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Abstract

There are obtained necessary and sufficient conditions for the well-posedness of the Cauchy problem for the systems of linear
ordinary differential equations, analogous to the sufficient condition by Z. Opial for the problem one. Moreover, there are given the
efficient sufficient conditions for the problem one.
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1. Statement of the problem and basic notation

Let Py € Lijpc(I, R™"), g0 € Lioc(I, R") and ty € I, where [ is an arbitrary interval from R non-degenerated in
the point. Let xo be a unique solution of the Cauchy problem

d
d—f = Po(t) x + qo(t), (1.1)
x(tp) = co, (1.2)

where ¢y € R” is a constant vector.
Consider sequences of matrix- and vector-functions Py € Ljoc (I, R"*") (k = 1,2,...)and g; € Ljoc(I,R") (k =

1,2,...), respectively; sequence of points f; (k = 1,2,...) and sequence of constant vectors ¢, € R”
k=1,2,...).
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In [1-8] (see, also the references therein), the sufficient conditions are given such that a sequence of unique
solutions x; (k =1, 2, ...) of the Cauchy problems

d
d—f = Pe(t) x + qr (1), (1.1¢)
x(tx) = cx (1.2)

(k=1,2,...) satisfy the condition

lim xi(#) = x0(t) uniformly on I. (1.3)
k— 400

In the present paper necessary and sufficient conditions are established for the sequence of the Cauchy problems
(1.15), (1.2%) (k = 1,2, ...) to have the above-mentioned property. The obtained criterion are based on the concept
by Z. Opial, concerning to the sufficient condition considered in [8], and it differs from analogous one given in [1].

The Opial type sufficient conditions are investigated in [5] for the well-posedness problem of the Cauchy problem
for linear functional-differential equations.

In the paper the use will be made of the following notation and definitions.

R =] — 00, +o0l; [a, b] and ]a, b[(a, b € R) are, respectively, closed and open intervals.

I is an arbitrary, non-degenerated in the point, finite or infinite interval from R.

R"*™ ig the space of all real n x m matrices X = (x; ])Z”Jm: | with the norm

n
IXI = max Y |xl.
j=1,...m =1

O, xm 1s the zero n x m-matrix.

R" = R"*! is the space of all real column n-vectors x = (xi)?_,; oy is the zero n-vector.

R™ 7" is the space of all real quadratic n x n-matrices X = (x; j);szl;

I, is the identity n X n-matrix; diag(Aq, ..., A,) is the diagonal matrix with diagonal elements A1, ..., A,; §;; is
the Kronecker symbol, i.e. §;; = 1 and §;; =0fori # j(G, j=1,...);

If X € R then X! and det(X) are, respectively, the matrix inverse to X and the determinant of X;
diagX = diag(x11, ..., Xn,) is the diagonal matrix corresponding to X.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its component is such.

We say that the matrix-function X € Ly, (I, R"*") satisfies the Lappo-Danilevskii condition if for every t € I the
following condition holds

t t
X(t)/ X(t)dt:/ X(v)dt - X(t) fora.a.tel.

T
b . . . . .
V(X) is the sum total variation of the components x;;(i = 1,...,n;j = 1,...,m) of the matrix-function
a
b
X : [a, b] — R V(X) = — V(X);
b a

b
V(X) = limy— g+ p—p— V(X), where « = inf/ and B =sup /.
1 a
C(I; R™*") is a space of continuous and bounded matrix-functions X : I — R™*" with the norm
I Xlle =sup{lIX(@)|l : 7 €1}

C(I; D), where D C R™*" is the set of continuous and bounded matrix-functions X : I — D;

Cioc(I; D) is the set of continuous matrix-functions X : I — D;

c (I; D) is the set of absolutely continuous matrix-functions X : I — D;

6IUC(I ; D) is the set of matrix-functions X : I — D which are absolutely continuous on the every closed interval
[a, b] from I.

L(I; D), where D C R™*" is the set of matrix-functions X : I — D whose components are Lebesgue-integrable;
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Lioc(I; D) is the set of matrix-functions X : I — D whose components are Lebesgue-integrable on the every
closed interval [a, b] from 1. _
We introduce the operators. If G € L(I; R'*"), X € L(I;R™™),Y € LU;R™™), and H € C(I; R™") is
nonsingular, then
t

B:(G, X)(t) :/ G(t) X(t)dt fortel,

o

'
I.(H,Y)(1) = / (H )+ H@) Y(t) H Y(v)dt fort e I.

The vector-function x : I — R” is said to be a solution of the system (1.1) if it belongs to aoc(l ; R™) and satisfies
the equality x'(¢) = Po(t)x(t) + go(¢) at almost all ¢ € 1.

Under a solution of the Cauchy problem (1.1), (1.2) we understand a solution of system (1.1) satisfying condition
(1.2).

We will assume that Py = (prir)?,;_; and gx = (qu)]_; (k =0, 1,...).

