Bifurcation of Positive Periodic Solutions to Non-Autonomous Undamped Duffing Equations

Jirí Šremr
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
E-mail: sremr@fme.vutbr.cz

The extended abstract concerns the parameter-dependent periodic problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u-h(t)|u|^{\lambda} \operatorname{sgn} u+\mu f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega), \tag{1}
\end{equation*}
$$

where $p, h, f \in L([0, \omega]), h \geq 0$ a.e. on $[0, \omega], \lambda>1$, and $\mu \in \mathbb{R}$ is a parameter. By a solution to problem (1), as usual, we understand a function $u:[0, \omega] \rightarrow \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies the given equation almost everywhere, and meets the periodic conditions. The text is based on the paper [3].

We first note that the differential equation in (1) with $\lambda=3$ is derived, for example, when approximating non-linearities in the equations of motion of the oscillators in Figs. 1 and 2.

Figure 1. Forced steel beam deflected toward the two magnets ${ }^{1}$.
Consider a forced undamped oscillator consisting of a mass body of weight m and a linear spring of characteristic k and non-deformed length ℓ (see Fig. 2). Assume that the mass body moves horizontally without any friction and the spring's base point B oscillates vertically, i.e., d is a positive ω-periodic function. This is a system with a single degree of freedom, described by the coordinate x, whose equation of motion is of the form

$$
\begin{equation*}
x^{\prime \prime}=\frac{k}{m} x\left(\frac{\ell}{\sqrt{d^{2}(t)+x^{2}}}-1\right)+\frac{F(t)}{m} . \tag{2}
\end{equation*}
$$

A classical approach to deriving Duffing equation is to approximate the non-linearity in (2) by a third-degree Taylor polynomial centred at 0 . We thus get the equation

$$
\begin{equation*}
x^{\prime \prime}=\frac{k(\ell-d(t))}{m d(t)} x-\frac{k \ell}{2 m d^{3}(t)} x^{3}+\frac{F(t)}{m}, \tag{3}
\end{equation*}
$$

[^0]

Figure 2. Forced undamped mass-spring oscillator with the so-called geometric nonlinearity.
which is a particular case of the differential equation in (1). It is worth mentioning that the results below can be applied, for instance, to the forcing terms

$$
F(t):=-f_{0}, \quad F(t):=A\left(\sin \frac{2 \pi t}{\omega}-\frac{1}{2}\right),
$$

where $f_{0}, A>0$ are parameters.
To formulate our results, we need the following definitions.
Definition 1 ([2, Definitions 0.1 and 15.1, Proposition 15.2]). We say that a function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}^{-}(\omega)$ if, for any function $u \in A C^{1}([0, \omega])$ satisfying

$$
u^{\prime \prime}(t) \geq p(t) u(t) \quad \text { for a. e. } t \in[0, \omega], \quad u(0)=u(\omega), \quad u^{\prime}(0) \geq u^{\prime}(\omega),
$$

the inequality $u(t) \leq 0$ holds for $t \in[0, \omega]$.
Remark 1. Let $\omega>0$. If $p(t):=p_{0}$ for $t \in[0, \omega]$, then one can show by direct calculation that $p \in \mathcal{V}^{-}(\omega)$ if and only if $p_{0}>0$. For non-constant functions $p \in L([0, \omega])$, efficient conditions guaranteeing the inclusion $p \in \mathcal{V}^{-}(\omega)$ are provided in [2] (see also [1,4]).

Definition 2 ([2, Definition 16.1]). Let $p, f \in L([0, \omega])$. We say that a pair (p, f) belongs to the set $\mathcal{U}(\omega)$, if the problem

$$
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega)
$$

has a unique solution which is positive.
Remark 2. Let $p \in \mathcal{V}^{-}(\omega)$. It follows from [2, Theorem 16.2] that $(p, f) \in \mathcal{U}(\omega)$ provided that

$$
\begin{equation*}
\int_{0}^{\omega}[f(s)]-\mathrm{d} s>\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]+\mathrm{d} s} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s \tag{4}
\end{equation*}
$$

In particular, if

$$
\begin{equation*}
f(t) \leq 0 \quad \text { for a. e. } t \in[0, \omega], \quad f(t) \not \equiv 0, \tag{5}
\end{equation*}
$$

then $(p, f) \in \mathcal{U}(\omega)$.

In what follows, we discuss the existence/non-existence as well as the exact multiplicity of positive solutions to problem (1) depending on the choice of the parameter μ provided that $p \in$ $\mathcal{V}^{-}(\omega)$. Let us show, as a motivation, what happens in the autonomous case of (1). Hence, consider the equation

$$
\begin{equation*}
x^{\prime \prime}=a x-b|x|^{\lambda} \operatorname{sgn} x-\mu . \tag{6}
\end{equation*}
$$

In view of Remark 1 and the hypothesis $h \geq 0$ a.e. on $[0, \omega]$, we assume that $a, b>0$. By direct calculation, the phase portraits of equation (6) can be elaborated depending on the choice of the parameter $\mu \in \mathbb{R}$ (see, Fig. 3) and, thus, one can prove the following proposition concerning the positive periodic solutions to equation (6).

Figure 3. Phase portraits of equation (6) with $a=3, b=1$, and $\lambda=3$.

Proposition 1. Let $\lambda>1$ and $a, b>0$. Then, the following conclusions hold:
(1) If $\mu \leq 0$, then equation (6) has a unique positive equilibrium (center) and non-constant positive periodic solutions with different periods.
(2) If $0<\mu<\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (6) possesses exactly two positive equilibria $x_{2}>x_{1}$ (x_{1} is a saddle and x_{2} is a center) and non-constant positive periodic solutions with different periods. Moreover, all the non-constant positive periodic solutions are greater than x_{1} and oscillate around x_{2}.
(3) If $\mu=\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (6) has a unique positive equilibrium (cusp) and no non-constant positive periodic solution occurs.
(4) If $\mu>\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (6) has no positive periodic solution.

