Existence of Solutions to BVPs at Resonance for Mixed Caputo Fractional Differential Equations

Svatoslav Staněk
Department of Mathematical Analysis, Faculty of Science, Palacký University
Olomouc, Czech Republic
E-mail: svatoslav.stanek@upol.cz

1 Introduction

Let $J=[0,1], X=C(J) \times \mathbb{R}$ and $\|x\|=\max \{|x(t)|: t \in J\}$ be the norm in $C(J)$.
We discuss the fractional boundary value problem

$$
\begin{gather*}
{ }^{c} D_{1-}^{\alpha}{ }^{c} D_{0+}^{\beta} x(t)=f(t, x(t)), \tag{1.1}\\
u(0)=\left.{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=0}=\left.{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=1}, \tag{1.2}
\end{gather*}
$$

where $\alpha, \beta \in(0,1), f \in C(J \times \mathbb{R}),{ }^{c} D_{1-}$ and ${ }^{c} D_{0+}$ denote the right and the left Caputo fractional derivatives.

Definition 1.1. We say that $x: J \rightarrow \mathbb{R}$ is a solution of equation (1.1) if $x,{ }^{c} D_{0+}^{\beta} x \in C(J)$ and x satisfies (1.1) for $t \in J$. A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of problem (1.1), (1.2).

Let $x: J \rightarrow \mathbb{R}, \gamma \in(0,1)$ and $\mu \in(0, \infty)$. Then the left ${ }^{c} D_{0+}^{\gamma} x$ and the right ${ }^{c} D_{1-}^{\gamma} x$ Caputo fractional derivatives of x of order γ are defined respectively by [2,3]

$$
{ }^{c} D_{0+}^{\gamma} x(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{t} \frac{(t-s)^{-\gamma}}{\Gamma(1-\gamma)}(x(s)-x(0)) \mathrm{d} s
$$

and

$$
{ }^{c} D_{1-}^{\gamma} x(t)=-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t}^{1} \frac{(s-t)^{-\gamma}}{\Gamma(1-\gamma)}(x(s)-x(1)) \mathrm{d} s
$$

where Γ is the Euler gamma function.
The left $I_{0+}^{\mu} x$ and the right $I_{1-}^{\mu} x$ Riemann-Liouville fractional integrals of x of order μ are defined respectively by

$$
I_{0+}^{\mu} x(t)=\int_{0}^{t} \frac{(t-s)^{\mu-1}}{\Gamma(\mu)} x(s) \mathrm{d} s \text { and } I_{1-}^{\mu} x(t)=\int_{t}^{1} \frac{(s-t)^{\mu-1}}{\Gamma(\mu)} x(s) \mathrm{d} s
$$

If $x \in C(J)$ and $\gamma \in(0,1)$, then

$$
\begin{gathered}
{ }^{c} D_{0+}^{\gamma} I_{0+}^{\gamma} x(t)=x(t), \\
I_{0+}^{\gamma} D_{1-}^{\gamma} I_{1-}^{\gamma} x(t)=x(t) \text { for } t \in J, \\
0(t)=x(t)-x(0), \\
I_{1-}^{\gamma} D_{1-}^{\gamma} x(t)=x(t)-x(1) \text { for } t \in J
\end{gathered}
$$

and

$$
I_{0+}^{\gamma_{1}} I_{0+}^{\gamma_{2}} x(t)=I_{0+}^{\gamma_{1}+\gamma_{2}} x(t), \quad I_{1-}^{\gamma_{1}} I_{1-}^{\gamma_{2}} x(t)=I_{1-}^{\gamma_{1}+\gamma_{2}} x(t) \text { for } t \in J, \quad \gamma_{1}, \gamma_{2} \in(0, \infty) .
$$

Problem (1.1), (1.2) is at resonance because $\left\{c\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right): c \in \mathbb{R}\right\}$ is the set of nontrivial solutions to the homogeneous boundary value problem ${ }^{c} D_{1-}^{\alpha}{ }^{c} D_{0+}^{\beta} x=0,(1.2)$.

