
Available online at www.sciencedirect.com

ScienceDirect

Transactions of A. Razmadze Mathematical Institute 170 (2016) 149–165
www.elsevier.com/locate/trmi

Original article

On the Opial type criterion for the well-posedness of the Cauchy
problem for linear systems of ordinary differential equations

Malkhaz Ashordia∗

A. Razmadze Mathematical Institute I, Javakhishvili Tbilisi State University, 6 Tamarashvili st., Tbilisi 0177, Georgia
Sukhumi State University, 12 Politkovskaia st., Tbilisi 0186, Georgia

Available online 20 June 2016

Abstract

There are obtained necessary and sufficient conditions for the well-posedness of the Cauchy problem for the systems of linear
ordinary differential equations, analogous to the sufficient condition by Z. Opial for the problem one. Moreover, there are given the
efficient sufficient conditions for the problem one.
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1. Statement of the problem and basic notation

Let P0 ∈ Lloc(I, Rn×n), q0 ∈ Lloc(I, Rn) and t0 ∈ I , where I is an arbitrary interval from R non-degenerated in
the point. Let x0 be a unique solution of the Cauchy problem

dx

dt
= P0(t) x + q0(t), (1.1)

x(t0) = c0, (1.2)

where c0 ∈ Rn is a constant vector.
Consider sequences of matrix- and vector-functions Pk ∈ Lloc(I, Rn×n) (k = 1, 2, . . .) and qk ∈ Lloc(I, Rn) (k =

1, 2, . . .), respectively; sequence of points tk (k = 1, 2, . . .) and sequence of constant vectors ck ∈ Rn

(k = 1, 2, . . .).
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In [1–8] (see, also the references therein), the sufficient conditions are given such that a sequence of unique
solutions xk (k = 1, 2, . . .) of the Cauchy problems

dx

dt
= Pk(t) x + qk(t), (1.1k)

x(tk) = ck (1.2k)

(k = 1, 2, . . .) satisfy the condition

lim
k→+∞

xk(t) = x0(t) uniformly on I. (1.3)

In the present paper necessary and sufficient conditions are established for the sequence of the Cauchy problems
(1.1k), (1.2k) (k = 1, 2, . . .) to have the above-mentioned property. The obtained criterion are based on the concept
by Z. Opial, concerning to the sufficient condition considered in [8], and it differs from analogous one given in [1].

The Opial type sufficient conditions are investigated in [5] for the well-posedness problem of the Cauchy problem
for linear functional-differential equations.

In the paper the use will be made of the following notation and definitions.
R =] − ∞, +∞[; [a, b] and ]a, b[(a, b ∈ R) are, respectively, closed and open intervals.
I is an arbitrary, non-degenerated in the point, finite or infinite interval from R.
Rn×m is the space of all real n × m matrices X = (xi j )

n,m
i, j=1 with the norm

∥X∥ = max
j=1,...,m

n
i=1

|xi j |.

On×m is the zero n × m-matrix.
Rn

= Rn×1 is the space of all real column n-vectors x = (xi )
n
i=1; on is the zero n-vector.

Rn×n is the space of all real quadratic n × n-matrices X = (xi j )
n
i, j=1;

In is the identity n × n-matrix; diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements λ1, . . . , λn ; δi j is
the Kronecker symbol, i.e. δi i = 1 and δi j = 0 for i ≠ j (i, j = 1, . . .);

If X ∈ Rn×n , then X−1 and det(X) are, respectively, the matrix inverse to X and the determinant of X ;
diagX = diag(x11, . . . , xnn) is the diagonal matrix corresponding to X .

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its component is such.
We say that the matrix-function X ∈ Lloc(I, Rn×n) satisfies the Lappo-Danilevskiı̆ condition if for every τ ∈ I the

following condition holds

X (t)
 t

τ

X (τ ) dτ =

 t

τ

X (τ )dτ · X (t) for a. a. t ∈ I.

b
V
a
(X) is the sum total variation of the components xi j (i = 1, . . . , n; j = 1, . . . , m) of the matrix-function

X : [a, b] → Rn×m ;
a
V
b
(X) = −

b
V
a
(X);

V
I
(X) = lima→α+,b→β−

b
V
a
(X), where α = inf I and β = sup I .

C(I ; Rm×n) is a space of continuous and bounded matrix-functions X : I → Rm×n with the norm

∥X∥c = sup{∥X (t)∥ : t ∈ I };

C(I ; D), where D ⊂ Rm×n , is the set of continuous and bounded matrix-functions X : I → D;
Cloc(I ; D) is the set of continuous matrix-functions X : I → D;C(I ; D) is the set of absolutely continuous matrix-functions X : I → D;Cloc(I ; D) is the set of matrix-functions X : I → D which are absolutely continuous on the every closed interval

[a, b] from I .
L(I ; D), where D ⊂ Rm×n , is the set of matrix-functions X : I → D whose components are Lebesgue-integrable;
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Lloc(I ; D) is the set of matrix-functions X : I → D whose components are Lebesgue-integrable on the every
closed interval [a, b] from I .

We introduce the operators. If G ∈ L(I ; Rl×n), X ∈ L(I ; Rn×m), Y ∈ L(I ; Rn×n), and H ∈ C(I ; Rn×n) is
nonsingular, then

Bc(G, X)(t) =

 t

α

G(τ ) X (τ )dτ for t ∈ I,

Ic(H, Y )(t) =

 t

α

(H ′(τ ) + H(τ ) Y (τ )) H−1(τ )dτ for t ∈ I.

