
REPORTS OF QUALITDE, Volume 1, 2022 125

On a Dirichlet Type Boundary Value Problem
in an Orthogonally Convex Piecewise Smooth Cylinder for a Class

of Quasilinear Partial Differential Equations

Tariel Kiguradze, Reemah Alhuzally
Florida Institute of Technology, Melbourne, USA

E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

In the orthogonally convex cylinder E = {(x1, x2, x3) ∈ Ω : (x1, x2) ∈ D, x3 ∈ (0, ω3)}, where

D =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

consider the boundary value problem

u(2) = f
(
x, D̃2[u]

)
, (1)

u ν1

∣∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2

∣∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3

∣∣∣
∂E

= ν3(x)ψ3(x). (2)

Here x = (x1, x2, x3), ∂E is the boundary of E, and ν(x) = (ν1(x), ν2(x), ν3(x)) is the outward
unit normal vector at point x ∈ ∂E, 2 = (2, 2, 2), α = (α1, α2, α3) is a multi-index,

D2[u] = (u(α))α≤2, D̃2[u] = (u(α))α<2, u(α)(x) =
∂α1+α2+α3u(x)

∂xα1
1 ∂xα2

2 ∂xα3
3

,

f(x, z) is a continuous function on E×R23, z = (z000, z100, z010, z001, . . . , z221, z212, z122), ψi ∈ C(E)
(i = 1, 2, 3) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈ C2,2,2(E)
having continuous on E partial derivatives u(2,0,0) and u(2,2,0), and satisfying equation (1) and the
boundary conditions (2) everywhere in E and ∂E, respectively.

Throughout the paper the following notations will be used:
0 = (0, 0, 0), 1 = (1, 1, 1), αi = (0, . . . , αi, . . . , 0), αij = αi +αj .
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Ξ =

{
σ
∣∣ 0 < σ < 1

}
.

Υ2 =
{
α < 2 : αi = 2 for some i ∈ {1, 2, 3}

}
.

The variables zα (α ∈ Υ2) are called principal phase variables of the function f(x, z).
z =

(
zα

)
α<2

;fα(x, z) = ∂f(x,z)
∂zα

.
suppα = {i : αi > 0}.
xα = (χ(α1)x1, χ(α2)x2, χ(α3)x3), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0.
x̂α = x− xα.
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xα will be identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα. Furthermore, xα will be
identified with (xα, 0̂α), and x will be identified with (xα, x̂α), or with (xα,xα̂).

Ωσ = [0, ωi1 ]× · · · × [0, ωil ], where {i1, . . . , il} = suppσ.
Ωij = (0, ωi)× (0, ωj) (1 ≤ i < j ≤ 3).
Cm(E) is the Banach space of functions u : E → R, having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm(E) =
∑
α≤m

∥u(α)∥C(E).

C̃m(E) is the Banach space of functions u : E → R, having continuous partial derivatives u(α)

(α <m), endowed with the norm

∥u∥Cm(E) =
∑
α<m

∥u(α)∥C(E).

If u0 ∈ Cm(E) and r > 0, then Bm(u0; r) =
{
u ∈ Cm(E) : ∥u− u0∥Cm ≤ r

}
.

If u0 ∈ C̃m(E) and r > 0, then B̃m(u0; r) =
{
u ∈ C̃m(E) : ∥u− u0∥C̃m ≤ r

}
.

The boundary conditions (2) can be written int the following way

u(ηk(x2), x2, x3) = φ1k(x2, x3), u(2,0,0)(x1, γk(x1), x3) = φ2k(x1, x3),

u(2,2,0)(x1, x2, (k − 1)ω3) = φ3k(x1, x2) (k = 1, 2), (3)

where

φ1k(x2, x3) = ψ1(ηk(x2), x2, x3), φ2k(x1, x3) = ψ2(x1, γk(x1), x3),

φ3k(x1, x2) = ψ3(x1, x2, (k − 1)ω3) (k = 1, 2). (4)

Along with problem (1), (3) consider the linear homogeneous problem

u(2) =
∑
α<2

pα(x)u
(α), (10)

u(ηk(x2), x2, x3) = 0, u(2,0,0)(x1, γk(x1), x3) = 0, u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2). (30)

For each σ ∈ Ξ in the domain Ωσ consider the homogeneous boundary value problem depending
on the parameter xσ̂ ∈ Ωσ̂:

v(2,0,0) = p022(x1, x̂1)v + p122(x1, x̂1)v
(1,0,0), (1100)

v(η1(x2), x̂1) = 0, v(η2(x2), x̂1) = 0; (2100)
v(0,2,0) = p202(x2, x̂2)v + p212(x2, x̂2)v