Proposition 1 shows that, if we consider μ as a bifurcation parameter, then, crossing the value $\mu^{*}=\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, a bifurcation of positive periodic solutions to equation (6) occurs. In Fig. 3, the critical value of the bifurcation parameter is $\mu^{*}=2$.
Theorem 1 (Main result). Let $\lambda>1, p \in \mathcal{V}^{-}(\omega),(p, f) \in \mathcal{U}(\omega), \int_{0}^{\omega} f(s) \mathrm{d} s<0$, and

$$
\begin{equation*}
h(t) \geq 0 \quad \text { for a.e. } t \in[0, \omega], \quad h(t) \not \equiv 0 . \tag{7}
\end{equation*}
$$

Then, there exists $\left.\mu_{0} \in\right] 0,+\infty[$ such that the following conclusions hold:
(1) If $\mu=0$, then problem (1) has at least one positive solution and, for any couple of distinct positive solutions u_{1}, u_{2} to (1), the conditions

$$
\min \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}<0, \quad \max \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}>0
$$

hold. If, moreover,

$$
\begin{equation*}
\mathrm{e}^{-1+\sqrt{1+\omega \int_{0}^{\omega} p(s) \mathrm{d} s}}\left(-1+\sqrt{1+\omega \int_{0}^{\omega} p(s) \mathrm{d} s}\right) \leq \frac{8}{\lceil\lambda\rceil} \tag{8}
\end{equation*}
$$

where $\lceil\cdot\rceil$ is the ceiling function, then problem (1) with $\mu=0$ has a unique positive solution.
(2) If $0<\mu<\mu_{0}$, then problem (1) has solutions u_{1}, u_{2} such that

$$
u_{2}(t)>u_{1}(t)>0 \quad \text { for } t \in[0, \omega]
$$

and every non-negative solution u to problem (1) different from u_{1} and u_{2} satisfies

$$
\begin{aligned}
u(t)>u_{1}(t) & \text { for } t \in[0, \omega] \\
\min \left\{u(t)-u_{2}(t): t \in[0, \omega]\right\}<0, & \max \left\{u(t)-u_{2}(t): t \in[0, \omega]\right\}>0
\end{aligned}
$$

(3) If $\mu=\mu_{0}$, then problem (1) has a unique positive solution.
(4) If $\mu>\mu_{0}$, then problem (1) has no positive solution.

Open question. The following question remains open in Theorem 1: What happens in the case of $\mu<0$?

We now provide lower and upper estimates of the number μ_{0} appearing in the conclusion of Theorem 1.
Proposition 2. Let $\lambda>1, p \in \mathcal{V}^{-}(\omega)$, h satisfy (7), and f be such that (4) holds. Then, the number μ_{0} appearing in the conclusion of Theorem 1 satisfies

$$
\mu_{0} \geq \frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}} \int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s}
$$

where Δ is a number depending on the coefficient p only, and

$$
\mu_{0}<\frac{(\lambda-1)\left[\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]+\mathrm{d} s} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s-\int_{0}^{\omega}[p(s)]-\mathrm{d} s\right]^{\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}\left[\int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s-\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]+\mathrm{d} s} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s\right]} .
$$

Remark 3. Let $\omega>0$ and put $p(t):=a, h(t):=b, f(t):=-1$ for $t \in[0, \omega]$, where $a, b>0$. Then, $p \in \mathcal{V}^{-}(\omega), h$ and f satisfy (7) and (5), respectively, and conclusions of Theorem 1 extend conclusions (2)-(4) of Proposition 1 for the non-autonomous Duffing equations with a sign-changing forcing term. Moreover, one can show that the number μ_{0} appearing in Proposition 2 satisfies

$$
\left(\frac{1}{\cosh \frac{\omega \sqrt{a}}{2}}\right)^{\frac{\lambda}{\lambda-1}} \frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}<\mu_{0}<\left(\mathrm{e}^{\frac{\omega^{2} a}{4}}\right)^{\frac{\lambda}{\lambda-1}} \frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}
$$

compare it with the number appearing in Proposition 1.
If the forcing term f is non-positive, then Theorem 1 can be refined as follows.
Corollary. Let $\lambda>1, p \in \mathcal{V}^{-}(\omega)$, and conditions (5), (7), and (8) be satisfied. Then, there exists $\left.\mu_{0} \in\right] 0,+\infty[$ such that the following conclusions hold:
(1) If $\mu=0$, then problem (1) has a unique positive solution.
(2) If $0<\mu<\mu_{0}$, then problem (1) has exactly two positive solutions u_{1}, u_{2} and these solutions satisfy

$$
u_{1}(t) \neq u_{2}(t) \quad \text { for } t \in[0, \omega] .
$$

(3) If $\mu=\mu_{0}$, then problem (1) has a unique positive solution.
(4) If $\mu>\mu_{0}$, then problem (1) has no positive solution.

Acknowledgements

The research has been supported by the internal grant FSI-S-20-6187 of FME BUT.

References

[1] A. Cabada, J. Á. Cid and L. López-Somoza, Maximum Principles for the Hill's Equation. Academic Press, London, 2018.
[2] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129.
[3] J. Šremr, Bifurcation of positive periodic solutions to non-autonomous undamped Duffing equations. Math. Appl. (Brno) 10 (2021), no. 1, 79-92.
[4] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations 190 (2003), no. 2, 643-662.

[^0]: ${ }^{1}$ A figure is adopt from http://www.scholarpedia.org/article/Duffing_oscillator.