The vector-function x : I → Rn is said to be a solution of the system (1.1) if it belongs to Cloc(I ; Rn) and satisfies
the equality x ′(t) = P0(t)x(t) + q0(t) at almost all t ∈ I .

Under a solution of the Cauchy problem (1.1), (1.2) we understand a solution of system (1.1) satisfying condition
(1.2).

We will assume that Pk = (pkil)
n
i,l=1 and qk = (qkl)

n
l=1(k = 0, 1, . . .).

Along with systems (1.1) and (1.1k) we consider the corresponding homogeneous systems

dx

dt
= P0(t) x (1.10)

and

dx

dt
= Pk(t) x (1.1k0)

(k = 1, 2, . . .).

2. Formulation of the main results

Definition 2.1. We say that the sequence (Pk, qk; tk) (k = 1, 2, . . .) belongs to the set S(P0, q0; t0) if for every
c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . .) satisfying the condition

lim
k→+∞

ck = c0, (2.1)

condition (1.3) holds, where xk is the unique solution of problem (1.1k), (1.2k) for every natural k.

Theorem 2.1. Let P0 ∈ L(I, Rn×n), q0 ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that

lim
k→+∞

tk = t0. (2.2)

Then

((Pk, qk; tk))
+∞

k=1 ∈ S(P0, q0; t0) (2.3)

if and only if there exists a sequence of matrix-functions Hk ∈ C(I ; Rn×n) (k = 0, 1, . . .) such that

inf

| det(H0(t))| : t ∈ I


> 0, (2.4)

and the conditions

lim
k→+∞

Hk(t) = H0(t), (2.5)

lim
k→+∞

Ic(Hk, Pk)(τ )

t

tk
− Ic(H0, P0)(τ )

t

t0

 ×


1 +

 t
V
tk
(Ic(Hk, Pk))


= 0 (2.6)

and

lim
k→+∞

Bc(Hk, qk)(τ )

t

tk
− Bc(H0, q0)(τ )

t

t0

 ×


1 +

 t
V
tk
(Ic(Hk, Pk))


= 0 (2.7)

hold uniformly on I .
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Theorem 2.2. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.1) and (2.2) hold, and the conditions

lim
k→+∞

  t

tk
Pk(τ )dτ −

 t

t0
P0(τ )dτ


1 +

  t

tk
∥Pk(τ )∥dτ


= 0 (2.8)

and

lim
k→+∞

  t

tk
qk(τ )dτ −

 t

t0
q0(τ )dτ


1 +

  t

tk
∥Pk(τ )∥dτ


= 0 (2.9)

are fulfilled uniformly on I . Then condition (1.3) holds.

Theorem 2.3. Let x∗

0 be a unique solution of the Cauchy problem

dx

dt
= P ∗

0 (t) x + q∗

0 (t), (2.10)

x(t0) = c∗

0, (2.11)

where P∗

0 ∈ L(I, Rn×n), q∗

0 ∈ L(I, Rn), c∗

0 ∈ Rn , t0 ∈ I . Let, moreover, Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn

and tk ∈ I (k = 1, 2, . . .) be such that conditions (2.2),

inf{| det(Hk(t))| : t ∈ Itk } > 0 for every sufficiently large k, (2.12)

and

lim
k→+∞

c∗

k = c∗

0 (2.13)

hold, and conditions (2.6) and

lim
k→+∞

 t

tk
q∗

k (τ )dτ −

 t

t0
q∗

0 (τ )dτ

 
1 +

 t
V
tk
(Ic(Hk, Pk))


= 0 (2.14)

are fulfilled uniformly on I , where Hk ∈ C(I ; Rn×n), hk ∈ C(I ; Rn) (k = 1, 2, . . .),

q∗

k (t) = Hk(t) qk(t) + h′

k(t) − (H ′

k(t) + Hk(t) Pk(t)) H−1
k (t) hk(t) for t ∈ I (k = 1, 2, . . .)

and

c∗

k = Hk(tk) ck + hk(tk) (k = 1, 2, . . .).

Then

lim
k→+∞

(Hk(t) xk(t) + hk(t)) = x∗

0 (t) uniformly on I. (2.15)

Remark 2.1. In Theorem 2.3, the vector function x∗

k (t) = Hk(t) xk(t) + hk(t) is a solution of problem

dx

dt
= P ∗

k (t) x + q∗

k (t), (2.10k)

x(tk) = c∗

k (2.11k)

for every natural k.

Corollary 2.1. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.2), (2.4) and

lim
k→+∞

(ck − ϕk(tk)) = c0 (2.16)
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hold, and conditions (2.5), (2.6) and

lim
k→+∞

  t

tk
Hk(τ )


qk(τ ) − ϕ′

k(τ ) + Pk(τ ) ϕk(τ )

dτ −

 t

t0
H0(τ ) q0(τ )dτ


×


1 +

 t
V
tk
(Ic(Hk, Pk))


= 0

are fulfilled uniformly on I , where Hk ∈ C(I ; Rn×n) and ϕk ∈ C(I ; Rn) (k = 0, 1, . . .). Then

lim
k→+∞

(xk(t) − ϕk(t)) = x0(t) uniformly on I. (2.17)

Below, we give some sufficient conditions guaranteeing inclusion (2.3). To this connection we give a theorem
different from Theorem 2.1 concerning the necessary and sufficient condition for inclusion (2.3), as well, and
corresponding propositions.

