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The extended abstract concerns the parameter-dependent periodic problem
u" = p(t)yu — h()[u} sgnu+ pf(t);  w(0) = uw), u'(0)=1u(w), (1)

where p, h, f € L([0,w]), h > 0 a.e. on [0,w], A > 1, and u € R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0,w] — R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [3].

We first note that the differential equation in (1) with A = 3 is derived, for example, when
approximating non-linearities in the equations of motion of the oscillators in Figs. 1 and 2.
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Figure 1. Forced steel beam deflected toward the two magnets?.

Consider a forced undamped oscillator consisting of a mass body of weight m and a linear
spring of characteristic k£ and non-deformed length ¢ (see Fig. 2). Assume that the mass body
moves horizontally without any friction and the spring’s base point B oscillates vertically, i.e., d is
a positive w-periodic function. This is a system with a single degree of freedom, described by the
coordinate x, whose equation of motion is of the form

okt NLFW
R, ( d?(t) + x2 1>+ m (2)

A classical approach to deriving Duffing equation is to approximate the non-linearity in (2) by a
third-degree Taylor polynomial centred at 0. We thus get the equation
y k(0 —d(t)) k¢ F(t)

= d) T mmEO 3)

LA figure is adopt from http://www.scholarpedia.org/article/Duffing_oscillator.
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Figure 2. Forced undamped mass-spring oscillator with the so-called geometric non-
linearity.
which is a particular case of the differential equation in (1). It is worth mentioning that the results

below can be applied, for instance, to the forcing terms

2t 1

F(t):=—fo, F(t) ::A<sin7 — 5),

where fo, A > 0 are parameters.
To formulate our results, we need the following definitions.

Definition 1 ([2, Definitions 0.1 and 15.1, Proposition 15.2]). We say that a function p € L(]0,w])
belongs to the set V™ (w) if, for any function u € AC([0,w]) satisfying

u’(t) > p(t)u(t) fora.e. t€[0,w], u(0)=u(w), u(0)>u(w),
the inequality u(¢) < 0 holds for ¢ € [0, w].

Remark 1. Let w > 0. If p(t) := pp for ¢t € [0,w], then one can show by direct calculation that
p € YV~ (w) if and only if pg > 0. For non-constant functions p € L([0,w]), efficient conditions
guaranteeing the inclusion p € V™ (w) are provided in [2] (see also [1,4]).

Definition 2 ([2, Definition 16.1]). Let p, f € L([0,w]). We say that a pair (p, f) belongs to the
set U(w), if the problem

u" =p(thu+ f(t); w(0) =uw), v (0)=1u(w)
has a unique solution which is positive.

Remark 2. Let p € V™ (w). It follows from [2, Theorem 16.2] that (p, f) € U(w) provided that

r < i) ds f
Jueias=e" " g as (1)
0 0
In particular, if
f(t) <0 fora.e tel0,w], f(t)#0, (5)

then (p, f) € U(w).
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In what follows, we discuss the existence/non-existence as well as the exact multiplicity of
positive solutions to problem (1) depending on the choice of the parameter u provided that p €
V™ (w). Let us show, as a motivation, what happens in the autonomous case of (1). Hence, consider
the equation

2" = azx — bz sgnx — p. (6)
In view of Remark 1 and the hypothesis A > 0 a.e. on [0,w], we assume that a,b > 0. By direct
calculation, the phase portraits of equation (6) can be elaborated depending on the choice of the
parameter u € R (see, Fig. 3) and, thus, one can prove the following proposition concerning the
positive periodic solutions to equation (6).

Figure 3. Phase portraits of equation (6) with a =3, b=1, and A = 3.

Proposition 1. Let A > 1 and a,b > 0. Then, the following conclusions hold:

(1) If u < 0, then equation (6) has a unique positive equilibrium (center) and mon-constant
positive periodic solutions with different periods.

