g)O)i (G =0,1,2).
If G(¢) = G,(t) - G,(¢), where G, (t) and G, (¢) arenondecreasing matrix-functions, then

jdG(r)-X(r) =jdGl(r)-X(T)—jdGz(r)-X(r)for s<t,

Sk G)= Sk (Gl )— Sk (Gz) (k=0,1,2),
L([a,b],D;G) = L([a,b], D;G,) " L([a,b], D; G,).
The inequalities between the matrices are understood component-wise.

A vector-function x € BV, ([a,b],t,,....t,;R") is said to be a solution of the system (1) if
t
x(t) = x(s) +jdA(r)-x(z') + (@)= f(s) for s <t,[s,t]c[a,b]\{t,,....t,}.

By a solution ofthe problem (1), (2) we mean the solution x = (x;);_, ofthe system (1) such that the one-
sided limits x,(¢,—), x,(¢,+) (i =1,...,n) existand the equalities (2) are valid.

A vector-function x e BV, ([a,b].t,,....t,;R") is said to be a solution of the system of generalized

loc

differential inequalities dx(¢) < dB(t)-x(t)+df (t) (=) for tela,b], if

x(1) Sx(s)+de(r)-x(r)+f(t)—f(s) Jors <t, [s,t]c[a,b]\{t,,....t, }.

Without loss of generality we assume that A(a) =0

det(, + (1) dA(2)) # 0 for te[a,b]\{t,....t,} (j =1,2).
The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding
system (1) (see [18, Theorem II1.1.4]).
If 5 €la,b] and a € BV, (Ja,b[,R) are such that

f(0)=0,. Let, moreover,

1+(=1) d,a(t) # 0 for t €la,b[ (j =1,2),
then by y,(.,s) we denote the solution of the Cauchy problem dy(¢) = y(t)da(t), y(s)=1.

It is known (see [15], [16]) that this problem has a unique solution and it is given by

exp(s0 (a)(t)-s, (a)(s)) H (1 —dloz(z'))_l H (l+d2a (r)) Sfor t>s,

¥, (t,8) = exp(s0 () (t)=s, (a)(s)) 11 (l —dla(r))H (l+d2a (z’))_l fort <s,
1 7 N fort=s.

n

il=1

Definition 1. We say that a matrix-function C=(c,) _ € BV([a,b],R"™) belongs to the set

U([a,b].t,,...,t,) ifthe functions c, (i #/; i,[ =1,...,n) are nondecreasing on [a,b] and the system
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sgn(f—t,)-dx,(t) < ix, (t)dc,(¢) for tela,b] (i =1,...,n)

has no nontrivial, nonnegative solution satisfying the condition (2).

A similar definition of set U([a,b].t,,...,¢,) has been introduced by I. Kiguradze for ordinary differential
equations (see [4]).

We note that the problem (1),(2) under the condition a <¢, <t,, <b (i=1,...,n) is reduced to the case
given above. Indeed, if ¢, = a (¢, =b) for some i €{l,...,n}, then setting A(t) = A(a) and f(¢) = f(a) for
t<a (A(t)= A(b) and f(t)= f(b) for t 2 b), we can consider the problem on every interval [a,,b,],
where a, <a <b <b,. Moreover, without loss of generality we assume that a <¢, —1/k <t,+1/k<b for

every natural k.

2. Formulation of Main Results

Theorem 1. Let the vector-function f =(f,)., belong to BV ([a,b],R"), and the matrix-function

A= (aﬂ )” € BV,

il=1 loc

(so (% )(l)—so (aﬁ )(s))sgn (t -t ) <5, (cil. - )(t) =S, (cl.l. -, )(S)

forass<t<t ort <s<t<b(i=1l,..,n), 3

([a,b],¢,,....t,; R™") be such that the conditions

(-

1+(-1) d,a, (t)‘—l)sgn(t—ti)ﬁdj(cﬁ (t)-a (1)) for tela.t[Ul,.b](j=12i=1,..n), @

|s0 (a,)(1)=s, (ai,)(s)| <o (e )(t)=s0(cy)(s) for ass<t<t, ort,<s<t<b (i#Lil=1,..n) ()
and
|diai,(t)|sdjci,(t) for tela,t[UY,,b] (j=1,2i # i, =1,....,n) 6)

are fulfilled, where

n

C= (cﬂ)i o € Ula,blt,....t,), a;:[a,t[V],,b] > R (I=1,..,n)
are functions, nondecreasing on every interval [a,t[ and ]¢,,b], having one-sided limits ¢;(¢,—) and

o, (t,—) and satisfying the conditions
limd e, (r) <1 (i=1,..,ny), limd,o;(t) <1 (i=n,+1,...,n) )
t—t+ >t—

and

lim sup{;/a’_ (t.t,+1/k): k = 1,2,...} =0 (@i=1,.,n),

ot +

lim sup {7, (tt, ~1/K) -k =1.2,..} =0 (i = L., ®

Then the problem (1), (2) has one and only one solution.
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Corollary 1. Let the vector-function f =(f,);, belong to BV ([a,b],R"), and the matrix-function