Theorem 2.1′. Let P0 ∈ L(I, Rn×n), q0 ∈ L(I, Rn), t0 ∈ I , and tk ∈ I (k = 1, 2, . . .) be such that condition
(2.2) hold. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Hk ∈ C(I ; Rn×n)

(k = 0, 1, . . .) such that conditions (2.4) and

lim
k→+∞

sup


I
∥H ′

k(τ ) + Hk(τ ) Pk(τ )∥dτ < +∞ (2.18)

hold, and conditions (2.5),

lim
k→+∞

 t

tk
Hk(τ ) Pk(τ )dτ =

 t

t0
H0(τ ) P0(τ )dτ (2.19)

and

lim
k→+∞

 t

tk
Hk(τ ) qk(τ )dτ =

 t

t0
H0(τ ) q0(τ )dτ (2.20)

are fulfilled uniformly on I .

Remark 2.2. Due to (2.4), (2.5), there exists a positive number r such that

sup
 t

V
tk
(Ic(Hk, Pk))

 : t ∈ I


≤ r


I
∥H ′

k(τ ) + Hk(τ ) Pk(τ )∥dτ (k = 0, 1, . . .).

In addition, in view of Lemma 3.2 (see below), by conditions (2.18) and (2.19) we get

lim
k→+∞

(Ic(Hk, Pk)(t) − Ic(Hk, Pk)(tk)) = Ic(H0, P0)(t) − Ic(H0, P0)(t0)

uniformly on I . Therefore, thanks to this, (2.18) and (2.20), conditions (2.6) and (2.7) are fulfilled uniformly on I

Theorem 2.2′. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.1), (2.2) and

lim
k→+∞

sup


I
∥Pk(τ )∥dτ < +∞ (2.21)

hold, and the conditions

lim
k→+∞

 t

tk
Pk(τ )dτ =

 t

t0
P0(τ )dτ (2.22)

and

lim
k→+∞

 t

tk
qk(τ )dτ =

 t

t0
q0(τ )dτ (2.23)

are fulfilled uniformly on I . Then condition (1.3) holds.



154 M. Ashordia / Transactions of A. Razmadze Mathematical Institute 170 (2016) 149–165

Theorem 2.3′. Let x∗

0 be a unique solution of the Cauchy problem (2.10), (2.11), where P∗

0 ∈ L(I, Rn×n), q∗

0 ∈

L(I, Rn), c∗

0 ∈ Rn , t0 ∈ I . Let, moreover, Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 1, 2, . . .) be
such that conditions (2.2), (2.12), (2.18) and

lim
k→+∞

(Hk(tk) ck + hk(tk)) = c∗

0 (2.24)

hold, and the conditions

lim
k→+∞

(Ic(Hk, Pk)(t) − Ic(Hk, Pk)(tk)) = Ic(H0, P∗

0 )(t) − Ic(H0, P∗

0 )(t0), (2.25)

and

lim
k→+∞

 t

tk
q∗

k (τ )dτ =

 t

t0
q∗

0 (τ )dτ (2.26)

are fulfilled uniformly on I , where Hk ∈ C(I ; Rn×n), hk ∈ C(I ; Rn)(k = 1, 2, . . .), and the vector-functions
q∗

k (k = 1, 2, . . .) are defined as in Theorem 2.3. Then condition (1.3) holds.

Corollary 2.1′. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.2), (2.4), (2.16) and (2.18) hold, and conditions (2.5), (2.19) and

lim
k→+∞

 t

tk
Hk(τ )


qk(τ ) − ϕ′

k(τ ) + Pk(τ ) ϕk(τ )

dτ =

 t

t0
H0(τ ) q0(τ )dτ

are fulfilled uniformly on I , where Hk ∈ C(I ; Rn×n) and ϕk ∈ C(I ; Rn)(k = 0, 1, . . .). Then condition (2.17) holds.

Corollary 2.2. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that conditions (2.2),
(2.4) and (2.18) hold, and conditions (2.5), (2.22), (2.23),

lim
k→+∞

 t

tk
H ′

k(τ )

 τ

tk
Pk(s)ds


dτ =

 t

t0
P∗(τ )dτ (2.27)

and

lim
k→+∞

 t

tk
H ′

k(τ )

 τ

tk
qk(s)ds


dτ =

 t

t0
q∗(τ )dτ (2.28)

are fulfilled uniformly on I , where H0(t) = In , Hk ∈ C(I ; Rn×n)(k = 1, 2, . . .), P∗
∈ L(I, Rn×n), q∗

∈ L(I, Rn).
Then

((Pk, qk; tk))
+∞

k=1 ∈ S(P0 − P∗, q0 − q∗
; t0).

Corollary 2.3. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds and
let there exist a natural number m and matrix-functions P0l ∈ L(I ; Rn×n)(l = 1, . . . , m − 1) such that

lim
k→+∞

sup


I
∥H ′

k m−1(t) + Hk m−1(t) Pk(t)∥dt < +∞, (2.29)

and the conditions

lim
k→+∞

Hk m−1(t) = In, (2.30)

lim
k→+∞

 t

tk
Hk m−1(τ ) Pk(τ )dτ =

 t

t0
P0(τ )dτ, (2.31)

lim
k→+∞

 t

tk
Hk m−1(τ ) qk(τ )dτ =

 t

t0
q0(τ )dτ (2.32)
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hold uniformly on I , where

Hk0(t) = In, Hk j+1(t) =


In −

 t

tk
(Pk j+1(τ ) − P0l(τ ))dτ


Hk j (t),

Pk j+1(t) = H ′

k j (t) + Hk j (t) Pk(t), qk j+1(t) = Hk j (t) qk(t)

for t ∈ I ( j = 0, . . . , m − 1; k = 0, 1, . . .).

Then inclusion (2.3) holds.

