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Following [1], we give the definition of the local entropy that will be necessary in what follows.
Let X be a compact metric space with a metric d and f : X → X a continuous map. Along with
the original metric d, we define an additional system of metrics on X:

dfn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)), x, y ∈ X, n ∈ N,

where f i, i ∈ N, is the i-th iteration of f , f0 ≡ idX . Given a point x ∈ X, for any n ∈ N, r > 0
and ρ > 0, denote by Nd(f, r, n, x, ρ) the maximum number of points in the ball Bd(x, ρ) = {y ∈
X : d(x, y) < ρ}, pairwise dfn-distances between which are greater than r. Then the local entropy
of the mapping f at the point x is defined by the formula

hd(f, x) = lim
r→0

lim
ρ→0

lim
n→∞

1

n
lnNd(f, r, n, x, ρ).

Recall one more formula for calculating the local entropy. For any r, ρ > 0 and n ∈ N a set
A ⊂ Bd(x, ρ) is called an (f, r, n, x, ρ)-cover of the ball Bd(x, ρ), if for any point y ∈ Bd(x, ρ) there
is a point z ∈ A such that dfn(z, y) < r. Let Sd(f, r, n, x, ρ) denote the minimum number of elements
in an (f, r, n, x, ρ)-cover, then the local entropy can be calculated by the formula

hd(f, x) = lim
r→0

lim
ρ→0

lim
n→∞

1

n
lnSd(f, r, n, x, ρ). (1)

For a fixed continuous mapping f : X → X, consider the function

x 7→ hd(f, x). (2)

As the following example shows, function (2) can be discontinuous on the space X. Let X = [−1, 1]
and define a mapping f : X → X by

f(x) =

{
0, if x ∈ [−1, 0),

4x(1− x), if x ∈ [0, 1].

Then hd(f, x) = 0 for x ∈ [−1, 0) and hd(f, 0) = ln 2, hence function (2) has a discontinuity at zero.
Recall that continuous functions on a metric space M are called functions of the zeroth Baire

class, and for every natural number p, functions of the p-th Baire class are those that are pointwise
limits of sequences of functions in the (p− 1)-th class.

There are many, not equivalent to each other, interpretations as to which properties are typical
and which are not. Here we recall the notion of typicality introduced and studied by R.-L. Baire.
A property of a point in a topological space is called Baire typical if the set of points possessing
this property contains an everywhere dense Gδ-set.
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Theorem 1 ([2]). For any continuous mapping f : X → X, function (2) belongs to the second
Baire class and is lower semicontinuous at a Baire typical point of the space X.

Proof. Let us transform formula (1) to the form

hd(f, x) = lim
m→∞

lim
k→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
, (3)

and for a fixed natural number m consider the function

x 7→ φm(x) = lim
k→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
.

For any k > 0 and any point y ∈ Bd(x, 1/k), there exists lk > 0 such that for all l > lk the inclusion

Bd

(
y,

1

l

)
⊂ Bd

(
x,

1

k

)
holds, which implies the inequality

Sd

(
f,

1

m
,n, y,

1

l

)
6 Sd

(
f,

1

m
,n, x,

1

k

)
, m, n ∈ N.

Consequently,

lim
l→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, y,

1

l

)
6 lim

n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
.

Since the point y ∈ Bd(x, 1/k) is arbitrary, we obtain the inequality

sup
y∈Bd(x,1/k)

lim
l→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, y,

1

l

)
6 lim

n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

l

)
.

Passing in the last inequality to the limit as k → +∞, we obtain the inequality

lim
y→x

φm(x) 6 φm(x),

which establishes upper semicontinuity of the function x 7→ φm(x) at the point x. Hence the
function x 7→ φm(x) belongs to the first Baire class on the space X. Thus, from (3) we get the
following representation of the local entropy of the continuous mapping f at the point x:

hd(f, x) = lim
m→∞

φm(x), φ1(x) 6 φ2(x) 6 φ3(x) 6 · · · ,

which implies that the function x 7→ hd(f, x) belongs to the second Baire class on the space X.
By the Baire theorem on functions of the first class, for each m ∈ N, the set of points of

continuity Gm for the function x 7→ φm(x) is an everywhere dense Gδ-set. The intersection of all
Gm is again an everywhere dense set, each point of which is a point of continuity for all functions
x 7→ φm(x), m ∈ N. Let x ∈

∩
m∈N

Gm and ε > 0. By definition of the limit, φm(x) > hd(f, x) − ε

for all sufficiently large m. Fixing such m, find a neighborhood Bd(x, δ) of the point x such that
for every y ∈ Bd(x, δ) we have φm(y) > φm(x) − ε. Since the sequence (φm) is nondecreasing, it
follows that hd(f, y) > φm(y) for all y ∈ Bd(x, δ), hence φm(y) > hd(f, x)− 2ε. Therefore, at each
point of the set

∩
m∈N

Gm the function x 7→ hd(f, x) is lower semicontinuous.
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On the set of sequences x = (x1, x2, . . . ), xk ∈ {0, 1}, introduce a metric

dΩ2(x, y) =

0, if x = y,
1

min{i : xi 6= yi}
, if x 6= y.

