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1 Introduction
The general questions of the continuous dependence of solutions to boundary value problems on
parameters as applied to functional differential equations are studied in [1, 3, 4, 8], see also the
references to Section 1.5 in [1].

We consider a quite broad class of functional differential systems with aftereffect and follow the
notation and basic statements of the general theory of functional differential equations in the part
concerning linear systems with aftereffect [1, 4].

Let Ln = Ln[0, T ] be the Lebesgue space of all summable functions z : [0, T ] → Rn defined on
a finite segment [0, T ] with the norm

∥z∥Ln =

T∫
0

|z(t)| dt,

where | · | is a norm in Rn. Below we use ∥ · ∥ for the matrix norm agreed with | · |.
Denote by ACn = ACn[0, T ] the space of absolutely continuous functions x : [0; T ] → Rn with

the norm
∥x∥ACn = |x(0)|+ ∥ẋ∥Ln .

In the sequel we will use some results from [1,4].
The system

Lx = f (1.1)
with a linear bounded Volterra operator L : ACn → Ln is considered under the assumption that
the general solution of equation (1.1) has the form

x(t) = X(t)x(0) +

t∫
0

C(t, s)f(s) ds, (1.2)

where X(t) is the fundamental matrix to the homogeneous equation Lx = 0, C(t, s) is the Cauchy
matrix. A broad class of operators L with property (1.2) is described, for instance, in [5].

We consider the boundary value problems (BVPs)

Lx = f, ℓ0x = 0, (1.3)

and
Lx = f, ℓx = 0, (1.4)

where ℓ0, ℓ : ACn → Rn are linear bounded vector-functional, assuming (1.3) to be uniquely
solvable, i.e. det ℓ0X ̸= 0. We will consider the question of the continuous dependence of solutions
on the boundary conditions in terms of the proximity of ℓ to ℓ0 and the proximity of the solution
x of BVP (1.4) to the solution x0 of BVP (1.3).
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2 Two theorems
First we give a theorem that follows from the theorem on the invertible operator (see, for instance,
Theorem 3.6.3 [2]).

Theorem 2.1. Let the inequality

∆ = ∥ℓ0X − ℓX∥ · ∥(ℓ0X)−1∥ < 1 (2.1)

be fulfilled. Then BVP (1.4) is uniquely solvable and the estimate

∥x0 − x∥ACn ≤ ∥X∥ACn×n · ∆

1−∆
· ∥(ℓ0X)−1∥ · ∥ℓ∥ACn→Rn · ∥Cf∥ACn

+ ∥X∥ACn×n · ∥(ℓ0X)−1∥ · ∥ℓ0 − ℓ∥ACn→Rn · ∥Cf∥ACn

holds.

Results of the constructive study of boundary value problems, based on conditions like (2.1),
are presented systematically in [1,7], see also [6]. Condition (2.1) often turns out to be quite rigid.
To formulate the next theorem based on another approach, we introduce additional notation:

ℓ0X = Γ0 = (γ0ij)i,j=1,...,n; ℓX = Γ =
(
[γbij , γ

u
ij ]
)
i,j=1,...,n

; γ0ij ∈ [γbij , γ
u
ij ];

(ℓ0X)−1 = B0 = (β0
ij)i,j=1,...,n; (ℓX)−1 = B =

(
[βb

ij , β
u
ij ]
)
i,j=1,...,n

;

M = max
(
det Γ : γij ∈ [γbij , γ

u
ij ], i, j = 1, . . . , n

)
;

µ = min
(
det Γ : γij ∈ [γbij , γ

u
ij ], i, j = 1, . . . , n

)
.

For an (n× n)-matrix A with interval-valued elements [aij , bij ] we define ∥A∥I by the equality

∥A∥I =
∥∥(αij)i,j=1,...,n

∥∥,
where αij = max(|aij |, |bij |).

Theorem 2.2. Let the inequality
M · µ > 0

be fulfilled. Then BVP (1.4) is uniquely solvable and the estimate

∥x0 − x∥ACn ≤ ∥X∥ACn×n · ∥B0 −B∥I · ∥ℓ∥ACn→Rn · ∥Cf∥ACn

+ ∥X∥ACn×n · ∥B0∥ · ∥ℓ0 − ℓ∥ACn→Rn · ∥Cf∥ACn

holds.

