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We construct conditions for the existence of a solution of linear boundary-value problem for a
system of differential-algebraic equations with pulse perturbations with constant rank of a leading
coefficient matrix.

The problem of constructing solutions [2, 12]

z(t) ∈ C1
{
[a, b] \ {τi}I

}
, i = 1, 2, . . . , q

of the linear differential-algebraic system

A(t)z′(t) = B(t)z(t) + f(t), t ̸= τi, (0.1)

subject to the boundary condition [5]

ℓz( · ) = α, α ∈ Rk. (0.2)

was studied. Here,
A(t), B(t) ∈ Cm×n[a, b]

are continuous matrices,
f(t) ∈ C[a, b]

is a continuous vector function; ℓz( · ) is a linear bounded vector functional

ℓz( · ) :=
q∑

i=0

ℓiz( · ) : C1
{
[a, b] \ {τi}I

}
→ Rk,

in addition
ℓiz( · ) : C1[τi, τi+1[→ Rk, i = 0, . . . , p− 1, τ0 := a,

and
ℓqz( · ) : C1[τp, b] → Rk

are linear bounded functionals. The differential-algebraic boundary-value problem (0.1), (0.2) gen-
eralizes the traditional formulation of Noetherian boundary-value problems for systems of differ-
ential equations with pulse perturbations [2, 5, 6, 11, 12]. The differential-algebraic boundary-value
problem (0.1), (0.2) also generalizes the statements of various boundary-value problems for systems
of differential-algebraic equations [3, 4].
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1 Solvability conditions of a differential-algebraic system
with impulse perturbations

Suppose that for the differential-algebraic system (0.1) with a matrix A(t) of constant rank, the
requirements of the theorem see, [7, p. 15] are fulfilled. We fix an arbitrary continuous vector
function νp(t) ∈ Cρp [a, b]. Substituting the general solution

z(t, c) :=


Xp(t) c0 +K

[
f(s), νp(s)

]
(t), t ∈ [a; τ1[ ,

Xp(t) c1 +K
[
f(s), νp(s)

]
(t), t ∈ [τ1; τ2[ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp(t) cq +K
[
f(s), νp(s)

]
(t), t ∈ [τp; b]

of the Cauchy problem z(a) = c for the differential-algebraic equation (0.1) into the boundary
condition (0.2), we arrive at the linear algebraic equation

Qc = α− ℓKf( · ). (1.1)

Here, PQ∗ is orthoprojector
Rk → N(Q∗)

and matrix PQ∗
d

is formed from d independent lines of the orthoprojector PQ∗ , in addition,

Q :=
(
ℓ0Xp( · )ℓ1Xp( · ) · · · ℓqXp( · )

)
∈ Rk×ρp(q+1).

Equation (1.1) is solvable if and only if [1, 2]

PQ∗
d

{
α− ℓK

[
f(s), νp(s)

]
( · )

}
= 0. (1.2)

Under condition (1.2) and only under it, the general solution of equation (0.1)

c = Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
+ PQr cr, cr ∈ Rr

determines the general solution of the boundary-value problem (0.1), (0.2)

z(t, cr) = Xr(t)cr +X(t)Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
+K

[
f(s), νp(s)

]
(t), cr ∈ Rr.

Here, PQ is an orthoprojector matrix

Rρp(q+1) → N(Q);

the matrix PQr ∈ Rρp(q+1)×r is composed of r linearly independent columns of the orthoprojector

PQ :=


P

(0)
Q

P
(1)
Q

. . . .

P
(q)
Q

 ∈ Rρp(q+1)×ρp(q+1),

in addition, c0, c1, . . . , cq ∈ Rρp are constants

c := col(c0, . . . , cq) := Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
∈ Rρp(q+1).

Thus, the following lemma is proved.
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Lemma. Suppose that the differential-algebraic equation (0.1) satisfies the requirements of the
theorem in the article [7, p. 15]. Under condition (1.2) and only under it, for a fixed continuous
vector function

νp(t) ∈ Cρp [a, b],

general solution of the differential-algebraic boundary-value problem (0.1), (0.2)

z(t, cr) = Xr(t) cr +G
[
f(s); νp(s);α

]
(t), cr ∈ Rr

defines the generalized Green’s operator of the differential-algebraic boundary-value problem (0.1), (0.2)

G
[
f(s); νp(s);α

]
(t) :=


Xp(t)c0 +K

[
f(s), νp(s)

]
(t), t ∈ [a, τ1[ ,

Xp(t)c1 +K
[
f(s), νp(s)

]
(t), t ∈ [τ1, τ2[ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp(t)cq +K
[
f(s), νp(s)

]
(t), t ∈ [τp, b].

Here,

Xr(t) =


Xp(t)P

(0)
Q , t ∈ [a, τ1[ ,

Xp(t)P
(1)
Q , t ∈ [τ1, τ2[ ,

. . . . . . . . . . . . . . . . . . . . .

Xp(t)P
(q)
Q , t ∈ [τp, b].

Note that the matrix differential-algebraic boundary-value problem with pulse perturbations,
studied in the article [10], is reduced to the form (0.1), (0.2), while in the articles [9–11] the case
of a non-degenerate system of the form (0.1) was studied. We also note the essentiality of the
requirement of constancy of the rank of the matrix under the derivative [7, 8].
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