A= (al.l )” € BV,

il=1 loc

([a,b],t,,...,t,; R™") be such that the conditions

(so (aﬁ)(t)—so (aii )(s))sgn(t _li) s _(so (al. )(t) — S (al. )(S)) +:ihii (z)ds, (ﬂz )(T)

for a<s<t<t ort, <s<t<b(i=1..,n),

(_l);/‘(

1+(-1) dya, (1) -1)sen(t=1) < b, (1) 8, (1)=d e 1)
for tela,t[V],0](j=12i=1,..,n),

|djai, (t)| < hy(t)d, B, (t) for t €[a,t,[U),b(j =1,2;i # L;i,l = 1,...,n)
are fulfilled, where o :[a,£[V])t,,b] &> R (i=1,...,n) are functions, nondecreasing on every interval [a,?,[
and J¢,,b], having one-sided limits ¢, (#,—) and ¢, (¢,+) and satisfying the conditions (3), (4); B, (I =1,...,n)
are functions nondecreasing on [a,b] and having not more than a finite numder of points of
discontinuity; 4, € L* ([a,b],R;ﬁi), h, e I ([a,b],&;ﬂi) (G #1;i,1=1,..,n),1< u <. Let, moreover,

r(H)<1,

2
where 35 x3n -matrix H = (H‘Mm“) " is defined by

j.m

(J,m=0,1,2),
=1

Hj+1m+l = (lkml_'f "hik /—’ssm(ﬁi))i,k

S = (s_i (B)(b)-s,(B, )(a)); (J=0,1.25i=1,...n);

1
4y,
Moo = (?j fkoz if s, (ﬂl)(t) =5 (ﬂk )(t)’
Eo if s, (8)(2) %5, (B )(2) Gk =1,...,n);
/’i’kmsz :ékméj 1fm2 +j2 > O’m.] = 0 (]am = 0,1,2, k = L"'an)a
A = [% T — sin %J (j,m=1,2k=1,...,n),
’ " +

4n

1 2
and —+—=1. Then the problem (1), (2) has one and only one solution.

u v

Remark 1. In Corollary 1, 35 x3# -matrix H can be replaced by the n x n -matrix

(max {22: Do [Pl oy 2= 01, 2}] :
J=0 ik=1
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By Remark 1, Corollary 1 has the following form for hl.l(t)Ehl.,:const(i,lzl,...,n),

o,(t) = ()i = Lm), B,(t)=P(1) (i =1,..n) and pt=0.
Corollary 2. Let the vector-function f =(f,);, belong to BV ([a,b],R"), and the matrix-function

A= (aﬂ )” € BV,

il=1 loc

(50 (@ ) (1) =30 () (s))sen (£ =) < iy (5 (B) (1) = 50 (B)(5)) = (0 (@)(£) =34 (@)(5))

fora<s<t<t ort <s<t<b(i=1,..,n),

([a,b],¢,,....t,; R™") be such that the conditions

(_1)./'(
|s0 (a,)(1)=s, (ai,)(s)| <h, (so (B)(1)-s, (ﬂ)(s))fora Ss<t<tort,<s<t<b(i=#lil=1,..,n),

|, (0] < hyd By (1) fort € [a, [V, 5] (j = 1,21 # il =1,...,n)

1+(—1)'i d.a, (t)‘ —l)sgn (t=t,)<hd B(t)-da(t)fort € [a,t[ V). b](j =1,2;i =1,...,n),

are fulfilled, where o, :[a,t,[U]t,,b] > R (i =1,...,n) are functions, nondecreasing on every interval [a,?,[
and J¢,,b], having one-sided limits ¢, (¢,—) and «,(t,+) and satisfying the conditions

limda() <l (@=1,..,n), limd,a(t)<l (i=1,..,n)

1=+ 1=t —
and

limsup{y, (t,t, +1/k):k=1,2,..} =0 (i=1,..,n),

t—t+

limsup{y, (t,t, =1/k):k =1,2,..} =0 (i =1,...,n);
t—t;—

Pis a function nondecreasing on [a,b] and having not more than a finite number of points of discontinuity;
h,eR, h,eR (i#l; i,l=1,..,n). Let, moreover,
por(H) < L

n

ik=1"

where H =(h,)

1 T v
A.=l=u v sin?———| (m,j=12).
mj (4 Hom amaj 4n +2J ( J )

am

Then the problem (1), (2) has one and only one solution.
Acknowledgement. This work is supported by the Shota Rustaveli National Science Foundation (Project
No. GNSF/ST09-175-3-101)

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 1, 2012



The Cauchy-Nicoletti Multipoint Boundary Value Problem for Systems of ...