This theorem allows to cover a set of boundary value problems (1.4) for which condition (2.1)
is not fulfilled.

3 An example
Consider the boundary value problem

ẋ(t) = Fx(t) + f(t), t ∈ [0, 1], ℓ01x ≡ ax1(0) + bx2(1) = 0, ℓ02x ≡ cx1(1) + dx2(0) = 0. (3.1)
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Here
F =

(
0.5 −0.1
−0.2 0.6

)
, A =

(
a b
c d

)
=

(
1 2
3 4

)
.

For definiteness, let the norm in R2 be defined by the equality |x| = max(|x1|, |x2|), hence for
B = (bij) we have

∥B∥ = max
(
|b11|+ |b12|, |b21|+ |b22|

)
.

For the case the matrix ℓ0X is defined by the equality

ℓ0X =

(
0.304 3.680
4.997 3.478

)
, (ℓ0X)−1 =

(
−0.200 0.212
0.288 −0.018

)
, ∥(ℓ0X)−1∥ = 0.413.

Thus by virtue of Theorem 2.1 problem (3.1) is uniquely solvable and, together with it, any problem

ẋ = Fx+ f, ℓx = 0 (3.2)

with ℓ such that ∥ℓX − ℓ0X∥ < 2.421 is uniquely solvable too.
Let us show that Theorem 2.2 makes it possible to go beyond this inequality. Immerse the

matrix ℓ0X into the family Γ =

(
γ11 γ12
γ21 γ22

)
with γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5],

γ22 ∈ [3.4, 8].
Further

max
(
detΓ : γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5], γ22 ∈ [3.4, 8]

)
= −12.55,

min
(
detΓ : γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5], γ22 ∈ [3.4, 8]

)
= −20.22,

therefore, the determinant of any matrix from the family Γ differs from zero. It should be noted
that in terms of the parameters a, b, c, d of ℓ0 it means the unique solvability for all the problems
(3.2) with a ∈ [0.862, 1.119], b ∈ [1.902, 2.065], c ∈ [2.701, 3.301], d ∈ [3.870, 8.574].

Let us take the element Γ1 =

(
0.2 3.5
5.5 8

)
from Γ and calculate

∥ℓ0X − Γ1∥ = 5.025 >
1

∥(ℓ0X)−1∥
= 2.421.

As for estimating difference of a solution x0 to (3.1) and a solution x to an arbitrary problem
from (3.2) with ℓX ∈ Γ, first we calculate

Γ−1 =

(
[−0.637,−0.168] [0.188, 0.279]

[0.272, 0.359] [−0.032,−0.010]

)

with ∥Γ−1∥I ≤ 0.805 and

ℓ0X − Γ−1 =

(
[0.032, 0.437, ] [−0.067, 0.024]

[−0.016, 0.071] [−0.008, 0.014]

)
,

hence ∥(ℓ0X)−1 − Γ−1∥I ≤ 0.504. Having in mind the representation

x0 − x = X
[
(ℓ0X)−1ℓ− (ℓX)−1ℓ0

]
Cf = X

[
(ℓ0X)−1 − (ℓX)−1

]
ℓCf +X

[
(ℓ0X)−1(ℓ0 − ℓ)

]
Cf,

we obtain

∥x0 − x∥AC2 ≤ 0.504∥X∥AC2×2 · ∥ℓ∥AC2→R2 · ∥Cf∥AC2 + 0.414∥X∥ · ∥ℓ0 − ℓ∥AC2→R2 · ∥Cf∥AC2
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and, taking into account the estimate ∥X∥AC2×2 ≤ 2.188,

∥x0 − x∥AC2 ≤ 1.103 ∥ℓ∥AC2→R2 · ∥Cf∥AC2 + 0.906 ∥ℓ0 − ℓ∥AC2→R2 · ∥Cf∥AC2 .

Note again that, in this example, the statements of Theorem 2.2 cover the set of problems including
those that do not belong to the set defined by Theorem 2.1.
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