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The extended abstract concerns the parameter-dependent periodic problem

u′′ = p(t)u− h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [3].

We first note that the differential equation in (1) with λ = 3 is derived, for example, when
approximating non-linearities in the equations of motion of the oscillators in Figs. 1 and 2.

Figure 1. Forced steel beam deflected toward the two magnets1.

Consider a forced undamped oscillator consisting of a mass body of weight m and a linear
spring of characteristic k and non-deformed length ℓ (see Fig. 2). Assume that the mass body
moves horizontally without any friction and the spring’s base point B oscillates vertically, i.e., d is
a positive ω-periodic function. This is a system with a single degree of freedom, described by the
coordinate x, whose equation of motion is of the form

x′′ =
k

m
x

(
ℓ√

d2(t) + x2
− 1

)
+

F (t)

m
. (2)

A classical approach to deriving Duffing equation is to approximate the non-linearity in (2) by a
third-degree Taylor polynomial centred at 0. We thus get the equation

x′′ =
k(ℓ− d(t))

md(t)
x− kℓ

2md3(t)
x3 +

F (t)

m
, (3)

1A figure is adopt from http://www.scholarpedia.org/article/Duffing_oscillator.
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Figure 2. Forced undamped mass-spring oscillator with the so-called geometric non-
linearity.

which is a particular case of the differential equation in (1). It is worth mentioning that the results
below can be applied, for instance, to the forcing terms

F (t) := −f0, F (t) := A
(
sin

2πt

ω
− 1

2

)
,

where f0, A > 0 are parameters.
To formulate our results, we need the following definitions.

Definition 1 ([2, Definitions 0.1 and 15.1, Proposition 15.2]). We say that a function p ∈ L([0, ω])
belongs to the set V−(ω) if, for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 holds for t ∈ [0, ω].

Remark 1. Let ω > 0. If p(t) := p0 for t ∈ [0, ω], then one can show by direct calculation that
p ∈ V−(ω) if and only if p0 > 0. For non-constant functions p ∈ L([0, ω]), efficient conditions
guaranteeing the inclusion p ∈ V−(ω) are provided in [2] (see also [1, 4]).

Definition 2 ([2, Definition 16.1]). Let p, f ∈ L([0, ω]). We say that a pair (p, f) belongs to the
set U(ω), if the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω)

has a unique solution which is positive.

Remark 2. Let p ∈ V−(ω). It follows from [2, Theorem 16.2] that (p, f) ∈ U(ω) provided that

ω∫
0

[f(s)]− ds > e
ω
4

ω∫
0

[p(s)]+ ds
ω∫

0

[f(s)]+ ds. (4)

In particular, if
f(t) ≤ 0 for a. e. t ∈ [0, ω], f(t) ̸≡ 0, (5)

then (p, f) ∈ U(ω).
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In what follows, we discuss the existence/non-existence as well as the exact multiplicity of
positive solutions to problem (1) depending on the choice of the parameter µ provided that p ∈
V−(ω). Let us show, as a motivation, what happens in the autonomous case of (1). Hence, consider
the equation

x′′ = ax− b|x|λ sgnx− µ. (6)

In view of Remark 1 and the hypothesis h ≥ 0 a.e. on [0, ω], we assume that a, b > 0. By direct
calculation, the phase portraits of equation (6) can be elaborated depending on the choice of the
parameter µ ∈ R (see, Fig. 3) and, thus, one can prove the following proposition concerning the
positive periodic solutions to equation (6).

µ = −1 µ = 0 µ = 1

µ = 2 µ = 3

Figure 3. Phase portraits of equation (6) with a = 3, b = 1, and λ = 3.

Proposition 1. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(1) If µ ≤ 0, then equation (6) has a unique positive equilibrium (center) and non-constant
positive periodic solutions with different periods.

(2) If 0 < µ < (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) possesses exactly two positive equilibria x2 > x1
(x1 is a saddle and x2 is a center) and non-constant positive periodic solutions with different
periods. Moreover, all the non-constant positive periodic solutions are greater than x1 and
oscillate around x2.

(3) If µ = (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) has a unique positive equilibrium (cusp) and no
non-constant positive periodic solution occurs.