If m = 1, then Corollary 2.3 coincides to Theorem 2.2′.
If m = 2, then Corollary 2.3 has the following form.

Corollary 2.3′. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that condition
(2.2) holds and let there exist a matrix-function P01 ∈ L(I ; Rn×n) such that

lim
k→+∞

sup


I

P01(t) −

 t

tk
(Pk(τ ) − P01(τ ))dτ · Pk(t)

dt < +∞,

and the conditions

lim
k→+∞

 t

tk
Pk(τ )dτ =

 t

t0
P01(τ )dτ,

lim
k→+∞

 t

tk


(Pk(τ ) − P01(τ ))

 τ

tk
Pk(s)ds


dτ =

 t

t0
(P0(τ ) − P01(τ ))dτ

and

lim
k→+∞

 t

tk
qk(τ )dτ +

 t

tk


(Pk(τ ) − P01(τ ))

 τ

tk
qk(s)ds


dτ


=

 t

t0
q0(τ )dτ

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.4. Let P0 ∈ L(I, Rn×n), q0 ∈ L(I, Rn), t0 ∈ I , and tk ∈ I (k = 1, 2, . . .) be such that condition
(2.2) holds. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Qk ∈ L(I ; Rn×n)(k =

0, 1, . . .) such that the condition

lim
k→+∞

sup


I
∥Pk(τ ) − Qk(τ )∥dτ < +∞ (2.33)

holds, and the conditions

lim
k→+∞

Z−1
k (t) = Z−1

0 (t), (2.34)

lim
k→+∞

 t

tk
Z−1

k (τ ) Pk(τ )dτ =

 t

t0
Z−1

0 (τ ) P0(τ )dτ (2.35)

and

lim
k→+∞

 t

tk
Z−1

k (τ ) qk(τ )dτ =

 t

t0
Z−1

0 (τ ) q0(τ )dτ (2.36)

are fulfilled uniformly on I , where Zk(Zk(tk) = In) is a fundamental matrices of the homogeneous problems

dx

dt
= Qk(t)x (2.37)

for every k ∈ {0, 1, . . .}.
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Corollary 2.5. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds
and let there exist a sequence of matrix-functions Qk ∈ L(I ; Rn×n) (k = 0, 1, . . .), satisfying the Lappo-Danilevskiı̆
condition, such that condition (2.33) holds, and the conditions

lim
k→+∞

 t

tk
Qk(τ )dτ =

 t

t0
Q0(τ )dτ,

lim
k→+∞

 t

tk
exp


−

 τ

tk
Qk(s)ds


Pk(τ )dτ =

 t

t0
exp


−

 τ

t0
Q0(s)ds


P0(τ )dτ (2.38)

and

lim
k→+∞

 t

tk
exp


−

 τ

tk
Qk(s)ds


qk(τ )dτ =

 t

t0
exp


−

 τ

t0
Q0(s)ds


q0(τ )dτ (2.39)

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.6. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds, the
matrix functions Pk(k = 0, 1, . . .) satisfy the Lappo-Danilevskiı̆ condition, and the conditions

lim
k→+∞

 t

tk
Pk(τ )dτ =

 t

t0
P0(τ )dτ, (2.40)

and

lim
k→+∞

 t

tk
exp


−

 τ

tk
Pk(s)ds


qk(τ )dτ =

 t

t0
exp


−

 τ

t0
P0(s)ds


q0(τ )dτ (2.41)

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.7. Let Pk ∈ L(I, Rn×n), qk ∈ L(I, Rn) and tk ∈ I (k = 0, 1, . . .) be such that conditions (2.2) and

lim
k→+∞

sup
n

i,l=1; i≠l


I
∥pkil(τ )∥dτ < +∞

hold, and the conditions

lim
k→+∞

 t

tk
pkii (τ )dτ =

 t

t0
p0i i (τ )dτ (i = 1, . . . , n)

lim
k→+∞

 t

tk
z−1

kii (τ )pkil(τ )dτ =

 t

t0
z−1

0i i (τ )p0il(τ )dτ (i ≠ l; i, l = 1, . . . , n)

and

lim
k→+∞

 t

tk
z−1

kii (τ )qki (τ )dτ =

 t

t0
z−1

0i i (τ )q0i (τ )dτ (i = 1, . . . , n)

are fulfilled uniformly on I , where

zkii (t) = exp
 t

tk
pkii (s)ds


for t ∈ I (i = 1, . . . , n; k = 1, 2, . . .).

Then inclusion (2.3) holds.

Remark 2.3. In Theorems 2.1′–2.3′ and Corollaries 2.1′, 2.2–2.7, we can assume H0(t) = In , without loss of
generality. It is evident that

Ic(H0, Y )(t) − Ic(H0, Y )(s) =

 t

s
Y (τ )dτ for Y ∈ L(I ; Rn×n) and s, t ∈ I,

in this case.
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Remark 2.4. In Theorem 2.2′, condition (2.21) is essential and it cannot be removed. In connection with this we give
the example from [4].

Example 2.1. Let I = [0, 2π ], n = 1, ck = c0 = 0, P0(t) = q0(t) = 0, Pk(t) = k cos2 k2t , qk(t) = −k sin k2t ,
t0 = tk = 0(k = 1, 2, . . .). Then

x0(t) ≡ 0, xk(t) ≡ −k
 t

0
exp

 sin k2t

k
−

sin k2τ

k


sin k2τdτ (k = 1, 2, . . .)

and

lim
k→+∞

xk(t) = x0(t) +
t

2
uniformly on [0, 2π ].