21

3.)0)(73.)&0 30

dm'ao—so dmg:)aéols 3603.)9‘3936@093(*)3&50 Boho‘bgaﬁm

3803965 (303 336bmprgbym Rogghgbpesmy®
absémggabomb Boh@aaabohomaoh Bosa‘aggoﬁmbabom

d. b'amﬁ)g\oob*, d. 633‘3331sdot4)o**

* 0. xo&)boggogmls Lok, m&oqmlmls Zsol‘gmgﬁ’mgm 27503(7("7150(6(7@015 3. 36dsdols gomggo(ﬁol))ols 0515(60@27(60;

Zsmbyé’ols Zsol‘gmgﬁ’mgo ;7503(7(*’7[50(6(7@0, m&og)olso
Zsmbyé’ols Zsol‘gmgﬁ’mgm 2750(7(7(*’7150(6(7@0, mdog)olso

Hox

(%‘J&BNQBJBOQOJ ‘)JJQUBOJ(")]A 0. dOQﬁéédOl} 8086)

aosbog-agoo dm'ao—so J“"Q{]@OI’ 86033;2\3’36@)0;2@50 'lso'lso‘hgziﬂ)m .)3(')(3.)5.)
dx(t)=dA@)-x@)+df (t) for te]la,b],

xt+)=0, x(-)=0, (i=1..,n),

].s.)Q.)G Xiseens X, 15080333;20 X 3dmbsblbols dm33m535®360.§, —00<a<tl.£tl.+l<b<oo,

=) [a,b] > R" 360l 335(350')6-3Q0 13-35;]000, 6m3Qols dm33m535®330 Bolsﬁ-ago 3.)60000013
3:](*)53 93-35;]00330.), 'bm;mm 3.)(56003;20 %'35‘-]00.) A= (al.l)l'.il:1 ‘[a,b] > R™ olsamo.), “d gmggemo
ie{l,..,n} —0)3015 Ay s Ay 93-;:]5:]003315 3005500 lsolst’rago 3.5600(30360 [a, b]-3o '333.)3.)Q 53601}3036

aﬁogan\%a, 60’)33;200 36 '8300.)315 t, Vat’)@ogls.

33960mo0s 3mbodbamo Lslsbmg®im 3dm(3360l (39mbsbse 3dmblbsmdobsmgol bs3dstrobo
306(‘73330 03 '3330)'5333.)'30, 6(")00 BQE’ISQBOQ;?:]QO QO%&&){]EGOQQ?]&)O 1501)&330 Bosaﬂgoﬁﬂgoo, 06‘3

6(')(3.) A 30&6003&0 93-35:]000]5 603307535&33]5 364 B.).)Bl;o.) B.)lsﬁ-a;mo 3.)60.)(30330 la, b].

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 1, 2012



22 Malkhaz Ashordia, Murman Kvekveskiri

REFERENCES

1. LT Kiguradze (1969), DAN SSSR, 86, 4: 769-772 (in Russian); English transl.: (1969), Sov. Math., Dokl., 10:
663-666.

2. I T Kiguradze (1975), Nekotorye singulyarnye kraevye zadachi dlya obyknovennykh differentsial’nykh

uravneniy. Thilisi (in Russian).

LT Kiguradze (1975), Ann. Mat. Pura Appl., 104: 151-175.

. I T Kiguradze (1997), Nachal’nye i kracvye zadachi dlya system obyknovennykh differentsial’nykh uravneniy

I. Thilisi (in Russian).
. I Kiguradze (2009), Mem. Differential Equations Math. Phys., 47: 29-46.
. T I. Kiguradze (2010), Differ. Uravn., 46, 1: 29-46 (in Russian); English transl.: (2010), Differ. Equ., 46, 1:
30-47.

7. T I. Kiguradze (2010), Differ. Uravn., 46, 2: 183-190 (in Russian); English transl.: (2010), Differ. Equ., 46, 2:
187-194.

8. M. T. Ashordia (1984), Soobshch. AN Gruz.SSR , 115, 4: 17-20 (in Russian).

9. M. Ashordia (1995), Mem. Differential Equations Math. Phys. 6: 1-57.

10. M. T. Ashordia (1996), Differ. Uravn., 32, 10: 13031311 (in Russian).

11. M. Ashordia (1998), Georgian Math. J., 5, 1: 1-24.

12. M. Ashordia (2005), Mem. Differential Equations Math. Phys. 36: 1-80.

13. M. Ashordia (2006), Differ. Uravnen., 42, 3: 291-301 (in Russian); English transl.: (2006), Differ. Equ. 42, 3:
307-319.

14. M. Ashordia (2010), Differ. Uravnen., 46, 2: 167-177 (in Russian); English transl.: Differ. (2010), Equ. 46, 2:
167-181.

15. J. Groh (1980), Illinois J. Math. 24, 2: 244-263.

16. T. H. Hildebrandt (1959), Illinois J. Math., 3: 352-373.

17. J. Kurzweil (1957), Czechoslovak Math. J., 7, 3: 418-449.

18. S. Schwabik, M. Tvrdy, and O. Vejvoda (1979), Differential and integral equations: Boundary value problems
and adjoints. Academia, Praha.

W

AN

Received October, 2011

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 1, 2012





