Differential-Algebraic Boundary-Value Problems with Pulse Perturbations with Constant Rank of a Leading Coefficient Matrix

Olga Nesmelova
Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine Slavyansk, Ukraine

Oleksiy Chuiko, Katerina Shevtsova
Donbass State Pedagogical University, Slavyansk, Ukraine
E-mails: chujko-slav@ukr.net; star-o@ukr.net

We construct conditions for the existence of a solution of linear boundary-value problem for a system of differential-algebraic equations with pulse perturbations with constant rank of a leading coefficient matrix.

The problem of constructing solutions $[2,12]$

$$
z(t) \in \mathbb{C}^{1}\left\{[a, b] \backslash\left\{\tau_{i}\right\}_{I}\right\}, \quad i=1,2, \ldots, q
$$

of the linear differential-algebraic system

$$
\begin{equation*}
A(t) z^{\prime}(t)=B(t) z(t)+f(t), \quad t \neq \tau_{i}, \tag{0.1}
\end{equation*}
$$

subject to the boundary condition [5]

$$
\begin{equation*}
\ell z(\cdot)=\alpha, \quad \alpha \in \mathbb{R}^{k} . \tag{0.2}
\end{equation*}
$$

was studied. Here,

$$
A(t), B(t) \in \mathbb{C}_{m \times n}[a, b]
$$

are continuous matrices,

$$
f(t) \in \mathbb{C}[a, b]
$$

is a continuous vector function; $\ell z(\cdot)$ is a linear bounded vector functional

$$
\ell z(\cdot):=\sum_{i=0}^{q} \ell_{i} z(\cdot): \mathbb{C}^{1}\left\{[a, b] \backslash\left\{\tau_{i}\right\}_{I}\right\} \rightarrow \mathbb{R}^{k},
$$

in addition

$$
\ell_{i} z(\cdot): \mathbb{C}^{1}\left[\tau_{i}, \tau_{i+1}\left[\rightarrow \mathbb{R}^{k}, \quad i=0, \ldots, p-1, \quad \tau_{0}:=a\right.\right.
$$

and

$$
\ell_{q} z(\cdot): \mathbb{C}^{1}\left[\tau_{p}, b\right] \rightarrow \mathbb{R}^{k}
$$

are linear bounded functionals. The differential-algebraic boundary-value problem (0.1), (0.2) generalizes the traditional formulation of Noetherian boundary-value problems for systems of differential equations with pulse perturbations $[2,5,6,11,12]$. The differential-algebraic boundary-value problem (0.1), (0.2) also generalizes the statements of various boundary-value problems for systems of differential-algebraic equations $[3,4]$.

1 Solvability conditions of a differential-algebraic system with impulse perturbations

Suppose that for the differential-algebraic system (0.1) with a matrix $A(t)$ of constant rank, the requirements of the theorem see, [7, p. 15] are fulfilled. We fix an arbitrary continuous vector function $\nu_{p}(t) \in \mathbb{C}_{\rho_{p}}[a, b]$. Substituting the general solution

$$
z(t, c):=\left\{\begin{array}{cc}
X_{p}(t) c_{0}+K\left[f(s), \nu_{p}(s)\right](t), & t \in\left[a ; \tau_{1}[,\right. \\
X_{p}(t) c_{1}+K\left[f(s), \nu_{p}(s)\right](t), & t \in\left[\tau_{1} ; \tau_{2}[,\right. \\
\ldots \\
X_{p}(t) c_{q}+K\left[f(s), \nu_{p}(s)\right](t), & t \in\left[\tau_{p} ; b\right]
\end{array}\right.
$$

of the Cauchy problem $z(a)=c$ for the differential-algebraic equation (0.1) into the boundary condition (0.2), we arrive at the linear algebraic equation

$$
\begin{equation*}
Q c=\alpha-\ell K f(\cdot) . \tag{1.1}
\end{equation*}
$$

Here, $P_{Q^{*}}$ is orthoprojector

$$
\mathbb{R}^{k} \rightarrow \mathbb{N}\left(Q^{*}\right)
$$

and matrix $P_{Q_{d}^{*}}$ is formed from d independent lines of the orthoprojector $P_{Q^{*}}$, in addition,

$$
Q:=\left(\ell_{0} X_{p}(\cdot) \ell_{1} X_{p}(\cdot) \cdots \ell_{q} X_{p}(\cdot)\right) \in \mathbb{R}^{k \times \rho_{p}(q+1)} .
$$

Equation (1.1) is solvable if and only if $[1,2]$

$$
\begin{equation*}
P_{Q_{d}^{*}}\left\{\alpha-\ell K\left[f(s), \nu_{p}(s)\right](\cdot)\right\}=0 . \tag{1.2}
\end{equation*}
$$

Under condition (1.2) and only under it, the general solution of equation (0.1)

$$
c=Q^{+}\left\{\alpha-\ell K\left[f(s), \nu_{p}(s)\right](\cdot)\right\}+P_{Q_{r}} c_{r}, \quad c_{r} \in \mathbb{R}^{r}
$$

determines the general solution of the boundary-value problem (0.1), (0.2)

$$
z\left(t, c_{r}\right)=X_{r}(t) c_{r}+X(t) Q^{+}\left\{\alpha-\ell K\left[f(s), \nu_{p}(s)\right](\cdot)\right\}+K\left[f(s), \nu_{p}(s)\right](t), c_{r} \in \mathbb{R}^{r} .
$$

