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1 Introduction
Let J = [0, 1], X = C(J)× R and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

We discuss the fractional boundary value problem
cDα

1−
cDβ

0+x(t) = f(t, x(t)), (1.1)

u(0) = cDβ
0+x(t)

∣∣∣
t=0

= cDβ
0+x(t)

∣∣∣
t=1

, (1.2)

where α, β ∈ (0, 1), f ∈ C(J × R), cD1− and cD0+ denote the right and the left Caputo fractional
derivatives.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x, cDβ
0+x ∈ C(J) and x

satisfies (1.1) for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a
solution of problem (1.1), (1.2).

Let x : J → R, γ ∈ (0, 1) and µ ∈ (0,∞). Then the left cDγ
0+x and the right cDγ

1−x Caputo
fractional derivatives of x of order γ are defined respectively by [2, 3]

cDγ
0+x(t) =

d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds

and

cDγ
1−x(t) = − d

dt

1∫
t

(s− t)−γ

Γ(1− γ)
(x(s)− x(1))ds,

where Γ is the Euler gamma function.
The left Iµ0+x and the right Iµ1−x Riemann–Liouville fractional integrals of x of order µ are

defined respectively by

Iµ0+x(t) =

t∫
0

(t− s)µ−1

Γ(µ)
x(s)ds and Iµ1−x(t) =

1∫
t

(s− t)µ−1

Γ(µ)
x(s)ds.

If x ∈ C(J) and γ ∈ (0, 1), then
cDγ

0+I
γ
0+x(t) = x(t), cDγ

1−I
γ
1−x(t) = x(t) for t ∈ J,

Iγ0+
cDγ

0+x(t) = x(t)− x(0), Iγ1−
cDγ

1−x(t) = x(t)− x(1) for t ∈ J
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and
Iγ10+I

γ2
0+x(t) = Iγ1+γ2

0+ x(t), Iγ11−I
γ2
1−x(t) = Iγ1+γ2

1− x(t) for t ∈ J, γ1, γ2 ∈ (0,∞).

Problem (1.1), (1.2) is at resonance because
{
c(1 + tβ

Γ(β+1)) : c ∈ R
}

is the set of nontrivial
solutions to the homogeneous boundary value problem cDα

1−
cDβ

0+x = 0, (1.2).

2 Operator H and its properties
Let an operator H : X → X be given by the formula

H(x, c) =

(
c
(
1 +

tβ

Γ(β + 1)

)
+ Iβ0+I

α
1−f(t, x(t)), c− Iα1−f(t, x(t))

∣∣∣
t=0

)
.

Note that

Iβ0+I
α
1−f(t, x(t)) =

t∫
0

(t− s)β−1

Γ(β)

( 1∫
s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτ

)
ds

and

Iα1−f(t, x(t))
∣∣
t=0

=

1∫
0

sα−1

Γ(α)
f(s, x(s))ds.

If x ∈ C(J) and 0 ≤ t1 < t2 ≤ 1, then∣∣Iβ0+Iα1−x(t)∣∣ ≤ ∥x∥
Γ(β + 1)Γ(α+ 1)

, t ∈ J, (2.1)∣∣∣Iβ0+Iα1−x(t)∣∣t=t2
− Iβ0+I

α
1−x(t)

∣∣
t=t1

∣∣∣ ≤ 2∥x∥
Γ(β + 1)Γ(α+ 1)

(t2 − t1)
β.

Lemma 2.1. H is a completely continuous operator.
The following result gives the relation between fixed points of H and solutions to problem

(1.1), (1.2).
Lemma 2.2. If (x, c) ∈ X is a fixed point of H, then x is a solution of problem (1.1), (1.2).
Proof. Let H(x, c) = (x, c) for some (x, c) ∈ X. Then

x(t) = c
(
1 +

tβ

Γ(β + 1)

)
+ Iβ0+I

α
1−f(t, x(t)), t ∈ J, (2.2)

Iα1−f(t, x(t))
∣∣∣
t=0

= 0. (2.3)

Applying cDβ
0+ to (2.2), we get

cDβ
0+x(t) = c+ Iα1−f(t, x(t)), t ∈ J. (2.4)

Hence cDβ
0+x ∈ C(J), cDβ

0+x(t)|t=1 = c and (see (2.3)) cDβ
0+x(t)|t=0 = c. We now apply cDα

1− to
(2.4) and have

cDα
1−

cDβ
0+x(t) = f(t, x(t)), t ∈ J.

Thus x is a solution of equation (1.1). From
cDβ

0+x(t)
∣∣∣
t=1

= c, cDβ
0+x(t)

∣∣∣
t=0

= c

and (see (2.2)) x(0) = c it follows that x satisfies (1.2). Consequently, x is a solution of problem
(1.1), (1.2).
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3 Existence result
Theorem 3.1. Suppose that

(H1) there exists M > 0 such that xf(t, x) > 0 for t ∈ J and |x| ≥ M ;

(H2) there exist positive constants A, B and ρ ∈ (0, 1) such that |f(t, x)| ≤ A + B|x|ρ for t ∈ J
and x ∈ R.