Along with systems (1.1) and (1.1;) we consider the corresponding homogeneous systems

dx

ar o0 (1.1p)
and

dx

= Pe(t) x (1.1x0)
k=1,2,..).

2. Formulation of the main results
Definition 2.1. We say that the sequence (P, gx; 1) (k = 1,2, ...) belongs to the set S(Py, qo; to) if for every
co € R" and a sequence ¢ € R" (k =1, 2, ...) satisfying the condition

lim ¢ = co, 2.1)
k—+o00

condition (1.3) holds, where x; is the unique solution of problem (1.1;), (1.2;) for every natural k.

Theorem 2.1. Let Py € L(I,R"*"), go € L(I,R") and ty € I(k =0, 1, ...) be such that

lim # =1p. 2.2)
k— 00
Then
((Px, qi; 1){ 2 € S(Po. qo; o) (2.3)
if and only if there exists a sequence of matrix-functions Hy € 5(1; R™") (k =0, 1,...) such that
inf{| det(Ho(1))| : 1 € I} > 0, (2.4)
and the conditions
lim Hi(t) = Ho(?), (2.5)
k—+00
' t ‘
lim { |7e(t, PO@)| = TeHo, PO@)| | % (14 |V, Pk»\)} =0 2.6)
k—+o0 1 fo T
and
. t t t
lim { |Be(Hi a0 @)| = BetHo, a)@)| | x (14 | VT, Pk»\)} =0 @7
k—+00 Ik fo Tk

hold uniformly on I.



152 M. Ashordia / Transactions of A. Razmadze Mathematical Institute 170 (2016) 149-165

Theorem 2.2. Let P, € L(I,R"™"), qr € LU,R"), ¢y € R* and ty € I (k = 0,1,...) be such that conditions
(2.1) and (2.2) hold, and the conditions

t t t
1m1{/nmumr—/1mwmwo+ /nmumm)}:o (2.8)
k——+00 t 1 f

t t t
lim { / qr(t)dt —/ qo(t)dt (1 + / | Pr(T)|ldT )} =0 2.9)
k—+4o00 e f f

are fulfilled uniformly on I. Then condition (1.3) holds.

and

Theorem 2.3. Let xj be a unique solution of the Cauchy problem

dx
dt

Py ) x + g5 (1), (2.10)

where Py € L(I,R""), g5 € L(I,R"), c; € R", to € I. Let, moreover, P, € L(I,R"*"), q; € L(I,R"), ¢, € R"
andty € I(k =1,2,...) be such that conditions (2.2),

inf{| det(Hi(¢))| : t € I;,} > O for every sufficiently large k, (2.12)

and
i ¥ % 2.13
k—:r—ir-loo “k 0 ( )

hold, and conditions (2.6) and

t '
lim { f q,f(r)dr—/ g5 (v)dt
k—400 t 1

are fulfilled uniformly on I, where Hy € 5(1; R™ ™) hy € 5(1; RY (k=1,2,...),
qi (1) = Hi (1) qi(t) + hy (1) — (Hp(t) + Hi (1) P(1)) Hk_l(t) hi(t) fortel (k=1,2,...)

<1 + ‘Sf(IC(Hk, Pk))D} =0 (2.14)
k

and
CZ =Hy(tr)cxk +hie(ty) (k=1,2,...).
Then

. lirf (Hi(t) xp (1) + hi (1)) = xS‘(t) uniformly on I. (2.15)

Remark 2.1. In Theorem 2.3, the vector function x; (t) = H(t) x(t) + hi(t) is a solution of problem

d
d—f = PH(t)x + g} (1), 2.10;)

x(t) = ¢} (2.11p)

for every natural k.

Corollary 2.1. Let P, € L(UI,R™"), g € LU, R"), ¢y € R"and t, € I(k = 0, 1,...) be such that conditions
(2.2), (2.4) and

lim (cx — @k (k) = co (2.16)
k——+00
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hold, and conditions (2.5), (2.6) and

lim

t t
H / Hi (1) (g (1) — 9 (1) + Pi(T) i (1) )dt —/ Ho(7) go(v)dt
k— 00 t 1

< (1+ )}=o

are fulfilled uniformly on I, where Hy € 5(1; R™™) and ¢y € E(I; R") (k=0,1,...). Then

)’k/ac(Hk, Po))

. 1121 (xk (1) — @i (2)) = x0(t) uniformly on I. 2.17)

Below, we give some sufficient conditions guaranteeing inclusion (2.3). To this connection we give a theorem
different from Theorem 2.1 concerning the necessary and sufficient condition for inclusion (2.3), as well, and
corresponding propositions.

Theorem 2.1. Let Py € L(I,R"™"), qo € LU, R"), 19 € I, and ty € I (k = 1,2,...) be such that condition
(2.2) hold. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Hy € C(I; R"*")
(k =0,1,...) such that conditions (2.4) and

lim sup/ ||H,£(r) + Hi(t) Pr(7)||dt < +00 (2.18)
k—+00 I
hold, and conditions (2.5),
t t
lim / Hi(t) P (t)dt :/ Hy(t) Py(t)dt 2.19)
k— 00 t fo
and
t t
lim / Hi(7) g (v)dT = / Hy(t) qo(r)dt (2.20)
k— 00 t 1

are fulfilled uniformly on I.