It is evident that, in the case, all conditions of Theorem 2.2′ are valid except of (2.21). On the other hand, the case
coordinates to Corollary 2.2 because its conditions hold and the function x∗

0 (t) = t/2 is a solution of problem (2.10),
(2.11), where P∗

0 (t) = 0, q∗

0 (t) = t/2, and

Hk(t) = exp

−

sin k2t

k


(k = 1, 2, . . .).

Example 2.2. Let I = [0, 2π ], n = 2, t0 = tk = 0 (k = 1, 2, . . .),

c0 =


1
0


, ck =


1

1/k


(k = 1, 2, . . .);

P0(t) =


0 0

−1/2 0


, Pk(t) =


k cos k2t 0
−k sin k2t 0


(k = 1, 2, . . .);

q0(t) = qk(t) =


0
0


(k = 1, 2, . . .).

Then

x0(t) ≡


1

−t/2


, xk(t) ≡


x1k(t)
x2k(t)


(k = 1, 2, . . .),

where

x1k(t) ≡ exp
 sin k2t

k


, x2k(t) ≡

1
k

− k
 t

0
exp

 sin k2τ

k


sin k2τdτ (k = 1, 2, . . .).

It is not difficult to verify that condition (1.3) is fulfilled uniformly on I . Note that, in the case, condition (2.21) is
not hold. But, all conditions of Theorem 2.1′ hold if we assume Hk(t) = Yk(t)(k = 0, 1, . . .) therein, where Y0 and
Yk(k = 1, 2, . . .), Y0(0) = Yk(0) = I2, are is the fundamental matrix of the systems (1.10) and (1.1k0) (k = 1, 2, . . .),
respectively.

Remark 2.5. As compared with Theorem 2.1′ and Theorem 2.2′, it is not assumed, in Theorem 2.1′, that the equalities
(2.22) and (2.23) hold uniformly on I . Below we will give an example of a sequence of initial value problems for which
inclusion (2.3) holds but condition (2.22) is not fulfilled uniformly on I .

Example 2.3. Let I = [0, π], n = 2, t0 = tk = 0 (k = 1, 2, . . .),

c0 = ck =


0
0


(k = 1, 2, . . .);
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P0(t) =


0 0
0 0


, Pk(t) =


0 pk1(t)
0 pk2(t)


(k = 1, 2, . . .);

q0(t) = qk(t) =


0
0


(k = 1, 2, . . .);

pk1(t) =


(
√

k +
4√k) sin kt for t ∈ Ik ,

√
k sin kt for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

pk2(t) =


−α′

k(t) (1 − αk(t))
−1 for t ∈ Ik ,

0 for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

βk(t) =

 t

0
(1 − αk(τ )) pk1(τ ) dτ (k = 1, 2, . . .);

αk(t) =


4π−1(

4√k + 1)−1 sin kt for t ∈ Ik ,
0 for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

where

Ik =

k−1
m=0

]2mk−1π, (2m + 1)k−1π [ (k = 1, 2, . . .).

Let, moreover, Y0 and Yk(k = 1, 2, . . .), Y0(0) = Yk(0) = I2, be the fundamental matrix of the systems (1.10) and
(1.1k0) (k = 1, 2, . . .), respectively. It can easily be shown that

Y0(t) ≡ I2, Yk(t) ≡


1 βk(t)
0 1 − αk(t)


(k = 1, 2, . . .)

and

lim
k→+∞

Yk(t) = Y0(t) uniformly on [0, 2π ],

since

lim
k→+∞

∥αk∥c = lim
k→+∞

∥βk∥c = 0.

Note that

lim
k→+∞

 2π

0
pk1(t) dt = 2 lim

k→+∞

4√k = +∞

and

lim
k→+∞

sup
 2π

0
|pk2(t)| dt = +∞.

Therefore, condition (2.22) is not fulfilled uniformly on I .
On the other hand, if we assume that H0(t) = In and Hk(t) = Y −1

k (t)(k = 1, 2, . . .), then all conditions of
Theorem 2.1′ hold.

3. Auxiliary propositions

We will use the following simple lemma.

Lemma 3.1. Let h ∈ Cloc(I ; Rn), and H ∈ Cloc(I ; Rn×n) be a nonsingular matrix-function. Then the mapping

x → y = H x + h

establishes a one-to-one corresponding between the solution between the solutions x and y of systems

dx

dt
= P(t) x + q(t)
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and
dy

dt
= P∗(t) y + q∗(t)

respectively, where the matrix- and vector-functions P∗ and q∗ are defined, respectively, by

P∗(t) ≡ (H ′(t) + H(t)P(t)) H−1(t), q∗(t) = H(t) q(t) + h′(t) − P∗(t) h(t).

Lemma 3.2. Let αk, βk ∈ L(I ; R) (k = 0, 1, . . .) be such that

lim
k→+∞

∥βk − β0∥s = 0, lim
k→+∞

sup


I
|αk(t)|dt < +∞,

and the condition

lim
k→+∞

 t

a
αk(τ )dτ =

 t

a
α0(τ )dτ

hold uniformly on I , where a ∈ I is some fixed point. Then

lim
k→+∞

 t

a
βk(τ )αk(τ )dτ =

 t

a
β0(τ )α0(τ )dτ

uniformly on I , as well.

The proof of the lemma one can find in [3,6].

4. Proof of the main results

Proof of Theorem 2.2. Let zk(t) = xk(t) − x0(t) for t ∈ I (k = 1, 2, . . .}.
It is not difficult to check that

zk(t) = zk(tk) +

 t

tk
P0(s) zk(s)ds +

 t

tk
P̄k(s) xk(s)ds +

 t

tk
q̄k(s)ds for t ∈ I (k = 1, 2, . . .),

where

P̄k(t) = Pk(t) − P0(t), q̄k(t) = qk(t) − q0(t) (k = 1, 2, . . .).