Then problem (1.1), (1.2) has at least one solution.

Proof. Keeping in mind Lemma 2.2, we need to prove that H admits a fixed point. We prove the
existence of a fixed point of H by the Schaefer fixed point theorem [1,4]. To this end, let

Ω =
{
(x, c) ∈ X : (x, c) = λH(x, c) for some λ ∈ (0, 1)

}
.

Since H is a completely continuous operator, it follows from the Schaefer fixed point theorem that
the boundedness of Ω in X guarantees the existence of a fixed point of H.

Let (x, c) = λH(x, c) for some (x, c) ∈ X and λ ∈ (0, 1), that is,

x(t) = λc
(
1 +

tβ

Γ(β + 1)

)
+ λIβ0+I

α
1−f(t, x(t)), t ∈ J, (3.1)

(1− λ)c = −λIα1−f(t, x(t))
∣∣∣
t=0

. (3.2)

We claim that
|x(ξ)| < M for some ξ ∈ J, (3.3)

where M is from (H1). By (3.1), x(0) = λc. Suppose that x > M on J . Then c > 0 and, by (H1),
Iα1−f(t, x(t))|t=0 > 0, contrary to (3.2) because (1 − λ)c > 0 and Iα1−f(t, x(t))|t=0 > 0. Similarly,
x < −M on J gives contrary to (3.2). Hence (3.3) is valid.

Putting t = ξ in (3.1), we have

λc =
1

1 + ξβ/Γ(β + 1)

(
x(ξ)− λIβ0+I

α
1−f(t, x(t))

∣∣
t=ξ

)
. (3.4)

Thus (see (3.1))

x(t) =
1 + tβ/Γ(β + 1)

1 + ξβ/Γ(β + 1)

(
x(ξ)− λIβ0+I

α
1−f(t, x(t))

∣∣
t=ξ

)
+ λIβ0+I

α
1−f(t, x(t)), t ∈ J.

Hence (see (H2), (2.1) and (3.3))

|x(t)| ≤
(
1 +

1

Γ(β + 1)

)(
M +

A+B∥x∥ρ

Γ(β + 1)Γ(α+ 1)

)
+

A+B∥x∥ρ

Γ(β + 1)Γ(α+ 1)
, t ∈ J.

In particular,
∥x∥ ≤ W1 +W2∥x∥ρ, (3.5)

where

W1 = M
(
1 +

1

Γ(β + 1)

)
+

A

Γ(β + 1)Γ(α+ 1)

(
2 +

1

Γ(β + 1)

)
,

W2 =
B

Γ(β + 1)Γ(α+ 1)

(
2 +

1

Γ(β + 1)

)
.
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Since
lim
v→∞

W1 +W2v
ρ

v
= 0,

there exists S > 0 such that W1 +W2v
ρ < v or v > S. Consequently (see (3.5)), ∥x∥ ≤ S.

Hence |f(t, x(t))| ≤ L for t ∈ J , where L = A + BSρ. In order to give the bound for c, we
consider two cases if λ ∈ (0, 1/2] of λ ∈ (1/2, 1). Let λ ∈ (0, 1/2]. Then (see (3.2))

|c| ≤ λ

1− λ

1∫
0

sα−1

Γ(α)
|f(s, x(s))|ds ≤ L

Γ(α+ 1)
.

Let λ ∈ (1/2, 1). Then (see (3.4))

|c| ≤ 1

λ(1 + ξβ/Γ(β + 1))

(
|x(ξ)|+

∣∣Iβ0+Iα1−f(t, x(t))|t=ξ

∣∣) ≤ 2
(
M +

L

Γ(β + 1)Γ(α+ 1)

)
.

To summarize, we have |c| ≤ D, where

D = max

{
L

Γ(α+ 1)
, 2
(
M +

L

Γ(β + 1)Γ(α+ 1)

)}
.

As a result, Ω is bounded and ∥x∥ ≤ S, |c| ≤ D for (x, c) ∈ Ω.

Example 3.2. Let p ∈ C(J), ρ ∈ (0, 1) and f(t, x) = p(t) + sinx+ 2|x|ρ arctanx. Then f satisfies
conditions (H1) and (H2) for M = ρ

√
1 + ∥p∥ and A = 1 + ∥p∥, B = π. By Theorem 3.1, there

exists a solution x of the equation

cDα
1−

cDβ
0+x(t) = p(t) + sinx(t) + 2|x(t)|ρ arctanx(t),

satisfying the boundary condition (1.2).
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