Remark 2.2. Due to (2.4), (2.5), there exists a positive number r such that

sup H}tk/(Ic(Hk, Pk))‘ it e I} < r/l ||H,£(r) + Hi(t) Pr(D)|ldt (k=0,1,...).
In addition, in view of Lemma 3.2 (see below), by conditions (2.18) and (2.19) we get
kljriloo (Ze(Hy, P)(t) — Ze(Hk, Po) (1)) = Zc(Ho, Po)(t) — Zc(Ho, Po)(to)
uniformly on /. Therefore, thanks to this, (2.18) and (2.20), conditions (2.6) and (2.7) are fulfilled uniformly on /

Theorem 2.2'. Let P, € L(I,R™"), qx € LU,R"), cx, € R" and ty € I (k = 0,1,...) be such that conditions
(2.1), (2.2) and

lim sup/ | Pr(T)||ldT < 400 2.21)
k——+o00 1
hold, and the conditions
t t
lim Pr(t)dt :[ Py(t)dt (2.22)
k—>+o0 Jy 1
and
t t
lim / qk(r)dr=/ qo(t)dt (2.23)
k— 00 f 1

are fulfilled uniformly on 1. Then condition (1.3) holds.
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Theorem 2.3'. Let xj be a unique solution of the Cauchy problem (2.10), (2.11), where P € L(I,R"*"), q; €
L(I,R"), cg e R", tg € I. Let, moreover, P € L(I, R""), qr € LU,R"), ¢y e R"andty € I (k =1,2,...) be
such that conditions (2.2), (2.12), (2.18) and

lim (Hi(t) cx + hi () = ¢ (2.24)
k—+4o00
hold, and the conditions

k—1>iI-Ii-loo (Ze(Hi, Po)(t) = Ze(Hi, Pe) () = Zc(Ho, Py)(t) — Ze(Ho, Py) (1), (2.25)

and

t t
lim / qi (v)dt = / q5(v)dt (2.26)
k——+00 f 1

0

are fulfilled uniformly on I, where Hy € 5(1; R™*My, hy € 5(1; R"(k = 1,2,...), and the vector-functions
qZ‘ (k=1,2,...) are defined as in Theorem 2.3. Then condition (1.3) holds.

Corollary 2.1'. Let P, € L(I,R™"), qx € LU, R"), ¢y € R" and t; € I (k = 0, 1,...) be such that conditions
(2.2), (2.4), (2.16) and (2.18) hold, and conditions (2.5), (2.19) and

1 t
lim / Hi(7) (qk (7) — 9 (v) + Pi(0) gx(v))dT = / Ho(7) qo(T)d
174 ]

k——+o0

are fulfilled uniformly on I, where Hy, € 5(1; R™™ ™) and ¢y € 5(1; R"M(k =0,1,...). Then condition (2.17) holds.

Corollary 2.2. Let Py € L(UI,R™"), g € LU, R") and t, € I(k = 0,1,...) be such that conditions (2.2),
(2.4) and (2.18) hold, and conditions (2.5), (2.22), (2.23),

t T t
lim | H{(x) ( / Pk(s)ds> dr = / P*(0)dt 2.27)
k——+00 t f fo
and
' T '
lim H;(7) (/ qk(s)ds) dt = / q*(v)dt (2.28)
k— 400 t t 1

are fulfilled uniformly on I, where Hy(t) = I,, Hy € E(I; R™>M(k =1,2,...), P* € L(,R"™"), ¢g* € L(I,R").
Then

((Px, qi; 1){2y € S(Po — P*, q0 — q*; t0).

Corollary 2.3. Let P, € L(I,R™"), g € LU, R") and ty € I (k =0, 1, ...) be such that condition (2.2) holds and

let there exist a natural number m and matrix-functions Poy € L(I; R™")( = 1,...,m — 1) such that
lim_sup / |y (0) + Hemo1 (1) P01 < 400, (229)
k—+o00 1
and the conditions
Iim Hip_1(@) = I, (2.30)
k——+o00
¢ t
lim / Hym—1(7) Pr(t)dt = / Py(t)dr, (2.31)
k—+00 1 0]

t t
lim / Hem-1(0) qu(2)dt = / do(r)dz (232)
t Ty

k——+00
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hold uniformly on I, where

t
Hyo(t) = I, Hyj1(t) = <1n —[ (Pr j+1(7) — Poz(f))df> Hyj (1),
173

Pyj+1(t) = Hy; (1) + Hij (1) Pe(0), qrj+1(t) = Hij(t) qi(t)
fortel (j=0,....m—1; k=0,1,...).

Then inclusion (2.3) holds.