(0,1,0), (1010)
v(γ1(x1), x̂2) = 0, v(γ2(x1), x̂2) = 0; (3010)

v(0,0,2) = p220(x3, x̂3)v + p221(x3, x̂3)v
(0,0,1), (1001)

v(0, x̂3) = 0, v(ω3, x̂3) = 0; (3001)

v(212) =
∑

α<212

pα+2̂12
(x12, x̂12)v

(α), (1110)

v(ηk(x2), x̂12) = 0, v(2,0,0)(γk(x1), x̂12) = 0 (k = 1, 2); (3110)
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v(213) =
∑

α<213

pα+2̂13
(x13, x̂13)v

(α), (1101)

v(ηk(x2), x̂13) = 0, v(2,0,0)((k − 1)ω3, x̂13) = 0 (k = 1, 2); (3101)

v(223) =
∑

α<223

pα+2̂23
(x23, x̂23)v

(α), (1011)

v(γk(x1), x̂23) = 0, v(2,0,0)((k − 1)ω3, x̂23) = 0 (k = 1, 2). (3011)

Definition 1. Problem (1σ), (3σ) (σ ∈ Ξ) is called σ-associated problem of problem (10), (30).

Along with problem (1), (2) consider the perturbed problem

u(2) = f
(
x, D̃2[u]

)
+ f̃

(
x, D̃2[u]

)
, (5)

u(ηk(x2), x2, x3) = φ1k(x2, x3) + φ̃1k(x2, x3),

u(2,0,0)(x1, γk(x1), x3) = φ2k(x1, x3) + φ̃2k(x1, x3),

u(2,2,0)(x1, x2, (k − 1)ω3) = φ3k(x1, x2) + φ̃3k(x1, x2) (k = 1, 2), (6)

where

φ̃1k(x2, x3) = ψ̃1(ηk(x2), x2, x3), φ̃2k(x1, x3) = ψ̃2(x1, γk(x1), x3),

φ̃3k(x1, x2) = ψ̃3(x1, x2, (k − 1)ω3) (k = 1, 2). (7)

A vector function (f̃ ; ψ̃1, ψ̃2, ψ̃3) is said to be an admissible perturbation if f̃ ∈ C(Ω × R23) is
locally Lipschitz continuous with respect to the principal phase variables, ψ̃1 ∈ C2,2,2(E), ψ̃2 ∈
C0,2,2(E) and ψ̃2 ∈ C0,0,2(E).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. We say that problem (1), (2) is
(u0, r)-well-posed, if:

(I) u0(x) is the unique solution of problem (1), (2) in the ball B̃2(u0; r);

(II) there exist positive constant δ0 and an increasing continuous ε : [0, δ0] → [0,+∞) such that
ε(0) = 0 and for any δ ∈ (0, δ0] and an arbitrary admissible perturbation (f̃ ; ψ̃1, ψ̃2, ψ̃3)
satisfying the conditions

|f̃α(x, z)| ≤ δ0 for (x, z) ∈ Ω× R23 (α ∈ Υm), (8)
|f̃(x, z)| ≤ δ for (x, z) ∈ Ω× R23, (9)

∥ψ̃1∥C2,2,2(E) + ∥ψ̃2∥C0,2,2(E) + ∥ψ̃3∥C0,0,2(E) ≤ δ, (10)

problem (4), (5) has at least one solution in the ball B̃2(u0; r), and each such solution belongs
to the ball B̃2(u0; ε(δ)).

Definition 3. Let u0 be a solution of problem (1), (2), and r > 0. We say that problem (1), (2) is
strongly (u0, r)-well-posed, if:

(I) u0(x) is the unique solution of problem (1), (2) in the ball B̃2(u0, r);

(II) there exist a positive constants δ0 and M such that for any δ ∈ (0, δ0] and an arbitrary
admissible perturbation (f̃ ; ψ̃1, ψ̃2, ψ̃3) satisfying conditions (7)–(9), problem (4), (5) has at
least one solution in the ball B̃2(u0; r), and each such solution belongs to the ball B̃2(u0;Mδ).
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Definition 4. Problem (1), (2) is called well-posed (strongly well-posed), if it is (u0, r)-well-posed
(strongly (u0, r)-well-posed) for every r > 0.