Here, P_{Q} is an orthoprojector matrix

$$
\mathbb{R}^{\rho_{p}^{(q+1)}} \rightarrow \mathbb{N}(Q) ;
$$

the matrix $P_{Q_{r}} \in \mathbb{R}^{\rho_{p}(q+1) \times r}$ is composed of r linearly independent columns of the orthoprojector

$$
P_{Q}:=\left(\begin{array}{c}
P_{Q}^{(0)} \\
P_{Q}^{(1)} \\
\cdots \\
P_{Q}^{(q)}
\end{array}\right) \in \mathbb{R}^{\rho_{p}(q+1) \times \rho_{p}(q+1)},
$$

in addition, $c_{0}, c_{1}, \ldots, c_{q} \in \mathbb{R}^{\rho_{p}}$ are constants

$$
c:=\operatorname{col}\left(c_{0}, \ldots, c_{q}\right):=Q^{+}\left\{\alpha-\ell K\left[f(s), \nu_{p}(s)\right](\cdot)\right\} \in \mathbb{R}^{\rho_{p}(q+1)} .
$$

Thus, the following lemma is proved.

Lemma. Suppose that the differential-algebraic equation (0.1) satisfies the requirements of the theorem in the article [7, p. 15]. Under condition (1.2) and only under it, for a fixed continuous vector function

$$
\nu_{p}(t) \in \mathbb{C}_{\rho_{p}}[a, b]
$$

general solution of the differential-algebraic boundary-value problem (0.1), (0.2)

$$
z\left(t, c_{r}\right)=X_{r}(t) c_{r}+G\left[f(s) ; \nu_{p}(s) ; \alpha\right](t), \quad c_{r} \in \mathbb{R}^{r}
$$

defines the generalized Green's operator of the differential-algebraic boundary-value problem (0.1), (0.2)

$$
G\left[f(s) ; \nu_{p}(s) ; \alpha\right](t):=\left\{\begin{array}{l}
X_{p}(t) c_{0}+K\left[f(s), \nu_{p}(s)\right](t), \quad t \in\left[a, \tau_{1}[\right. \\
X_{p}(t) c_{1}+K\left[f(s), \nu_{p}(s)\right](t), \quad t \in\left[\tau_{1}, \tau_{2}[\right. \\
\ldots \ldots \cdots \\
X_{p}(t) c_{q}+K\left[f(s), \nu_{p}(s)\right](t), \quad t \in\left[\tau_{p}, b\right]
\end{array}\right.
$$

Here,

$$
X_{r}(t)=\left\{\begin{array}{cl}
X_{p}(t) P_{Q}^{(0)}, & t \in\left[a, \tau_{1}[\right. \\
X_{p}(t) P_{Q}^{(1)}, & t \in\left[\tau_{1}, \tau_{2}[\right. \\
\ldots \ldots \cdots \cdots \cdots \cdots \\
X_{p}(t) P_{Q}^{(q)}, & t \in\left[\tau_{p}, b\right]
\end{array}\right.
$$

Note that the matrix differential-algebraic boundary-value problem with pulse perturbations, studied in the article [10], is reduced to the form $(0.1),(0.2)$, while in the articles [9-11] the case of a non-degenerate system of the form (0.1) was studied. We also note the essentiality of the requirement of constancy of the rank of the matrix under the derivative $[7,8]$.

References

[1] A. Albert, Regression, Pseudo-Inversion and Recursive Estimation. (Russian) Moskow, Nauka, 1977.
[2] A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm BoundaryValue Problems. Second edition. Inverse and Ill-posed Problems Series, 59. De Gruyter, Berlin, 2016.
[3] Yu. E. Boyarintsev and V. F. Chistyakov, Algebro-Differential Systems. Solution and Investigation Methods. (Russian) "Nauka", Sibirskoe Predpriyatie RAN, Novosibirsk, 1998.
[4] S. L. Campbell, Singular Systems of Differential Equations. Research Notes in Mathematics, 40. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.
[5] S. M. Chuîko, A generalized Green operator for a boundary value problem with impulse action. (Russian) Differ. Uravn. 37 (2001), no. 8, 1132-1135; translation in Differ. Equ. 37 (2001), no. 8, 1189-1193.
[6] S. M. Chuiko, Noetherian boundary-value problems for degenerate differential-algebraic systems with linear impulsive action. (Russian) Dynamic systems 4 (32) (2014), no. 1-2, 89-100.
[7] S. M. Chuîko, On reducing the order in a differential-algebraic system. (Russian) Ukr. Mat. Visn. 15 (2018), no. 1, 1-17; translation in J. Math. Sci. (N.Y.) 235 (2018), no. 1, 2-14.
[8] S. M. Chuiko, Differential-algebraic boundary-value problems with the variable rank of leadingcoefficient matrix. J. Math. Sci. (N. Y.) 259 (2021), no. 1, 10-22.
[9] S. M. Chuǐko and E. V. Chuǐko, Linear Noetherian boundary value problems for degenerate differential-algebraic systems with impulse effect. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2016, no. 4, 20-29.
[10] S. M. Chuîko and M. V. Dzyuba, A matrix differential-algebraic boundary value problem with impulse action. (Russian) Nelīnı̄̌n̄̄ Koliv. 20 (2017), no. 4, 564-573; translation in J. Math. Sci. (N.Y.) 238 (2019), no. 3, 333-343.
[11] A. M. Samoǐlenko and A. A. Boǐchuk, Linear Noetherian boundary value problems for differential systems with impulse action. (Russian) Ukraïn. Mat. Zh. 44 (1992), no. 4, 564-568; translation in Ukrainian Math. J. 44 (1992), no. 4, 504-508.
[12] A. M. Samoĭlenko and N. A. Perestyuk, Impulsive Differential Equations. (Russian) Vishcha Schkola, Kyiv, 1987.