If m = 1, then Corollary 2.3 coincides to Theorem 2.2’
If m = 2, then Corollary 2.3 has the following form.

Corollary 2.3'. Let P, €¢ L(I,R™™), gx € LU, R"), ¢y, € R* and ty € I (k = 0,1,...) be such that condition
(2.2) holds and let there exist a matrix-function Py € L(I; R"*") such that

lim sup /
k—+o00 1

and the conditions

t t
lim / Pr(t)dt = / Py (t)dr,
k—>+o0 [y 1o

t T t
lim / ((Pkm—Pm(r)) f Pk<s>ds>dr= f (Po(t) — Pyt (0))de
k—+00 f t 1%

t t T t
lim {/ qk(r)dr+/ ((Pk(f)—Pm(r))/ qk(s)ds>dr} =/ qo(t)dt
k—+00 Ik 174 174 o

are fulfilled uniformly on I. Then inclusion (2.3) holds.

dt < 400,

t
Po1(t) —/ (Pr(t) — Por1(z))dt - Pr(t)
179

and

Corollary 2.4, Let Pp € L(I,R*""), qo € LU,R"), to € I, and ty € I(k = 1,2,...) be such that condition
(2.2) holds. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Qy € L(I; R"*™")(k =
0,1, ...) such that the condition

lim sup/ | Pr(t) — Qr(t)||ldT < +00 (2.33)
k—+00 1

holds, and the conditions

lim Z ') =2z"! 2.34
k—:r-il-]oo k () 0 (), (2.34)
t t
lim Z ' (v) Pe(v)dt = f Zy () Po(v)dt (2.35)
k— 00 t 1
and
t t
lim f Zk_l(r)qk(t)drzf Zy ' (v) go(v)dt (2.36)
k— 00 t 1

are fulfilled uniformly on I, where Zy(Zy(tx) = I,,) is a fundamental matrices of the homogeneous problems

dx
i Or(H)x (2.37)

foreveryk € {0, 1, ...}.



156 M. Ashordia / Transactions of A. Razmadze Mathematical Institute 170 (2016) 149-165

Corollary 2.5. Let P, € L(I,R™"), gx € LU, R") and t, € I1(k = 0,1,...) be such that condition (2.2) holds
and let there exist a sequence of matrix-functions Qi € L(I; R™™) (k =0, 1, ...), satisfying the Lappo-Danilevskit
condition, such that condition (2.33) holds, and the conditions

t t
lim / 0u(v)dt = / 00(t)dr,
k— 400 t 10

t T t T
lim exp (—/ Qk(s)ds> Pr(t)dt = / exp (—/ Qo(s)ds> Py(t)dt (2.38)
k—+00 174 174 In) In)
and
t T t T
lim exp <—/ Qk(s)ds> qr(t)dt = / exp (—f Qo(s)ds) qo(t)dt (2.39)
k——+o00 t t fo f

are fulfilled uniformly on I. Then inclusion (2.3) holds.

Corollary 2.6. Let P, € L(I,R™"), g € L(UI,R") and ty € I1(k =0, 1, ...) be such that condition (2.2) holds, the
matrix functions Py(k = 0, 1, ...) satisfy the Lappo-Danilevskii condition, and the conditions

t t
lim / Pr(t)dt :/ Py(t)dr, (2.40)
k——+00 t 1
and
t T t T
lim exp <—/ Pk(s)ds> qr(t)dt =/ exp (—/ Po(s)ds> qo(t)dt (2.41)
k——+00 I e to to

are fulfilled uniformly on I. Then inclusion (2.3) holds.

Corollary 2.7. Let P, € LU, R"™"), gx € LU,R") and ty € I(k =0, 1, ...) be such that conditions (2.2) and

n
tim sp > [ palr < oo
il=1;i#l 71

k— 00

hold, and the conditions

t t
lim / prii (T)dt =/ poii()dt  (i=1,...,n)
k—+00 t fo

! '
lim / 21 () prir (V)T = / i @pon(dt (£ i l=1,...,n)
k—+00 1 1o
and
! 1 ! 1
li oy i(1)dt = 0 i(t)d i=1,...,
Jim [ @ = [ Gioama "
are fulfilled uniformly on I, where
t
Zkii (1) = exp </ pkii(s)ds) fortel(i=1,...,n; k=1,2,..)).
Tk
Then inclusion (2.3) holds.

Remark 2.3. In Theorems 2.1’-2.3" and Corollaries 2.1/, 2.2-2.7, we can assume Hy(z) = I,, without loss of
generality. It is evident that

t
Z.(Hy, Y)(t) — T.(Ho, Y)(s) =/ Y(t)dr forY e L(I; R"™ ") ands, 1 € I,
N

in this case.
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Remark 2.4. In Theorem 2.2, condition (2.21) is essential and it cannot be removed. In connection with this we give
the example from [4].