Definition 5. A solution u0 of problem (1), (2) is called strongly isolated, if problem (1), (2) is
strongly (u0, r)-well-posed for some r > 0.

Theorem 1. Let
ηk ∈ C2([0, ω2]) (k = 1, 2), (11)

let the function f(x, z) be continuously differentiable with respect to the phase variables, and let
there exist functions Piα(x) ∈ C(E) (α < 2; i = 1, 2) such that:

(E1)
P1α(x) ≤ fα(x, z) ≤ P2α(x) for (x,Z) ∈ E × R23 (α < 2); (12)

(E2) For every σ ∈ Ξ∪{1},1 x̂σ ∈ Eσ̂ and arbitrary measurable functions pα ∈ L∞(Eσ) (α < 2σ)
satisfying the inequalities

P1α+2̂σ
(y, x̂σ) ≤ pα(y) ≤ P2α+2̂σ

(y, x̂σ) for y ∈ Eσ (α < 2σ), (13)

the σ-associated problem (1σ), (3σ) has only the trivial solution in AC1(Eσ);

(E3) the problem

u(2) =
∑
α<2

P1α(x)u
(α),

u(ηk(x2), x2, x3) = 0, u(2,0,0)(x1, γk(x1), x3) = 0, u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2),

is well-posed. Then problem (1), (3) is strongly well-posed, and its solution belongs to
C2,2,2(E).

Theorem 2. Let condition (11) hold, the function f(x, z) be continuously differentiable with respect
to the phase variables, and let u0 be a solution of problem (1), (3). Then problem (1), (3) is strongly
(u0, r)-well-posed for some r > 0 if and only if the linear homogeneous problem (10), (30) is well-
posed, where

pα(x) = fα(x, D̃2[u0(x)]) (α < 2).

Consider the equations

u(2) = f(x, D̃2[u]) + q(x,D1[u]), (14)

u(2) =
(
p1(x)u

(1,0,0)
)(1,0,0)

+
(
p2(x)u

(0,1,0)
)(0,1,0)

+
(
p3(x)u

(0,0,1)
)(0,0,1)

+ p0(x, u), (15)

u(2) =
∑
α<2

ρα
(
x,D1[u]

)
u(α) + q

(
x,D1[u]

)
, (16)

u(2) =
(
p1(x, u)u

(1,0,0)
)(1,0,0)

+
(
p2(x, u)u

(0,1,0)
)(0,1,0)

+
(
p3(x, u)u

(0,0,1)
)(0,0,1)

+ p0(x, u) + q
(
x,D1[u]

)
. (17)

Theorem 3. Let the function f satisfy all of the conditions of Theorem 1, and let q ∈ C(Ω× R8)
be such that

lim
∥z∥→+∞

|q(x, z)|
∥z∥

= 0 uniformly on E. (18)

Then problem (14), (3) is solvable and its every solution belongs to C2,2,2(E).
1If σ = 1, then by (1σ), (3σ) we understand the homogeneous problem (10), (30).
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Corollary. Let condition (11) hold,

(−1)k−1η′′k(x2) ≥ 0 for x2 ∈ (0, ω2) (k = 1, 2), (19)

and let p1 ∈ C1,0,0(E), p2 ∈ C0,1,0(E), p3 ∈ C0,0,1(E), p0 ∈ C(E × R) satisfy the inequalities

p1(x) ≤ 0, p2(x) ≤ 0, p3(x) ≤ 0 for x ∈ E, (20)(
p0(x, z1)− p0(x, z2)

)
(z1 − z2) ≥ 0 for (x1, x2, z) ∈ E × R. (21)

Then problem (15), (3) is strongly well-posed and its solution belongs to C2,2,2(E).

Theorem 4. Let conditions (11) and (18) hold, and let there exist functions Piα(x) ∈ C(E) (α < 2;
i = 1, 2) satisfying conditions (E2) and (E2) of Theorem 1 such that:

P1α(x) ≤ ρα(x, z) ≤ P2α(x) for (x, z) ∈ E × R8 (α < 2). (22)

Then problem (16), (3) is solvable and its every solution belongs to C2,2,2(E).

Theorem 5. Let conditions (11), (18) and (19) hold, and let pk ∈ C1(E × R) (k = 1, 2, 3) satisfy
the inequalities

pk(x, z) ≤ 0 for (x, z) ∈ E × R (k = 1, 2, 3),

p0(x, z)z ≥ 0 for (x, z) ∈ Ω× R.

Then problem (17), (30) is solvable and its every solution belongs to C2,2,2(E).
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