(2) Ifo<pu< (”\_/\l)a (%)ﬁ, then equation (6) possesses exactly two positive equilibria xo > x1
(x1 is a saddle and xo is a center) and non-constant positive periodic solutions with different
pertods. Moreover, all the non-constant positive periodic solutions are greater than xi and
oscillate around xo.

1
3) If p = (’\_/\l)a’ (x5)>-1, then equation (6) has a unique positive equilibrium (cusp) and no
non-constant positive periodic solution occurs.

1
(4) If p> (/\%)a (x5)>1, then equation (6) has no positive periodic solution.
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Proposition 1 shows that, if we consider u as a bifurcation parameter, then, crossing the value
1
w = @ (%5)>-1, a bifurcation of positive periodic solutions to equation (6) occurs. In Fig. 3,
the critical value of the bifurcation parameter is u* = 2.

Theorem 1 (Main result). Let A > 1, p e V™ (w), (p, f) e U(w), [ f(s)ds <0, and

o—c¢g

h(t) >0 fora.e te[0,w], h(t)#0. (7)
Then, there exists pg € |0, +00| such that the following conclusions hold:

(1) If u = 0, then problem (1) has at least one positive solution and, for any couple of distinct
positive solutions uy, ug to (1), the conditions

min {uy(t) — ua(t) : t € [0,w]} <0, max{u(t) —ua(t): t€[0,w]} >0

hold. If, moreover,

61+W<1+ 1+w/p(8)d8>§ﬁ]’ )

0
where [ -] is the ceiling function, then problem (1) with u = 0 has a unique positive solution.
(2) If 0 < p < o, then problem (1) has solutions w1, ug such that
ug(t) > ui(t) >0 for t €0,w]
and every non-negative solution u to problem (1) different from uy and ug satisfies
u(t) > ui(t) for t e 0,w],
min {u(t) — uz(t) : t € [0,w]} <0, max{u(t)—us(t): t€[0,w]}>0.
(3) If u = po, then problem (1) has a unique positive solution.
(4) If u > po, then problem (1) has no positive solution.

Open question. The following question remains open in Theorem 1: What happens in the case
of p <07

We now provide lower and upper estimates of the number g appearing in the conclusion of
Theorem 1.

Proposition 2. Let A > 1, p € V™ (w), h satisfy (7), and f be such that (4) holds. Then, the
number po appearing in the conclusion of Theorem 1 satisfies

(A —1)[A(p)] 51

Mo > w ;T w )
A [ h(s)ds]>T [[f(s)]-ds
0 0
where A is a number depending on the coefficient p only, and
2 fip(s)]+ ds @ w o
(A—1)[e® JIp(s)l+ ds — [[p(s)]- ds] >
0 0
,LL(] < w
w 1 g Uf[P(S)}Jr ds w

)\[)\th(s) ds]>1[

[f(s))-ds —e J1f () ds]

0

O—c¢
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Remark 3. Let w > 0 and put p(t) := a, h(t) :== b, f(t) := —1 for ¢t € [0,w], where a,b > 0.
Then, p € V™ (w), h and f satisfy (7) and (5), respectively, and conclusions of Theorem 1 extend
conclusions (2)—(4) of Proposition 1 for the non-autonomous Duffing equations with a sign-changing
forcing term. Moreover, one can show that the number py appearing in Proposition 2 satisfies

A _
1\ (A—1)a/ay\s a2 (A=1)a fayx
( {) S () e )R ()

cosh
compare it with the number appearing in Proposition 1.
If the forcing term f is non-positive, then Theorem 1 can be refined as follows.

Corollary. Let A > 1, p € V~(w), and conditions (5), (7), and (8) be satisfied. Then, there exists
o €10, 400 such that the following conclusions hold:

(1) If p =0, then problem (1) has a unique positive solution.

(2) If 0 < p < pg, then problem (1) has exactly two positive solutions uy, us and these solutions
satisfy
uy(t) # ua(t) for t € [0,w].

(3) If u = po, then problem (1) has a unique positive solution.

(4) If > po, then problem (1) has no positive solution.
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