2 Operator \mathcal{H} and its properties

Let an operator $\mathcal{H}: X \rightarrow X$ be given by the formula

$$
\mathcal{H}(x, c)=\left(c\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right)+I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t)), c-\left.I_{1-}^{\alpha} f(t, x(t))\right|_{t=0}\right) .
$$

Note that

$$
I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t))=\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}\left(\int_{s}^{1} \frac{(\tau-s)^{\alpha-1}}{\Gamma(\alpha)} f(\tau, x(\tau)) \mathrm{d} \tau\right) \mathrm{d} s
$$

and

$$
\left.I_{1-}^{\alpha} f(t, x(t))\right|_{t=0}=\int_{0}^{1} \frac{s^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) \mathrm{d} s
$$

If $x \in C(J)$ and $0 \leq t_{1}<t_{2} \leq 1$, then

$$
\begin{align*}
\left|I_{0+}^{\beta} I_{1-}^{\alpha} x(t)\right| & \leq \frac{\|x\|}{\Gamma(\beta+1) \Gamma(\alpha+1)}, t \in J, \tag{2.1}\\
\left|I_{0+}^{\beta} I_{1-}^{\alpha} x(t)\right|_{t=t_{2}}-\left.I_{0+}^{\beta} I_{1-}^{\alpha} x(t)\right|_{t=t_{1}} \mid & \leq \frac{2\|x\|}{\Gamma(\beta+1) \Gamma(\alpha+1)}\left(t_{2}-t_{1}\right)^{\beta} .
\end{align*}
$$

Lemma 2.1. \mathcal{H} is a completely continuous operator.
The following result gives the relation between fixed points of \mathcal{H} and solutions to problem (1.1), (1.2).

Lemma 2.2. If $(x, c) \in X$ is a fixed point of \mathcal{H}, then x is a solution of problem (1.1),(1.2).
Proof. Let $\mathcal{H}(x, c)=(x, c)$ for some $(x, c) \in X$. Then

$$
\begin{gather*}
x(t)=c\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right)+I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t)), \quad t \in J, \tag{2.2}\\
\left.I_{1-}^{\alpha} f(t, x(t))\right|_{t=0}=0 . \tag{2.3}
\end{gather*}
$$

Applying ${ }^{c} D_{0+}^{\beta}$ to (2.2), we get

$$
\begin{equation*}
{ }^{c} D_{0+}^{\beta} x(t)=c+I_{1-}^{\alpha} f(t, x(t)), \quad t \in J . \tag{2.4}
\end{equation*}
$$

Hence ${ }^{c} D_{0+}^{\beta} x \in C(J),\left.{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=1}=c$ and (see (2.3)) $\left.{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=0}=c$. We now apply ${ }^{c} D_{1-}^{\alpha}$ to (2.4) and have

$$
{ }^{c} D_{1-}^{\alpha}{ }^{c} D_{0+}^{\beta} x(t)=f(t, x(t)), \quad t \in J .
$$

Thus x is a solution of equation (1.1). From

$$
\left.{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=1}=c,\left.\quad{ }^{c} D_{0+}^{\beta} x(t)\right|_{t=0}=c
$$

and (see (2.2)) $x(0)=c$ it follows that x satisfies (1.2). Consequently, x is a solution of problem (1.1), (1.2).

3 Existence result

Theorem 3.1. Suppose that
$\left(H_{1}\right)$ there exists $M>0$ such that $x f(t, x)>0$ for $t \in J$ and $|x| \geq M$;
$\left(H_{2}\right)$ there exist positive constants A, B and $\rho \in(0,1)$ such that $|f(t, x)| \leq A+B|x|^{\rho}$ for $t \in J$ and $x \in \mathbb{R}$.

Then problem (1.1), (1.2) has at least one solution.
Proof. Keeping in mind Lemma 2.2, we need to prove that \mathcal{H} admits a fixed point. We prove the existence of a fixed point of \mathcal{H} by the Schaefer fixed point theorem [1, 4]. To this end, let

$$
\Omega=\{(x, c) \in X: \quad(x, c)=\lambda \mathcal{H}(x, c) \text { for some } \lambda \in(0,1)\} .
$$

Since \mathcal{H} is a completely continuous operator, it follows from the Schaefer fixed point theorem that the boundedness of Ω in X guarantees the existence of a fixed point of \mathcal{H}.

Let $(x, c)=\lambda \mathcal{H}(x, c)$ for some $(x, c) \in X$ and $\lambda \in(0,1)$, that is,

$$
\begin{gather*}
x(t)=\lambda c\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right)+\lambda I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t)), \quad t \in J, \tag{3.1}\\
(1-\lambda) c=-\left.\lambda I_{1-}^{\alpha} f(t, x(t))\right|_{t=0} . \tag{3.2}
\end{gather*}
$$

We claim that

$$
\begin{equation*}
|x(\xi)|<M \text { for some } \xi \in J \tag{3.3}
\end{equation*}
$$

where M is from $\left(H_{1}\right)$. By (3.1), $x(0)=\lambda c$. Suppose that $x>M$ on J. Then $c>0$ and, by $\left(H_{1}\right)$, $\left.I_{1-}^{\alpha} f(t, x(t))\right|_{t=0}>0$, contrary to (3.2) because ($\left.1-\lambda\right) c>0$ and $\left.I_{1-}^{\alpha} f(t, x(t))\right|_{t=0}>0$. Similarly, $x<-M$ on J gives contrary to (3.2). Hence (3.3) is valid.