Example 2.1. Let I = [0,27],n = 1, ¢ = co = 0, Po(t) = qo(t) = 0, Pi(t) = kcos®k%t, qi(t) = —ksink’t,
fo=1 =0(k =1,2,...). Then

t ink?r  sink?
xo(t) =0, xe(t) = —k/ exp(sm _ o T) sink?tdt k=1,2,..)
0 k k
and
t
lim x(t) = xo(t) + = uniformly on [0, 27].
k—+00 2

It is evident that, in the case, all conditions of Theorem 2.2" are valid except of (2.21). On the other hand, the case
coordinates to Corollary 2.2 because its conditions hold and the function x;(¢) = #/2 is a solution of problem (2.10),
(2.11), where Py (t) =0, g;(t) = t/2, and

sin k2t
Hk(t)zexp<— - ) k=1,2,..).

Example 2.2. Let [ = [0,27],n =2t =t =0 (k=1,2,...),

c():((])>, ck:(l}k) k=1,2,...);

0 0 kcosk’t 0O
Po(t)Z(_1/2 O), Pk(t):<_ksink2t 0) (k=12

qo(t) = q (1) = (8) k=1,2,..).

Then

xo(t) = <_t1/2>, X (1) = @%3) k=12 ..),

where

2

sin k2t 1 ! sink“t
X1k (t) = exp( T ) Xop(t) = z —k A exp< T

It is not difficult to verify that condition (1.3) is fulfilled uniformly on 7. Note that, in the case, condition (2.21) is
not hold. But, all conditions of Theorem 2.1" hold if we assume Hy () = Y (¢)(k = 0, 1, ...) therein, where Y and
Yitk =1,2,...), Yo(0) = Yx(0) = I», are is the fundamental matrix of the systems (1.1p) and (1.1z) (k =1, 2,...),
respectively.

)sinkzrdr k=12 ...

Remark 2.5. As compared with Theorem 2.1” and Theorem 2.2, it is not assumed, in Theorem 2.1/, that the equalities
(2.22) and (2.23) hold uniformly on /. Below we will give an example of a sequence of initial value problems for which
inclusion (2.3) holds but condition (2.22) is not fulfilled uniformly on 1.

Example 2.3. Let = [0, 7], n =2, 0=, =0(k =1,2,...),

C()=Ck=<8> k=1,2,...);
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Po(t)=<8 8), Pk(r)=<8 2}’;8) k=1,2,...);

Q1) = gu(1) = (8) (k=1.2,..0;

1) = («/E+ \4/%) sinkt fort € I,
P VK sinkt fort € [0,27]\ I (k =1,2,...);
/ -1
o () (1 —ak(2)) fort € I,
Palr) = {0 fort € [0, 271\ Iy (k = 1,2,...);

t
Bi (1) =/0 (I = (D) pri(@dr (k=1,2,...);

o t) = AV (Vk+ 1) Vsinkr  fort € I,
o fort € [0, 2701\ Ik (k = 1,2,...);
where
k—1
Ie= | Jpmk='m, @m+ Dk 'n[ (k=1,2...).
m=0

Let, moreover, Yy and Yy (k = 1,2,...), Yo(0) = Yx(0) = I», be the fundamental matrix of the systems (1.1p) and
(1.1x0) (k =1,2,...), respectively. It can easily be shown that

_ _ (1 B _
no=n no=(g  P0) =120
and
lim Yi(t) = Yo(¢) uniformly on [0, 27],
k—+00
since
lim (foglle = lim |[Bllc = 0.
k—+o00 k——+00
Note that
2w
lim pr()dt =2 lim vk = +oo
k—+00 Jo k—+00
and

k— 00

27
lim sup/ | pr2 ()| dt = +o0.
0

Therefore, condition (2.22) is not fulfilled uniformly on 7.
On the other hand, if we assume that Hy(t) = I, and Hi(t) = kal(t)(k = 1,2,...), then all conditions of
Theorem 2.1” hold.

3. Auxiliary propositions
We will use the following simple lemma.

Lemma 3.1. Let h € 5[06(1 i R™), and H € 5106(1 ; R™™) be a nonsingular matrix-function. Then the mapping
x—>y=Hx+h

establishes a one-to-one corresponding between the solution between the solutions x and y of systems
dx

prie P)x +q()



M. Ashordia / Transactions of A. Razmadze Mathematical Institute 170 (2016) 149-165
and

D p1)y+ )
dr *I)Y T gx

respectively, where the matrix- and vector-functions Py and q, are defined, respectively, by

P.(t)y=(H'(t)+ HOP®) H (1), g«(1) = H(t) q(t) + h'(t) — P*(1) h(2).
Lemma 3.2. Let oy, By € L(I; R) (k =0, 1, ...) be such that

lim |8 — Bolls =0, lim Sup/ lax ()|dt < +o0,
k— k—+o00 I

+00

and the condition
!

t
lim ak(r)dr:/ ao(T)dt

k—+00 J,

hold uniformly on I, where a € I is some fixed point. Then

t t
k_ljrfoof Br(t)ay (t)dt =/ Bo(T)ao(t)dT

uniformly on I, as well.

