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In the orthogonally convex cylinder £ = {(z1,z2,23) € Q: (x1,22) € D, x3 € (0,ws)}, where

D= {(a;l,wg) €N: z1 € (0,w), a2 € (’71(1’1),"}/2(.%1))}
= {(@r.22) €0 ar € (0.w2), w1 € (mla2). male2)) .
consider the boundary value problem
u® = f(x,D?[u]), (1)

uv|, = v (x)(x), w00 VQ‘BE = wp(x)ha(x), u>>0) V3‘8E = v3(x)3(x). (2)

Here x = (x1,x2,23), OF is the boundary of E, and v(x) = (v1(x), v2(x),v3(x)) is the outward
unit normal vector at point x € 0F, 2 = (2,2,2), a = (a1, a2, a3) is a multi-index,

~ 3a1+a2+a3u(x)
D2u] = (u(® D2l = (u(® (@) ()= 2~ W&
[u] (u )Oé§2’ [u] (u )OL<2’ U (X) 8:17?1 61'32 axgs )
f(x,2) is a continuous function on E x R??, z = (2000, 2100, 2010, 2001, - - - » 2221, 2212, 2122), i € C(E)

(i =1,2,3) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function v € C?%2(E)
having continuous on E partial derivatives u(2%9 and u(220) and satisfying equation (1) and the
boundary conditions (2) everywhere in E and 0F, respectively.

Throughout the paper the following notations will be used:

0=(0,0,0),1=(1,1,1), ; = (0,...,,...,0), oj; = o; + ;.

a = (a,az,a3) < B = (B1,P2,83) <= i < fB; (i=1,2,3) and o # B.

a = (a,az,a3) < B = (f1,P2,03) = a < B, or a = .

el = o] + o] + Jas].

E:{a" 0<a’<1}.

Yr={a<2: a;=2 for some i€ {1,2,3}}.

The variables zqo (¢ € Y2) are called principal phase variables of the function f(x,z).

2= (2a) ygifa(x,2) = 222

suppa = {i: «a; > 0}.

Xa = (x(1) z1, x(2) x2, X (a3)x3), where x(a) =0 if a =0, and x(a) =1 if @ > 0.

Xy = X — X
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Xq Wwill be identified with (z;,,...,z;), where {i1,...,4} = supp a. Furthermore, xo will be
identified with (x4, 0q), and x will be identified with (Xq,Xa), or with (Xa,Xg)-
Qo = [0,w;,] X -+ x [0,w;,], where {i1,...,4;} =suppo.

Qij = (O,wi) X (0,0J]') (1 <1< j < 3)
C™(E) is the Banach space of functions u : E — R, having continuous partial derivatives u(®)
(¢ < m), endowed with the norm

||“”cm(E) = Z ||U(Q)HC(E)-

a<m

cm (E) is the Banach space of functions u : E — R, having continuous partial derivatives u(®)
(o < m), endowed with the norm

lullom@m = D 14 o

a<m

If ug € C™(E) and 7 > 0, then B™ (ug;7) = {u € C™(E): |lu—upllom < r}.
If up € C™(E) and r > 0, then ]~3m(uo;r) ={ue C™(E): ||lu— U || G < r}.

The boundary conditions (2) can be written int the following way

u(zzovo) (xl7 ’}/k(l'l), $3) - 902]{(:(;17 x3)7

u(2’2’0)($1,$2, (k — 1) UJg) = g03k(1:1, CUQ) (k =1, 2)7 (3)

U(nk(:cz), T2, x3) = 4/311@(962,963)7

where

o1r(x2, 23) = Y1(Mk(22), 22, 23),  war(z1,23) = Ya(z1, Yk (21), 23),
@ar(r1, w2) = Y3(r1, 22, (K —1)w3) (E=1,2). (4)

Along with problem (1), (3) consider the linear homogeneous problem

W® = 3 pa(xul), (Lo)

a<2

270’0)($177]€($1)3$3) = 07 ’LL(

U(Wk(@)v@al‘s) =0, u( 27270)($17$27 (k - 1) QJ3) =0 (k =1, 2) (30)
For each o € E in the domain ), consider the homogeneous boundary value problem depending

on the parameter x5 € Q5:

U(Q’O’O) = p022(X1, §1)U + p122(X1, i1)1)(170’0)7 (110[))
o(m(x2), %1) = 0, v(ma(x2),%1) = 0; (2100)
020 = pogy (2, Ro)v + para(x2, Ro)v 1Y), (o1o)
o((x1) R2) = 0, v(q2(x1),%2) = 0; (3010)
V002 = poan(x3,R3)v + pagi (x3,%3)v 00, (oo1)
0(0,%3) = 0, v(ws,R3) = 0; (3001)
o2 = N p s (xae, Ra2)u( @, (1110)

a<212
v(e(x2),R12) = 0, v (q(x1),R12) =0 (k= 1,2); (3110)
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v = N p s (s, Raa)v( @, (L101)
<213
v(ne(x2),%13) = 0, @00 ((k —1)ws,R13) =0 (k= 1,2); (3101)
v = N7 p 5 (%03, Raa )oY, (Lo11)
a<223
v(ve(x1),R23) =0, PP ((k—1)ws, Ro3) =0 (k=1,2). (3011)

Definition 1. Problem (1), (35) (o € E) is called o-associated problem of problem (1), (3p).

Along with problem (1), (2) consider the perturbed problem

u® = f(x,D?[u]) + f(x,D?[u]), (5)
u(ni(z2), 22, ¥3) = P1i(@2, 23) + 1k (22, 3),
w00 (2 (1), w3) = an(@1, 23) + Gor(w1, 73),
w20 (21, 29, (k — 1)wz) = par(w1, 22) + Pa(w1,22) (k=1,2), (6)

where

P, 73) = 1 (e (w2), w2, 23),  Por(w1,3) = Po(w1, (1), 3),
P3r(21, 12) = Y3(x1, 22, (k — D ws3) (k=1,2). (7)
A vector function (]? Jl,?ZQ, 1;3) is said to be an admissible perturbation if ]? e C(Q x R23) is

locally Lipschitz continuous with respect to the principal phase variables, ¢1 € C*22(E), 1y €
C%22(E) and ¢, € C%%2(E).

Definition 2. Let ug be a solution of problem (1), (2), and r > 0. We say that problem (1), (2) is
(ug, r)-well-posed, if:

(I) up(x) is the unique solution of problem (1), (2) in the ball B2 (ug;7);

(IT) there exist positive constant do and an increasing continuous ¢ : [0, do] — [0, +00) such that
£(0) = 0 and for any 6 € (0,dp] and an arbitrary admissible perturbation (f;1,2,13)
satisfying the conditions

|fa(x,2)] < 8y for (x,2) € QX R (a € Tm), (8)
f(x,2)| <6 for (x,2) € QxR*, 9)
||{/;1||c2,2,2@) + ”1;2”00,2,2@) + HJBHCOVOJ(E) <9, (10)

problem (4), (5) has at least one solution in the ball B2 (ug; ), and each such solution belongs
to the ball B2(ug;&(d)).

Definition 3. Let ug be a solution of problem (1), (2), and r» > 0. We say that problem (1), (2) is
strongly (ug, r)-well-posed, if:

(I) uo(x) is the unique solution of problem (1), (2) in the ball B2(ug, );

(IT) there exist a positive constants dp and M such that for any ¢ € (0,d0] and an arbitrary
admissible perturbation ( f: wl,wg,wg) satisfying conditions (7)-(9), problem (4), (5) has at
least one solution in the ball B2(ug; ), and each such solution belongs to the ball B2(ug; M¥).
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Definition 4. Problem (1), (2) is called well-posed (strongly well-posed), if it is (ug, r)-well-posed
(strongly (ug,r)-well-posed) for every r > 0.

Definition 5. A solution ug of problem (1), (2) is called strongly isolated, if problem (1),(2) is
strongly (ug, r)-well-posed for some r > 0.