The resulting compact metric space will be denoted by Ω2. Note that the space Ω2 is homeomorphic
to the Cantor set on the segment [0, 1] with the metric induced by the natural metric of the real
line.

Theorem 2 ([2]). If X = Ω2 × Ω2 with the metric

d
(
(x, α), (y, β)

)
= max

{
dΩ2(x, y), dΩ2(α, β)

}
,

then there is a continuous mapping f : X → X such that function (2) is everywhere discontinuous
and does not belong to the first Baire class on the space X.

Proof. Define a mapping f : Ω2 × Ω2 → Ω2 × Ω2 as follows:

f
(
(x1, x2, x3, . . . ), (α1, α2, α3, . . . )

)
=

(
(x1+α1 , x2+α2 , x3+α3 , . . . ), (α1, α2, α3, . . . )

)
.

Denote by P0 the set of sequences from Ω2 for which all but a finite number of terms are equal to
zero, and by P1 the set of sequences from Ω2 for which all but a finite number of terms are equal
to one.

Lemma 1. For any point (x, α) ∈ Ω2 × P0, the equality hd(f, (x, α)) = 0 is valid.

Proof. If (α1, α2, α3, . . . ) ∈ P0, then there is a natural number p0 such that αp = 0 for all p > p0.
Therefore, for any m > p0 and (y, β) ∈ Bd((x, α),

1
m+1),

f(y, β)

=
((

x1+α1 , . . . , xp0+αp0
, xp0 , . . . , xm, ym+1+βm+1 , ym+2+βm+2 , . . .

)
, (α1, . . . , αm, βm+1, . . . )

)
,

therefore dfn-distance between any two points of the ball Bd((x, α),
1

m+1) does not exceed 1
m+1 .

Thus, for any k > m we have
Nd

(
f,

1

m
,n, (x, α),

1

k

)
= 1,

and hence
hd(f, (x, α)) = 0.

Lemma 2. For any point (x, α) ∈ Ω2 × P1, the inequality hd(f, (x, α)) > ln 2 is valid.

Proof. If (α1, α2, α3, . . . ) ∈ P1, then there is a natural number p0 such that αp = 1 for all p > p0
and hence for any point (x, α) ∈ Ω2 × P1 we have the equality

f(x, α) =
(
(x1+α1 , . . . , xp0−1+αp0−1 , xp0+1, xp0+2, . . . ), α

)
.

In the ball Bd((x, α),
1
p) for each natural number n > p + 2, consider the set An,p of points of the

form (
(x1, . . . , xp, yp+1, . . . , yn, 0, 0, . . . ), α

)
, where yi ∈ {0, 1}, i = p+ 1, . . . , n.
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Since the dfn-distance between any two points from An,p is not less than 1
p+1 , then the quantity

Nd(f,
1
p , (x, α),

1
p) is at least the cardinality of the set An,p. Thus we have

hd(f, (x, α)) = lim
r→0

lim
p→∞

lim
n→∞

1

n
lnNd

(
f, r, n, (x, α),

1

p

)
> lim

p→∞
lim
n→∞

1

n
lnNd

(
f,

1

p0
, n, (x, α),

1

p

)
> lim

n→∞

(n− p) ln 2

n
= ln 2.

Completion of the proof of Theorem 2. Suppose that the function (x, α) 7→ hd(f, (x, α)) belongs to
the first Baire class on the space Ω2×Ω2, then, by the Baire theorem on functions of the first class,
in the space Ω2×Ω2 there must be points of continuity of the function (x, α) 7→ hd(f, (x, α). On the
other hand, the sets Ω2×P0 and Ω2×P1 are everywhere dense in the space Ω2×Ω2. Therefore, by
virtue of Lemmas 1 and 2, each point of the space Ω2 ×Ω2 is a discontinuity point of the function
(x, α) 7→ hd(f, (x, α)). Thus, the function (x, α) 7→ hd(f, (x, α)) is everywhere discontinuous and
does not belong to the first Baire class on the space Ω2 × Ω2.
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