(4) If µ > (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) has no positive periodic solution.
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Proposition 1 shows that, if we consider µ as a bifurcation parameter, then, crossing the value
µ∗ = (λ−1)a

λ ( a
λb)

1
λ−1 , a bifurcation of positive periodic solutions to equation (6) occurs. In Fig. 3,

the critical value of the bifurcation parameter is µ∗ = 2.

Theorem 1 (Main result). Let λ > 1, p ∈ V−(ω), (p, f) ∈ U(ω),
ω∫
0

f(s) ds < 0, and

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) ̸≡ 0. (7)

Then, there exists µ0 ∈ ]0,+∞[ such that the following conclusions hold:

(1) If µ = 0, then problem (1) has at least one positive solution and, for any couple of distinct
positive solutions u1, u2 to (1), the conditions

min
{
u1(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u1(t)− u2(t) : t ∈ [0, ω]

}
> 0

hold. If, moreover,

e
−1+

√
1+ω

ω∫
0

p(s) ds
(

− 1 +

√√√√√1 + ω

ω∫
0

p(s) ds

)
≤ 8

⌈λ⌉
, (8)

where ⌈ · ⌉ is the ceiling function, then problem (1) with µ = 0 has a unique positive solution.

(2) If 0 < µ < µ0, then problem (1) has solutions u1, u2 such that

u2(t) > u1(t) > 0 for t ∈ [0, ω]

and every non-negative solution u to problem (1) different from u1 and u2 satisfies

u(t) > u1(t) for t ∈ [0, ω],

min
{
u(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u(t)− u2(t) : t ∈ [0, ω]

}
> 0.

(3) If µ = µ0, then problem (1) has a unique positive solution.

(4) If µ > µ0, then problem (1) has no positive solution.

Open question. The following question remains open in Theorem 1: What happens in the case
of µ < 0?

We now provide lower and upper estimates of the number µ0 appearing in the conclusion of
Theorem 1.

Proposition 2. Let λ > 1, p ∈ V−(ω), h satisfy (7), and f be such that (4) holds. Then, the
number µ0 appearing in the conclusion of Theorem 1 satisfies

µ0 ≥
(λ− 1)[∆(p)]−

λ
λ−1

λ
[
λ

ω∫
0

h(s) ds
] 1
λ−1

ω∫
0

[f(s)]− ds

,

where ∆ is a number depending on the coefficient p only, and

µ0 <

(λ− 1)
[
e

ω
4

ω∫
0

[p(s)]+ ds ω∫
0

[p(s)]+ ds−
ω∫
0

[p(s)]− ds
] λ
λ−1

λ
[
λ

ω∫
0

h(s) ds
] 1
λ−1
[ ω∫
0

[f(s)]− ds− e
ω
4

ω∫
0

[p(s)]+ ds ω∫
0

[f(s)]+ ds
] .
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Remark 3. Let ω > 0 and put p(t) := a, h(t) := b, f(t) := −1 for t ∈ [0, ω], where a, b > 0.
Then, p ∈ V−(ω), h and f satisfy (7) and (5), respectively, and conclusions of Theorem 1 extend
conclusions (2)–(4) of Proposition 1 for the non-autonomous Duffing equations with a sign-changing
forcing term. Moreover, one can show that the number µ0 appearing in Proposition 2 satisfies(

1

cosh ω
√
a

2

) λ
λ−1 (λ− 1)a

λ

( a

λb

) 1
λ−1

< µ0 <
(
e

ω2a
4
) λ

λ−1
(λ− 1)a

λ

( a

λb

) 1
λ−1

;

compare it with the number appearing in Proposition 1.

If the forcing term f is non-positive, then Theorem 1 can be refined as follows.

Corollary. Let λ > 1, p ∈ V−(ω), and conditions (5), (7), and (8) be satisfied. Then, there exists
µ0 ∈ ]0,+∞[ such that the following conclusions hold:

(1) If µ = 0, then problem (1) has a unique positive solution.

(2) If 0 < µ < µ0, then problem (1) has exactly two positive solutions u1, u2 and these solutions
satisfy

u1(t) ̸= u2(t) for t ∈ [0, ω].

(3) If µ = µ0, then problem (1) has a unique positive solution.

(4) If µ > µ0, then problem (1) has no positive solution.
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