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We construct conditions for the existence of a solution of linear boundary-value problem for a
system of differential-algebraic equations with pulse perturbations with constant rank of a leading
coefficient matrix.

The problem of constructing solutions [2,12]

2(t) € Cla, 0]\ {m}1}, i=1,2,....q

of the linear differential-algebraic system
AW () = BW)=(0) + F(1), ¢ £, (0.1)
subject to the boundary condition [5]
lz(-)=a, aecRF (0.2)
was studied. Here,
A(t), B(t) € Crixnla,b]

are continuous matrices,

f(t) € Cla, 0]
is a continuous vector function; ¢z( -) is a linear bounded vector functional

q

C2(-) =Y Liz(+): CY{[a, 0]\ {mi}s} — RF,

1=0

in addition
Ciz(2): Clmymia[— R, i=0,...,p—1, 10:=aq,

and
£2(+) : CHrp, b — R¥

are linear bounded functionals. The differential-algebraic boundary-value problem (0.1), (0.2) gen-
eralizes the traditional formulation of Noetherian boundary-value problems for systems of differ-
ential equations with pulse perturbations [2,5,6,11,12]. The differential-algebraic boundary-value
problem (0.1), (0.2) also generalizes the statements of various boundary-value problems for systems
of differential-algebraic equations [3,4].
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1 Solvability conditions of a differential-algebraic system
with impulse perturbations

Suppose that for the differential-algebraic system (0.1) with a matrix A(¢) of constant rank, the
requirements of the theorem see, [7, p. 15] are fulfilled. We fix an arbitrary continuous vector
function v,(t) € Cp, [a,b]. Substituting the general solution

Xp(t) co + K[f(s), Vp(S)] (t), te€la;m],
z(t,c) = Xp(t)er + K [f(s),vp(s)] (1), t € [m;ml,

of the Cauchy problem z(a) = ¢ for the differential-algebraic equation (0.1) into the boundary
condition (0.2), we arrive at the linear algebraic equation

Qe=a—LtKf(-). (1.1)

Here, Pg-« is orthoprojector
RF — N(Q¥)

and matrix Py« is formed from d independent lines of the orthoprojector Py, in addition,
Q = (b Xp( ) Xp(+) -+ £eXp(-)) € REXPr(T),
Equation (1.1) is solvable if and only if [1,2]
Pos{a— LK [f(s),vp(s)](-)} =0, (1.2)
Under condition (1.2) and only under it, the general solution of equation (0.1)
c=Q  a—tK[f(s),vp(s)](:)} + Pg, ¢, ¢ ER"

determines the general solution of the boundary-value problem (0.1), (0.2)

2(t ) = Xe(t)er + XOQH o — LK (), ()] ()} + K [F(3),1p(9)] (), cr € RT.
Here, Pg is an orthoprojector matrix

ReP(H) 5 N(Q);

the matrix Pg, € RP(@+D%7 i composed of 7 linearly independent columns of the orthoprojector

Py = | P8 | e mostaerixsstarn)
@)
e
in addition, co,c1,...,cq € RPP are constants
c:=col(cg,...,cq) := Q+{a — (K [f(s), yp(s)] (- )} e Reelatl)

Thus, the following lemma is proved.
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Lemma. Suppose that the differential-algebraic equation (0.1) satisfies the requirements of the
theorem in the article [7, p. 15]. Under condition (1.2) and only under it, for a fized continuous
vector function

vp(t) € Cp,[a, b,

general solution of the differential-algebraic boundary-value problem (0.1), (0.2)
z(t,¢r) = Xoo(t) or + G[f(s), ’/p(s); a] (t), c €R”

defines the generalized Green’s operator of the differential-algebraic boundary-value problem (0.1), (0.2)

Xp(t)eo + K[f(s)7 l/p(s)] (t), tela,m],
G[f(s);vp(s);a(t) == Xp(t)er + K [f(s), vp(s)] (1), t€[m, 7,

Here,

Note that the matrix differential-algebraic boundary-value problem with pulse perturbations,
studied in the article [10], is reduced to the form (0.1),(0.2), while in the articles [9-11] the case
of a non-degenerate system of the form (0.1) was studied. We also note the essentiality of the
requirement of constancy of the rank of the matrix under the derivative [7,8].
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