Using the integration-by-parts formula we conclude t

tk
P̄k(s) xk(s)ds =

 t

tk
P̄k(s)ds · xk(t) −

 t

tk

 s

tk
P̄k(τ )dτ


x ′

k(s)ds

=

 t

tk
P̄k(s)ds · xk(t) −

 t

tk

 s

tk
P̄k(τ )dτ


(Pk(s) xk(s) + qk(s))ds for t ∈ I (k = 1, 2, . . .).

Therefore,

zk(t) = zk(tk) + Jk(t) + Qk(t) +

 t

tk
P0(s) zk(s)ds for t ∈ I (k = 1, 2, . . .) (4.1)

where

Jk(t) =

 t

tk
P̄k(s)ds · xk(t) −

 t

tk

 s

tk
P̄k(τ )dτ


Pk(s) xk(s)ds (k = 1, 2, . . .),

and

Qk(t) =

 t

τ

q̄k(s)ds −

 t

tk

 s

tk
P̄k(τ )dτ


qk(s)ds (k = 1, 2, . . .).

Due to (4.1) we get

∥zk(t)∥ ≤ ∥zk(tk)∥ + ∥Jk(t)∥ + ∥Qk(t)∥ +

  t

tk
∥P0(s)∥ ∥zk(s)∥ds

 for t ∈ I (k = 1, 2, . . .). (4.2)
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Let

αk = sup
t∈I

  t

tk
P̄k(s)ds

, βk = sup
t∈I

  t

tk
q̄k(s)ds


and

γk = sup
t∈I

  t

tk
∥Pk(s)∥ds

 (k = 1, 2, . . .).

Then by (2.8) and (2.9) we have

lim
k→+∞

αk(1 + γk) = lim
k→+∞

βk(1 + γk) = 0. (4.3)

It is evident that

∥Jk(t)∥ ≤ εk∥xk∥c for t ∈ I (k = 1, 2, . . .) (4.4)

where εk = αk(1 + γk)(k = 1, 2, . . .).
Further, we have  t

tk

 s

tk
P̄k(τ )dτ


q0(s)ds

 ≤ r0αk for t ∈ I (k = 1, 2, . . .)

and, in addition, using the integration-by-parts formulae we get  t

tk

 s

tk
P̄k(τ )dτ


q̄k(s)ds

 ≤ αkβk + βk(γk + r1) for t ∈ I (k = 1, 2, . . .),

where

r0 =


I
∥q0(t)∥dt, r1 =


I
∥P0(t)∥dt.

Due to the last two estimates, thanks to the inequalities  t

tk

 s

tk
P̄k(τ )dτ


qk(s)ds

 ≤

  t

tk

 s

tk
P̄k(τ )dτ


q̄k(s)ds


+

  t

tk

 s

tk
P̄k(τ )dτ


q0(s)ds

 for t ∈ I (k = 1, 2, . . .),

we conclude

∥Qk(t)∥ ≤ δk for t ∈ I (k = 1, 2, . . .), (4.5)

where δk = αk(βk + r0) + βk(γk + r1).
From (4.2), by (4.4) and (4.5) we find

∥zk(t)∥ ≤ ∥zk(tk)∥ + εk∥xk∥c + δk +

  t

tk
∥P0(s)∥ ∥zk(s)∥ds

 for t ∈ I (k = 1, 2, . . .).

Hence, according to the Gronwall inequality (see [4])

∥zk∥c ≤ (∥zk(tk)∥ + εk∥xk∥c + δk


exp(r1) (k = 1, 2, . . .). (4.6)

In virtue of (4.3) we have

lim
k→+∞

εk = 0. (4.7)

Therefore, there exists a natural k0 such that

εk <
1
2

exp(−r1) for k > k0.
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From this and (4.6) it follows

∥xk∥c ≤ ∥x0∥c + ∥zk∥c ≤ ∥x0∥c +

∥zk(tk)∥ + εk∥xk∥c + δk


exp(r1) (k > k1).

So, the sequence ∥xk∥c(k = 1, 2, . . .) is bounded. In addition, in view of conditions (2.8) and (2.9) we have

lim
k→+∞

δk = 0, (4.8)

and using (2.1) we conclude

lim
k→+∞

zk(tk) = lim
k→+∞

(xk(tk) − x0(tk)) = lim
k→+∞

ck − x0(t0) = 0.

Therefore, by this, (4.7) and (4.8), it follows from (4.6)

lim
k→+∞

∥zk∥c = 0,

since the sequence ∥xk∥c(k = 1, 2, . . .) is bounded. �

Proof of Theorem 2.3. According to Theorem 2.2 the mapping x → Hk x+hk establishes a one-to-one corresponding
between the solution xk of problem (1.1k), (1.2k) and the solution x∗

k of the Cauchy problem (2.10k), (2.11k) and, in
addition, x∗

k (t) ≡ Hk(t) xk(t) + hk(t) for every natural k.
Conditions (2.12)–(2.14) guarantee the fulfillment of the conditions of Theorem 2.2 for the Cauchy problem (2.10),

(2.11) and sequence of the Cauchy problems (2.10k), (2.11k) (k = 1, 2, . . .). Therefore, according to Theorem 2.2

lim
k→+∞

x∗

k (t) = x∗

0 (t) uniformly on I.

