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1 Linear functionals and operators on the spaces
of regulated functions

Let −∞ < a < b < ∞. Rn×n is the space of real n× n-matrices. Let BVn and Gn be the spaces of
n-vector valued functions with bounded variation on [a, b] or regulated on [a, b], respectively. (By
regulated functions we understand functions having only discontinuities of the first kind.) Similarly,
BVn×n and Gn×n are spaces of of n×n-matrix valued functions having the corresponding properties.
The function R : [a, b] → Rn×n is said to be summable if it vanishes except for a countable set and∑
a≤t≤b

‖R(t)‖ < ∞.

Theorem 1.1. If Φ is a continuous linear operator from G into Rn then there exist K, K̃ ∈ BVn×n,
M ∈ Rn×n and a summable function R : [a, b] → Rn×n such that

Φ(x) = M x(a) +

b∫
a

K dx−
∑

a≤t<b

R(t)∆+x(t) for x ∈ Gn

and

Φ(x) = M x(a) +

b∫
a

K̃ dx+
∑

a<t≤b

R(t)∆−x(t) for x ∈ Gn.

Remark 1.1. R(t) = Φ(χ
[t]
) and K̃(t) = K(t)−R(t) for t ∈ [a, b].

The representation of linear bounded functionals in the space of left-continuous regulated func-
tions is considerably simpler, as shown by the following older result from 1989, cf. [3]. (Gn

L stands
for the space of n-vector valued functions regulated on [a, b], left-continuous on (a, b] and right-
continuous at a.)

Theorem 1.2. Φ is a linear bounded operator from Gn
L into Rn if and only if there is M ∈ Rn×n

and an n× n-matrix valued function K of bounded variation on [a, b] such that

Φ(x) = M x(a) +

b∫
a

K d[x] for x ∈ Gn
L .

Later Š. Schwabik [7] generalized this result and described a general form of bounded linear
operators on Gn

L .. In what follows Kn×n
L stands for the set of functions K : [a, b] × [a, b] → Rn×n

such that:

• K(t, · ) ∈ BVn×n for t ∈ [a, b];
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• the abstract function t ∈ [a, b] 7→ K(t, · ) ∈ BVn×n is regulated on [a, b] and left-continuous
on (a, b].

Theorem 1.3. L is a linear compact operator on Gn
L if and only if there are a regulated function

A : [a, b] → Rn×n and a function B from the class ∈ Kn×n
L such that

(Lx)(t) = A(t)x(a)+

b∫
a

B(t, s)d[x(s)] for x ∈ Gn
L and t ∈ [a, b].

2 Bray theorem
Remark 2.1. LetKn×n be the set of functionsK : [a, b]×[a, b] → Rn×n such that: K(t, · ) ∈ BVn×n

for t ∈ [a, b] and the mapping t ∈ [a, b] 7→ K(t, · ) ∈ BVn×n is regulated on [a, b]. If K ∈ Kn×n,
then

• K( · , s) ∈ Gn×n for all s ∈ [a, b] and

g(t) :=

b∫
a

dsK(t, s)x(s) ∈ Gn for all x ∈ Gn;

• varbaK(t, · ) ≤ κ < ∞ for all t ∈ [a, b] and

h∗(s) :=

b∫
a

y∗(t)dsK(t, s) ∈ BVn for all y ∈ BVn;

• K( · , s) is left-continuous for all s ∈ [a, b] and g ∈ Gn
L for all x ∈ Gn whenever K ∈ Kn×n

L .

A crucial tool for deriving the explicit form of the dual operator L∗ to L is the next Fubini type
theorem called usually the Bray theorem, cf. [5].

Theorem 2.1. If K ∈ Kn×n, then

b∫
a

y∗(t)dt
[ b∫

a

K(t, s)d[x(s)]
]
=

b∫
a

( b∫
a

y∗(t)dt[K(t, s)]

)
d[x(s)]

holds for any x ∈ Gn and any y ∈ BVn.