The proof of the lemma one can find in [3,6].
4. Proof of the main results

Proof of Theorem 2.2. Let z; () = x;(t) — xo(¢t) fort € I(k =1,2,...}.
It is not difficult to check that

2e(0) = 210 + /

Tk

t

t
Po(s) zr(s)ds + /

73 73

where

Pi(t) = Pe(t) — Po(t), ar@®) = qr(t) —gqot) (k=1,2,...).

Using the integration-by-parts formula we conclude

t t t s
/ Py (s) xi(s)ds = f Pr(s)ds - xi(t) — f ( / Pk(r)dr)x,g(s)ds
1 17 Ik \JIk

t t s
=/ ﬁk(s)ds.xk(t)—/ (/ f_’k(r)dr) (Pi(s) xx(s) + qr(s)ds fort el (k=1,2,...).
t 173 1k

Therefore,

t

2 () = zk (k) + Tie(t) + Qk (1) +/ Po(s) zi(s)ds fort el (k=1,2,..)

173
where

t
Jilt) = / Pe(s)ds - xi (1) — f
173

73

t s
(/ ﬁk(t)dr>Pk(s)xk(s)ds k=1,2,..),
I

and

t t s
Qi) = / qr(s)ds —/ (/ Pk(r)dt> qr(s)ds (k=1,2,...).
T 173 Tk
Due to (4.1) we get

Iz DI < llzk @O + 1 T O + 1 i1 +

t
f_’k(s)xk(s)ds+/ qgr(s)ds fortel (k=1,2,..)),

t
/ [ Po()| lzk(s)llds| fort el (k=1,2,...).
173

159

A.1)

4.2)
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Let
r t
o = sup / Pr(s)ds|, Bi = sup / qr(s)ds
tel tx tel tr
and
t
Yk = sup / | Pe(s)lds| (k=1,2,...).
tel 1k
Then by (2.8) and (2.9) we have
Iim op(l4+ ) = lim Bp(l+ y) =0. 4.3)
k——+00 k——+00
It is evident that
1T @O < exllxklle forrel(k=1,2,...) 4.4

where ¢ = o (1 + )k =1,2,...).
Further, we have

t/ops
/ </ [_’k(r)dr) qo(s)ds| <roaxy fortel (k=1,2,...)
Ik 17

and, in addition, using the integration-by-parts formulae we get

t S
/(/ Pk(T)dT>67k(S)dS <o+ By +r1) fortel (k=1,2,..),
Ik 17
where
ro=/|lqo(t)||dt, r =/||Po(t)||dt-
I I

Due to the last two estimates, thanks to the inequalities

t S t s
H / ( / Pk(ndr)qk(s)ds < / ( f Pk(r>dr>cik<s>ds
tr tr Tk Ik
t s
+‘/</ Pk(r)dr)qo(s)ds fortel (k=1,2,..),
174 174
we conclude
10kl <8 fortel (k=1,2,..), 4.5)

where 8¢ = ax (Br + ro) + B (vk +r1).
From (4.2), by (4.4) and (4.5) we find

lzk DI < llzx @Ol + exllxkllc + 8k +

t
/ NP Nlzk(s)|lds| fort el (k=1,2,...).
173

Hence, according to the Gronwall inequality (see [4])

lzklle < (lza (@Ol + exllxellc + &) exp(r)  (k =1,2,...). (4.6)
In virtue of (4.3) we have
lim & =0. .7
k— 400

Therefore, there exists a natural ko such that

1
&k < 3 exp(—ry) fork > ko.
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From this and (4.6) it follows
Ixclle < llxolle + lzelle < Ixolle + (Iz& @Il + exllxkllc + &) exp(ri) (k> ky).
So, the sequence | xx|.(k = 1,2, ...) is bounded. In addition, in view of conditions (2.8) and (2.9) we have

lim 8 =0, (4.8)

k— 400

and using (2.1) we conclude
lim zx(tx) = lim (xg(tx) — x0(tx)) = lim ¢ — xo(tg) = O.
k—+4o00 k—+o00 k—+00
Therefore, by this, (4.7) and (4.8), it follows from (4.6)
lim |[[zklle =0,
k— 400

since the sequence ||x¢|.(k = 1,2,...) is bounded. O

Proof of Theorem 2.3. According to Theorem 2.2 the mapping x — Hx+hy establishes a one-to-one corresponding
between the solution x; of problem (1.1;), (1.2;) and the solution x,f of the Cauchy problem (2.10), (2.11;) and, in
addition, x,j (t) = Hy(t) xx(¢) + hi(¢) for every natural k.