So, condition (2.15) holds. �

Proof of Corollary 2.1. Verifying the conditions of Theorem 2.3. From (2.4) and (2.5) it follows that condition (2.12)
holds, and the condition

lim
k→+∞

H−1
k (t) = H−1

0 (t) uniformly on I. (4.9)

Put

hk(t) = −Hk(t) ϕk(t) for t ∈ I (k = 1, 2, . . .).

Due to (2.2) and (2.5) we get

lim
k→+∞

Hk(tk) = H0(t0).

By this and (2.16) condition (2.13) is fulfilled for c∗

0 = H0(t0) c0.
Let q∗

k (k = 1, 2, . . .) are the vector-functions given in Theorem 2.3. It is not difficult to verify that

q∗

k (t) ≡ qk(t) − ϕ′

k(t) + Pk(t) ϕk(t) (k = 1, 2, . . .)

in the case. Further, by (2.6) and (2.1) condition (2.14) holds uniformly on I for the functions q∗

k (k = 1, 2, . . .) given
above, q∗

0 (t) = H0(t) q0(t) and c∗

k = Hk(tk) (ck − ϕk(t))(k = 1, 2, . . .). In view of Lemma 3.1, the vector-function
x∗

0 (t) = H0(t) x0(t) is the unique solution of problem (2.10), (2.11). By Theorem 2.3 we have

lim
k→+∞

(Hk(t) xk(t) − Hk(t) ϕk(t)) = x∗

0 (t) uniformly on I.

Therefore, by (2.5) and (4.9), condition (2.17) holds. �

Proof of Theorem 2.1. Sufficiency follows from Corollary 2.1 if we assume ϕk(t) = on(k = 1, 2, . . .) therein.
Let us show necessity. Let ck ∈ Rn(k = 0, 1, . . .) be an arbitrary sequence of constant vectors satisfying (2.1) and

let e j = (δi j )
n
i=1δi i = 1 and δi j = 0 if i ≠ j (i, j = 1, . . . , n).

Let xk be a unique solution of problem (1.1k), (1.2k) for every natural k.
For any k ∈ {0, 1, . . .} and j ∈ {1, . . . , n} let us denote

yk j (t) = xk(t) − xk j (t),
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where xk j is a unique solution of the system (1.1k) under the Cauchy condition

x(tk) = ck − e j .

Moreover, let Yk(t) be matrix-function whose columns are yk1(t), . . . , ykn(t).
It can be easily shown that Y0 and Yk(k = 1, 2, . . .) satisfy, respectively, of homogeneous systems (1.10) and

(1.1k0) (k = 1, 2, . . .) and

yk j (tk) = e j (k = 0, 1, . . .) (4.10)

for every j ∈ {1, . . . , n}. If for some natural k and α j ∈ R( j = 1, . . . , n)

n
j=1

α j yk j (t) ≡ on,

then using (4.10) we have

n
j=1

α j e j = on

and, therefore,

α1 = · · · = αn = 0,

i.e., Y0 and Yk(k = 1, 2, . . .) are the fundamental matrices, respectively, of homogeneous systems (1.10) and (1.1k0)

(k = 1, 2, . . .).
Thanks to Corollary 2.1 we have

lim
k→+∞

Yk(t) = Y0(t) uniformly on I

and, consequently,

lim
k→+∞

Y −1
k (t) = Y −1

0 (t) uniformly on I, (4.11)

as well.
We may assume without loss of generality that

Yk(tk) = In (k = 0, 1, . . .).

We put

Hk(t) = Y −1
k (t) for t ∈ I (k = 0, 1, . . .)

and verify conditions (2.4)–(2.7) of the theorem.
Condition (2.4) is evident, and condition (2.5) coincides to (4.11).
Using the equality

(Y −1
k (t))′ = −Y −1

k (t) Pk(t) for t ∈ I (k = 0, 1, . . .), (4.12)

we show

Ic(Hk, Ak)(t) − Ic(Hk, Ak)(tk) =

 t

tk


(Y −1

k (t))′ + Y −1
k (t) Pk(t)


dτ = On×n for t ∈ I (k = 0, 1, . . .).

Thus condition (2.6) is evident.
On the other hand, using integration-by-parts formulae we find

Bc(Hk, qk)(t) − Bc(Hk, qk)(tk) =

 t

tk
Y −1

k (τ )qk(τ )dτ =

 t

tk
Y −1

k (τ )

x ′

k(τ ) − Pk(τ ) xk(τ )


dτ

= Y −1
k (t) xk(t) − Y −1

k (tk) xk(tk) = Y −1
k (t) xk(t) − ck for t ∈ I (k = 0, 1, . . .).
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Hence, t

tk
Y −1

k (τ ) qk(τ )dτ −

 t

t0
Y −1

k (τ ) q0(τ )dτ = (Y −1
k (t) xk(t) − Y −1

0 (t) x0(t))

− (ck − c0) for t ∈ I (k = 1, 2, . . .). (4.13)

By this, (2.1), (4.11) and (4.13), if we take account that due to necessity of theorem condition (1.3) holds uniformly
on I , we conclude that condition (2.7) holds uniformly on I , as well. �

Proof of Theorem 2.2′. It is evident that doe to conditions (2.21), (2.22) and (2.23) conditions (2.8) and (2.9) are
valid. So, the theorem follows from Theorem 2.2. �

Proof of Theorem 2.3′. In the case, condition (2.24) is equivalent to condition (2.13). Moreover, due to conditions
(2.18), (2.25) and (2.26) conditions (2.6) and (2.14) are fulfilled uniformly on I . So, the theorem follows from
Theorem 2.3. �

Proof of Corollary 2.1′. From (2.4) and (2.5) it follows that conditions (2.12) and (4.9) are valid. By (4.9) there exists
a positive number is r such that

∥H−1
k (t)∥ ≤ r for t ∈ I (k = 0, 1, . . .).