Putting $t=\xi$ in (3.1), we have

$$
\begin{equation*}
\lambda c=\frac{1}{1+\xi^{\beta} / \Gamma(\beta+1)}\left(x(\xi)-\left.\lambda I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t))\right|_{t=\xi}\right) . \tag{3.4}
\end{equation*}
$$

Thus (see (3.1))

$$
x(t)=\frac{1+t^{\beta} / \Gamma(\beta+1)}{1+\xi^{\beta} / \Gamma(\beta+1)}\left(x(\xi)-\left.\lambda I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t))\right|_{t=\xi}\right)+\lambda I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t)), \quad t \in J .
$$

Hence (see $\left(H_{2}\right),(2.1)$ and (3.3))

$$
|x(t)| \leq\left(1+\frac{1}{\Gamma(\beta+1)}\right)\left(M+\frac{A+B\|x\|^{\rho}}{\Gamma(\beta+1) \Gamma(\alpha+1)}\right)+\frac{A+B\|x\|^{\rho}}{\Gamma(\beta+1) \Gamma(\alpha+1)}, t \in J .
$$

In particular,

$$
\begin{equation*}
\|x\| \leq W_{1}+W_{2}\|x\|^{\rho}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
W_{1} & =M\left(1+\frac{1}{\Gamma(\beta+1)}\right)+\frac{A}{\Gamma(\beta+1) \Gamma(\alpha+1)}\left(2+\frac{1}{\Gamma(\beta+1)}\right) \\
W_{2} & =\frac{B}{\Gamma(\beta+1) \Gamma(\alpha+1)}\left(2+\frac{1}{\Gamma(\beta+1)}\right) .
\end{aligned}
$$

Since

$$
\lim _{v \rightarrow \infty} \frac{W_{1}+W_{2} v^{\rho}}{v}=0
$$

there exists $S>0$ such that $W_{1}+W_{2} v^{\rho}<v$ or $v>S$. Consequently (see (3.5)), $\|x\| \leq S$.
Hence $|f(t, x(t))| \leq L$ for $t \in J$, where $L=A+B S^{\rho}$. In order to give the bound for c, we consider two cases if $\lambda \in(0,1 / 2]$ of $\lambda \in(1 / 2,1)$. Let $\lambda \in(0,1 / 2]$. Then (see (3.2))

$$
|c| \leq \frac{\lambda}{1-\lambda} \int_{0}^{1} \frac{s^{\alpha-1}}{\Gamma(\alpha)}|f(s, x(s))| \mathrm{d} s \leq \frac{L}{\Gamma(\alpha+1)} .
$$

Let $\lambda \in(1 / 2,1)$. Then (see (3.4))

$$
|c| \leq \frac{1}{\lambda\left(1+\xi^{\beta} / \Gamma(\beta+1)\right)}\left(|x(\xi)|+\left|I_{0+}^{\beta} I_{1-}^{\alpha} f(t, x(t))\right|_{t=\xi} \mid\right) \leq 2\left(M+\frac{L}{\Gamma(\beta+1) \Gamma(\alpha+1)}\right) .
$$

To summarize, we have $|c| \leq D$, where

$$
D=\max \left\{\frac{L}{\Gamma(\alpha+1)}, 2\left(M+\frac{L}{\Gamma(\beta+1) \Gamma(\alpha+1)}\right)\right\} .
$$

As a result, Ω is bounded and $\|x\| \leq S,|c| \leq D$ for $(x, c) \in \Omega$.
Example 3.2. Let $p \in C(J), \rho \in(0,1)$ and $f(t, x)=p(t)+\sin x+2|x|^{\rho} \arctan x$. Then f satisfies conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ for $M=\sqrt[\rho]{1+\|p\|}$ and $A=1+\|p\|, B=\pi$. By Theorem 3.1, there exists a solution x of the equation

$$
{ }^{c} D_{1-}^{\alpha}{ }^{c} D_{0+}^{\beta} x(t)=p(t)+\sin x(t)+2|x(t)|^{\rho} \arctan x(t),
$$

satisfying the boundary condition (1.2).

References

[1] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
[2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[4] D. R. Smart, Fixed Point Theorems. Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974.