Conditions (2.12)—(2.14) guarantee the fulfillment of the conditions of Theorem 2.2 for the Cauchy problem (2.10),
(2.11) and sequence of the Cauchy problems (2.10;), (2.11;) (k = 1,2, ...). Therefore, according to Theorem 2.2

lim x(t) = x3(¢r) uniformly on /.
k——+00

So, condition (2.15) holds. [

Proof of Corollary 2.1. Verifying the conditions of Theorem 2.3. From (2.4) and (2.5) it follows that condition (2.12)
holds, and the condition

lim H_'(r) = Hy'(r) uniformly on I. (4.9)

k— 400

Put

hi(t) = —Hr(t) ok (t) fortel (k=1,2,...).
Due to (2.2) and (2.5) we get

kiiIJIrloo Hy () = Ho(to).

By this and (2.16) condition (2.13) is fulfilled for c; = Ho(to) co.
Let q,:‘(k =1, 2,...) are the vector-functions given in Theorem 2.3. It is not difficult to verify that
G ) =q(t) — o () + P (1) (k=1,2,...)

in the case. Further, by (2.6) and (2.1) condition (2.14) holds uniformly on / for the functions q,’; (k=1,2,...) given
above, q;(t) = Ho(t) qo(t) and ¢;; = Hy(tx) (cx — @r(t))(k = 1,2, ...). In view of Lemma 3.1, the vector-function
x(’)k (t) = Hy(t) xo(¢) is the unique solution of problem (2.10), (2.11). By Theorem 2.3 we have

. lirf_l (Hp (1) xi (1) — H (1) @i (1)) = xf'; (t) uniformly on I.

Therefore, by (2.5) and (4.9), condition (2.17) holds. [

Proof of Theorem 2.1. Sufficiency follows from Corollary 2.1 if we assume ¢ (t) = 0, (k = 1, 2, ...) therein.

Let us show necessity. Let cx € R"(k = 0, 1, ...) be an arbitrary sequence of constant vectors satisfying (2.1) and
lete; = (5,'1');':15,',' =landé§;; = 0ifi #jG, j=1,...,n).

Let x; be a unique solution of problem (1.1;), (1.2;) for every natural k.

Forany k € {0,1,...} and j € {1, ..., n} let us denote

Yij () = xp(8) — xpj (£),
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where x;; is a unique solution of the system (1.1;) under the Cauchy condition
x(ty) = cp —ej.

Moreover, let Y (t) be matrix-function whose columns are yx (), ..., Yin (?).
It can be easily shown that Yy and Yx(k = 1, 2,...) satisfy, respectively, of homogeneous systems (1.1y) and
(1.1x0) (k=1,2,...) and

yij(t) =ej (k=0,1,...) (4.10)

forevery j € {1, ..., n}. If for some natural k and o; € R(j = 1,...,n)

n
Zajykj(l) = 0p,
j=1

then using (4.10) we have

n
Zotjej = 0Op
j=1

and, therefore,
ap=---=a,=0,

ie., Yo and Yy (k = 1,2, ...) are the fundamental matrices, respectively, of homogeneous systems (1.1p) and (1.140)
k=1,2,..)).
Thanks to Corollary 2.1 we have

lim Yi(¢) = Yo(¢) uniformly on /
k——+o00
and, consequently,
lim Y. '(t)=Y;'(t) uniformlyon /, (4.11)
k——+00

as well.
We may assume without loss of generality that
Ye(tp) =1, (*k=0,1,...).
We put
H() =Y '(t) fortel(k=0,1,...)

and verify conditions (2.4)—(2.7) of the theorem.
Condition (2.4) is evident, and condition (2.5) coincides to (4.11).

Using the equality
Y @) = -y ') P@t) forrel (k=0,1,...), (4.12)
we show

t
Ze(Hi, A (1) — Ze(Hy, Ap) () = / ((Y{l(t))/ +Y,' () Pk(l)) dt = Opxp fortel (k=0,1,...).
73
Thus condition (2.6) is evident.
On the other hand, using integration-by-parts formulae we find
1

t
Y, N (Oqr(v)de = / Y, (o) (. () = Pe(t) xi(v)) dt

173

Be(Hi, i) (6) = Be(Hy, i) (1) = /

73
=Y 'O ) — Y @) xew) = YO xet) — e foree I (k=0,1,...).
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Hence,

t

t
/ Y () g (0)dT — / Y@ qo(mdr = (V7 1) xe(0) — Yo (1) x0(0))
173

fo

—(ck—co) fortel(k=12,...). 4.13)

By this, (2.1), (4.11) and (4.13), if we take account that due to necessity of theorem condition (1.3) holds uniformly
on I, we conclude that condition (2.7) holds uniformly on 7, as well. [J

Proof of Theorem 2.2". It is evident that doe to conditions (2.21), (2.22) and (2.23) conditions (2.8) and (2.9) are
valid. So, the theorem follows from Theorem 2.2. O

Proof of Theorem 2.3'. In the case, condition (2.24) is equivalent to condition (2.13). Moreover, due to conditions
(2.18), (2.25) and (2.26) conditions (2.6) and (2.14) are fulfilled uniformly on /. So, the theorem follows from
Theorem 2.3. O