3 Linear integral equations in Gn
L

If L : Gn
L → Gn

L is linear compact operator and f ∈ Gn
L , then x− Lx = f can be rewritten as

x(t)−A(t)x(a)−
b∫

a

B(t, s)d[x(s)] = f(t), t ∈ [a, b],

where A ∈ Gn×n
L and B ∈ Kn×n

L . Obviously, Fredholm–Stieltjes integral equations, Volterra–
Stieltjes integral equations, and generalized linear differential equations are special cases. Adjoint
operator L∗ maps BVn × Rn into BVn × Rn. In view of Bray Theorem we have, cf. [5].
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Theorem 3.1. L∗ : (y, γ) ∈ BVn × Rn → (L∗
1(y, γ),L∗

2(y, γ)) ∈ BVn × Rn, where

(
L∗
1(y, γ)

)
(t) = B∗(a, t) γ +

b∫
a

ds[B∗(s, t)] y(s) for t ∈ [a, b],

L∗
2(y, γ) = A∗(a) γ +

b∫
a

d[A∗(s)] y(s).

Analogously. cf. [4], we can treat the boundary value problem

x(t)− x(a)−
t∫

a

d[A]x = f(t)− f(a) on [a, b],

M x(a) +

b∫
a

K d[x] = r,


(BVP)

where A ∈ BVn×n
L , f ∈ Gn

L and r ∈ Rn, and corresponding operator L:Gn
L→Gn

L×Rn. The adjoint
L∗ of L maps (BVn×Rn)×Rn into BVn × Rn. Next theorem has been proved in [4].

Theorem 3.2. Let B(a) = A(a), B(b) = A(b) and B(t) = A(t+) on (a, b). Then (y, γ, δ) ∈ N (L∗)
if and only if

y∗(t)− y∗(b)−
b∫

t

y∗(s)d[B(s)] = δ∗ (K(t)−K(b)) on [a, b],

y∗(a) + δ∗ (K(a)−M) = 0, y∗(b) + δ∗K(b) = 0,

 (BVP*)

Moreover, (BVP) has a solution if and only if
b∫

a

y∗ d[f ] + δ∗ r = 0 for all solutions (y, δ) of (BVP*).

Remark 3.1. Let t0 ∈ [a, b], A ∈ BVn×n, det[I+∆+A(t)] 6= 0 for t ∈ [a, t0) and det[I−∆−A(t)] 6= 0
for t ∈ (t0, b]. Then, there is a unique X : [a, b] → Rn×n such that

X(t) = I +

t∫
t0

d[A]X for t ∈ [a, b].

This X is then called the generalized exponential and denoted X(t) = expdA(t, t0).

4 Alternative approach based on the Lagrange identity
Besides the functional analytical tool, there is an alternative way to obtain the duality theory. This
approach is based on the Lagrange identity. It is well known, cf. [6], that the classical Lagrange
identity can be extended to generalized linear differential systems as follows: Let A ∈ BVn×n

L ,
B(a) = A(a), B(b) = A(b) and B(t) = A(t+) on (a, b). Then

b∫
a

y∗(t)d
[
x(t)−

t∫
a

d[A]x

]
+

b∫
a

d
[
y∗(s)−

b∫
s

y∗ d[B]

]
x(s) = y∗(b)x(b)− y∗(a)x(a)
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for all x ∈ Gn
L and y ∈ BVn right-continuous on [a, b). The proof easily follows from the integration-

by-parts theorem for Kurzweil–Stieltjes integrals. Notice that this theorem can be slightly modified
as follows, cf. [1].

Theorem 4.1 (Integration by parts). Let f, g ∈ Gn and let at least one of them has a bounded
variation on [a, b]. Then

b∫
a

f∗(t−)d[g(t)] +
b∫

a

d[f∗(t)] g(t+) = f∗(b) g(b)− f∗(a) g(a),

where f(a−) = f(a) and g(b+) = g(b).