Therefore, due to Remark 2.2 and (2.18) we get

sup
 t

V
tk
(Ic(Hk, Pk))

 : t ∈ I


≤ rr0 < +∞ (k = 0, 1, . . .),

where r0 is the right hand of inequality (2.18). So, thanks to this, the uniform fulfillment on I of conditions (2.19) and
(2.20), guarantees, respectively, the same property for conditions (2.6) and (2.7). Hence, the corollary follows from
Corollary 2.1. �

Proof of Theorem 2.1′. Sufficiency follows from Corollary 2.1′ if we assume ϕk(t) = on (k = 1, 2, . . .) therein. The
proof of the necessity is the same as in the proof of Theorem 2.1. We only note that by condition (2.5) and equality
(4.12) condition (2.18) is valid, and condition (2.19) is fulfilled uniformly on I . Moreover, according to Remark 2.2,
it is evident that the sufficiency immediately follows from Theorem 2.1. �

Proof of Corollary 2.2. In virtue of the integration-by-parts formula, conditions (2.5), (2.22), (2.23), (2.27) and (2.28)
yield that the conditions

lim
k→+∞

 t

tk
Hk(τ ) Pk(τ )dτ =

 t

t0
(P0(τ ) − P∗(τ ))dτ

and

lim
k→+∞

 t

tk
Hk(τ ) qk(τ )dτ =

 t

t0
(q0(τ ) − q∗(τ ))dτ

are fulfilled uniformly on I . Corollary 2.2 follows from Theorem 2.1′. �

Proof of Corollary 2.3. Let

Ckl(t) = In −

 t

tk
(Pkl(τ ) − P0l(τ ))dτ (l = 1, . . . , m; k = 1, 2, . . .).

Thanks to (2.30), without loss of generality we can assume that the matrix-functions Hkl and Ckl(l = 1, . . . , m) are
nonsingular for every natural k.

Based on the definitions of the operators Bc ad Ic, it is not difficult to verify the equality

Bc(Ck j , Hk j−1 Pk)(τ )
t
tk

≡ Bc(Hk j , Pk)(τ )
t
tk
,

Bc(Ck j , Hk j−1 fk)(τ )
t
tk

≡ Bc(Hk j , fk)(τ )
t
tk
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and

Ic(Ck j , (H ′

k j−1 + Hk j−1 Pk)H−1
k j−1)(τ )

t
tk

≡ Ic(Hk j , Pk)(τ )
t
tk

( j = 1, . . . , m; k = 1, 2, . . .).

In addition, by conditions (2.29)–(2.32) conditions (2.4) and (2.18) hold, and conditions (2.5) and (2.19) and (2.20)
are fulfilled uniformly on I , where H0(t) = In and Hk(t) = Hkm−1(t)(k = 1, 2, . . .). So, the corollary follows from
Theorem 2.1′. �

Proof of Corollary 2.4. Let us show the sufficiency. Let Hk(t) = Z−1
k (t)(k = 0, 1, . . .) in Theorem 2.1′. Thanks to

(2.34), there exists a positive number r such that

∥Z−1
k (t)∥ ≤ r for t ∈ I (k = 0, 1, . . .).

Using this estimate and the equality

(Z−1
k (t))′ = −Z−1

k (t) Qk(t) for t ∈ I (k = 0, 1, . . .),

by the integration-by-parts formulae we haveZ−1
k (t) − Z−1

k (s) +

 t

s
Z−1

k (τ )Pk(τ )dτ

 =

  t

s
Z−1

k (τ )(Pk(τ ) − Qk(τ ))dτ


≤ r

 t

s
∥Pk(τ ) − Qk(τ )∥dτ for s < t (k = 0, 1, . . .).

Therefore,
I
∥H ′

k(τ ) + Hk(τ )Pk(τ )∥dτ ≤ r


I
∥Pk(τ ) − Qk(τ )∥dτ (k = 0, 1, . . .)

and due to (2.33) estimate (2.18) holds. Moreover, conditions (2.19) and (2.20) coincide to conditions (2.35) and
(2.36), respectively. So, the sufficiently follows from Theorem 2.1′.

Let us show the necessity. Let Qk(t) = Pk(t)(k = 0, 1, . . .). Then Zk(t) ≡ Yk(t)(k = 0, 1, . . .), where Y0 and Yk
(k = 1, 2, . . .) are fundamental matrices, respectively, of the homogeneous systems (1.10) and (1.1k0). Analogously,
as in the proof of Theorem 2.1, conditions (2.34) and equality (4.13) are valid. In addition, condition (2.35) coincides
to condition (2.19), and condition (2.36) follows from equality (4.13). �

Proof of Corollary 2.5. The corollary immediately follows from Corollary 2.4 if we note the fundamental matrix of
Zk(t)(Zk(tk) = In) of system (2.37), in the case, has the form

Zk(t) ≡ exp
 t

tk
Qk(τ )dτ


(k = 0, 1, . . .). �

Proof of Corollary 2.6. The corollary follows from Corollary 2.5 if we assume that therein Qk(t) = Pk(t) (k =

0, 1, . . .) and, in addition, we note that condition (2.38) is equivalent to condition (2.40), and condition (2.39) coincides
to (2.41). �

Proof of Corollary 2.7. The corollary follows from Corollary 2.4 if we assume therein that Qk(t) = diag(Pk(t))(k =

0, 1, . . .). �
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