Theorem 1. Let
m € C*([0,wa]) (k=1,2), (11)
let the function f(x,z) be continuously differentiable with respect to the phase variables, and let

there exist functions Pio(x) € C(E) (o < 2; i = 1,2) such that:

(E1) _
Pia(x) € fa(X,2) < Pon(x) for (x,Z) € ExR*® (a< 2); (12)

(Es) For every o € EU{1},! X5 € E5 and arbitrary measurable functions po € L®(Ey) (¢ < 24)
satisfying the inequalities

Prois, (v:%0) < Paly) < Pz, (v:Ro) for v € By (@< 24), (13)

the o -associated problem (15), (35) has only the trivial solution in ACY(Ey);

(E3) the problem

u® = 3 Pral)ul®,

o<
w(ng(w2), 22, 23) = 0, w00 (2y, v (21),23) = 0, W20 (21,20, (k — Dw3) =0 (k=1,2),

is well-posed. Then problem (1), (3) is strongly well-posed, and its solution belongs to
02’2’2(E).

Theorem 2. Let condition (11) hold, the function f(x,z) be continuously differentiable with respect
to the phase variables, and let ug be a solution of problem (1), (3). Then problem (1), (3) is strongly
(ug, )-well-posed for some r > 0 if and only if the linear homogeneous problem (1y), (30) is well-
posed, where

Pa(x) = fa(x, D[ug(x)]) (a < 2).

Consider the equations

u® = f(x, D?[u]) + q(x, D*[u)), (14)
u® = (py (x)u00) MOy ()01 O) LDy (g ()u OO OO o poac ), (15)
u® =3 pa(x, D) ul® + g(x, D [u]), (16)
W2 = C(Yp<12(X7u)u(Lo,o))(LO,O) + (p2(x,u)u(0’1’0))(0’1’0)

+ (pg(x, u)u(o’o’l))(o’o’l) + po(x,u) + q(x, Dt [u}) (17)

Theorem 3. Let the function f satisfy all of the conditions of Theorem 1, and let g € C(Q x R?)
be such that
lg(x,2z)|

i =0 wuniformly on E. (18)
lzll—+o0 |||

Then problem (14), (3) is solvable and its every solution belongs to C*%%(E).

Yf o = 1, then by (1s), (3») we understand the homogeneous problem (1o), (30).
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Corollary. Let condition (11) hold,
(=) 'nl(x2) > 0 for z2 € (0,w2) (k=1,2), (19)
and let py € CYOO(E), py € COLO(E), p3 € COOU(E), py € C(E x R) satisfy the inequalities

p1(x) <0, p2(x) <0, ps(x) <0 for x € E, (20)
(po(x,21) — po(x,22)) (21 — 22) > 0 for (x1,22,2) € E x R. (21)

Then problem (15), (3) is strongly well-posed and its solution belongs to C*%%(E).

Theorem 4. Let conditions (11) and (18) hold, and let there exist functions Pio(x) € C(E) (a < 2;
i =1,2) satisfying conditions (E2) and (E3) of Theorem 1 such that:

Pio(%) < pa(x,2) < Pou(x) for (x,2) € ExR® (a < 2). (22)
Then problem (16), (3) is solvable and its every solution belongs to C*%%(E).

Theorem 5. Let conditions (11), (18) and (19) hold, and let p, € C*(E x R) (k = 1,2,3) satisfy
the inequalities

pe(x,2) <0 for (x,2) € ExR (k=1,2,3),
po(x,2)z >0 for (x,2) € QA xR.

Then problem (17), (3¢) is solvable and its every solution belongs to C*>%%(E).

References

[1] T. Kiguradze, On the correctness of the Dirichlet problem in a characteristic rectangle for
fourth order linear hyperbolic equations. Georgian Math. J. 6 (1999), no. 5, 447-470.

[2] T. Kiguradze, On the Dirichlet problem in a characteristic rectangle for fourth order linear
singular hyperbolic equations. Georgian Math. J. 6 (1999), no. 6, 537-552.

[3] T. Kiguradze and R. Alhuzally, On a Dirichlet type boundary value problem in an orthogonally
convex cylinder for a class of linear partial differential equations. Abstracts of the International
Workshop on the Qualitative Theory of Differential Equations — QUALITDE-2021, Tbilisi,
Georgia, December 18-20, pp. 114-119;
http://www.rmi.ge/eng/QUALITDE-2019/Kiguradze_T_AlHuzally_workshop_2021.pdf.

[4] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem for fourth-order linear hy-
perbolic equations. Nonlinear Anal. 49 (2002), no. 2, Ser. A: Theory Methods, 197-219.