As a result, we can reformulate the Lagrange formula under less restrictive continuity require-
ments. To this aim consider operators

(Lx)(t) := x(t)− x(t0)−
t∫

t0

d[A(s)]x(s−) and (L∗ y)(t) := y∗(t)− y∗(t0)+

t∫
t0

y∗(s+)d[A(s)]

under the conventions

x(s−) = x(s) if s = min{t, t0} and y(s+) = y(s) if s = max{t, t0}

in the integrals. More exactly:

(Lx)(t) :=


x(t)− x(t0) +

t0∫
t

d[A(s)] (x(t)χ
[t]
(s) + x(s−)χ

(t,t0]
(s)) if t ≤ t0,

x(t)− x(t0)−
t∫

t0

d[A(s)] (x(t0)χ[t0]
(s) + x(s−)χ

(t0,t]
(s)) if t ≥ t0,

(L∗ y)(t) :=


y∗(t)− y∗(t0) +

t∫
t0

(y∗(s+)χ
[t,t0)

(s) + y∗(t0)χ[t0]
(s))d[A(s)] if t ≤ t0,

y∗(t)− y∗(t0)−
t0∫
t

(y∗(s+)χ
[t0,t)

(s) + y∗(t)χ
[t](s))d[A(s)] if t ≥ t0.

The related equations Lx = 0 and L∗ y = 0 are, of course, no longer generalized ODEs, but special
cases of Stieltjes integral equations. The modified version of the Lagrange identity, cf. [1], then
reads as follows:

Theorem 4.2 (Lagrange Identity). Let A ∈ BVn×n, x, y ∈ Gn, x(t−) = x(t) if t = min{t0, T}
and y(t+) = y(t) if t = max{t0, T}. Then for each t0 ∈ [a, b] and T ∈ [a, b] we have

T∫
t0

y∗(t+)d[(Lx)(t)] +

T∫
t0

d[(L∗ y)(t)]x(t−) = y∗(T )x(T )− y∗(t0)x(t0).

Remark 4.1. The above result no longer holds if we abandon the convention concerning the
endpoints.
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Corollary. If Lx = 0 and L∗ y = 0 on [a, b], then y∗ x is constant on [a, b].

In other words, the equations

x(t) = x(t0) +

t∫
t0

d[A(s)]x(s−) on [a, b], (E)

y∗(t) = y∗(t0)−
t∫

t0

y∗(s+)d[A(s)] on [a, b] (E∗)

can be considered to be mutually dual.

Remark 4.2. If we restrict to t0 = a, everything becomes considerably simpler. In particular, in
such a case we get

Lx = 0 on [a, b] =⇒ x(t−) =
[
I +∆−A(t)

]−1
x(t) if t ∈ (a, b] and det[I +∆−A(t)] 6= 0,

L∗ y = 0 on [a, b] =⇒ y∗(t+)=y∗(t)
[
I +∆A(t)

]−1
(I +∆−A(t))

if t ∈ [a, b) and det
[
I +∆A(t)

]
6=0.

Therefore, if det[I +∆−A(t)] 6= 0 and det[I +∆A(t)] 6= 0, then Lx = 0 if and only if

x(t) = x(a) +

t∫
a

d[K]x on [a, b], where K(s) =

s∫
a

d[A(τ)]
[
I +∆−A(τ)

]−1
.

Analogously, L∗ y = 0 if and only if

y∗(t) = y∗(a)−
t∫

a

y∗ d[L] on [a, b], where L(s) =

s∫
a

[I +∆A(τ)]−1
[
I +∆−A(τ)

]
d[A(τ)].

Concluding comments
The present contribution is closely related to the recent paper [1]. Some of its results have been
here extended from the scalar case to the n-dimensional case and functional analytical background
has been recalled. On the other hand, in [1] Stieltjes differential equations and dynamical equations
on time scale were considered. For more details, see [1]. To a large extent, the properties of the
Kurzweil-Stieltjes integral are utilized. For more details, see the monograph [2].
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