Proof of Corollary 2.1'. From (2.4) and (2.5) it follows that conditions (2.12) and (4.9) are valid. By (4.9) there exists
a positive number is r such that

IH ') <r fortel (k=0,1,...).
Therefore, due to Remark 2.2 and (2.18) we get

sup {

where rg is the right hand of inequality (2.18). So, thanks to this, the uniform fulfillment on / of conditions (2.19) and
(2.20), guarantees, respectively, the same property for conditions (2.6) and (2.7). Hence, the corollary follows from
Corollary 2.1. O

t
V(Z.(Hg, Pk))‘ 't e I} <rrp<+4+oo (k=0,1,...),
Tk

Proof of Theorem 2.1". Sufficiency follows from Corollary 2.1" if we assume ¢ () = o, (k = 1, 2, ...) therein. The
proof of the necessity is the same as in the proof of Theorem 2.1. We only note that by condition (2.5) and equality
(4.12) condition (2.18) is valid, and condition (2.19) is fulfilled uniformly on /. Moreover, according to Remark 2.2,
it is evident that the sufficiency immediately follows from Theorem 2.1. O

Proof of Corollary 2.2. In virtue of the integration-by-parts formula, conditions (2.5), (2.22), (2.23), (2.27) and (2.28)
yield that the conditions

t t
lim / Hi(7) P (t)dt = / (Po(t) — P*(1))dt
k—+00 t to
and
t t
lim / Hi (1) gk (t)dt = / (qo(7) — q*(1))dt
k—+o0 Jy to

are fulfilled uniformly on I. Corollary 2.2 follows from Theorem 2.1’. O
Proof of Corollary 2.3. Let
t
Cu@®) =1, —/ (Pr(t) — Py(z))dr (I=1,....,m; k=1,2,...).
173
Thanks to (2.30), without loss of generality we can assume that the matrix-functions Hy; and Cy;(I = 1, ..., m) are

nonsingular for every natural k.
Based on the definitions of the operators 3. ad Z,, it is not difficult to verify the equality

Be(Chj, Hij—1 PO, = Be(Hyj, PO(@)

t
t’

Be(Chjy Hij—1 fi)(®];, = Be(Hyj, fO @,
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and
To(Cyj () + ij_lPk)Hk;l_l)(r)Kk = T.(Hyj, Pk)(r)|§k G=1,....m; k=1,2,..).

In addition, by conditions (2.29)—(2.32) conditions (2.4) and (2.18) hold, and conditions (2.5) and (2.19) and (2.20)
are fulfilled uniformly on I, where Hy(¢) = I, and Hy(t) = Hypm—1(t)(k = 1,2, ...). So, the corollary follows from
Theorem 2.1’. O

Proof of Corollary 2.4. Let us show the sufficiency. Let Hy(¢) = Z; ! (t)(k =0,1,...)in Theorem 2.1’. Thanks to
(2.34), there exists a positive number » such that

1z <r fortel (k=0,1,...).
Using this estimate and the equality
(Z7'0) = =27 (1) Qr(t) fort el (k=0,1,...),

by the integration-by-parts formulae we have

t
sz‘<r>—zk‘<s)+ / Z (v) Pe(v)de

t
_ H / 27 (@(P(x) — Qu(r)d

1
< r/ | Pr(t) — Qr(D)|ldt fors <t (k=0,1,...).
Therefore,
/IIIHIQ(I) + Hi(t) Pr()|ldT < V/I | Pe(z) — Qx(D)lldT (k=0,1,...)

and due to (2.33) estimate (2.18) holds. Moreover, conditions (2.19) and (2.20) coincide to conditions (2.35) and
(2.36), respectively. So, the sufficiently follows from Theorem 2.1’

Let us show the necessity. Let Qx(t) = Px(¢#)(k =0, 1,...). Then Z;(¢t) = Y3 (t)(k = 0, 1, ...), where Yy and Y}
(k =1,2,...) are fundamental matrices, respectively, of the homogeneous systems (1.1¢) and (1.140). Analogously,
as in the proof of Theorem 2.1, conditions (2.34) and equality (4.13) are valid. In addition, condition (2.35) coincides
to condition (2.19), and condition (2.36) follows from equality (4.13). [

Proof of Corollary 2.5. The corollary immediately follows from Corollary 2.4 if we note the fundamental matrix of
Zi(t)(Zk(tx) = I,) of system (2.37), in the case, has the form

t
Zi(t) = exp(/ Qk(r)dr> k=0,1,..). O
173

Proof of Corollary 2.6. The corollary follows from Corollary 2.5 if we assume that therein Qx(f) = Pi(¢t) (k =
0, 1,...) and, in addition, we note that condition (2.38) is equivalent to condition (2.40), and condition (2.39) coincides
to(2.41). O

Proof of Corollary 2.7. The corollary follows from Corollary 2.4 if we assume therein that Qy (t) = diag(Px(¢))(k =
0,1,...). O
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