# On a Dirichlet Type Boundary Value Problem in an Orthogonally Convex Piecewise Smooth Cylinder for a Class of Quasilinear Partial Differential Equations 

Tariel Kiguradze, Reemah Alhuzally<br>Florida Institute of Technology, Melbourne, USA<br>E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

In the orthogonally convex cylinder $E=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \Omega:\left(x_{1}, x_{2}\right) \in D, x_{3} \in\left(0, \omega_{3}\right)\right\}$, where

$$
\begin{aligned}
D=\left\{\left(x_{1}, x_{2}\right)\right. & \left.\in \Omega: \quad x_{1} \in\left(0, \omega_{1}\right), \quad x_{2} \in\left(\gamma_{1}\left(x_{1}\right), \gamma_{2}\left(x_{1}\right)\right)\right\} \\
& =\left\{\left(x_{1}, x_{2}\right) \in \Omega: \quad x_{2} \in\left(0, \omega_{2}\right), \quad x_{1} \in\left(\eta_{1}\left(x_{2}\right), \eta_{2}\left(x_{2}\right)\right)\right\}
\end{aligned}
$$

consider the boundary value problem

$$
\begin{align*}
u^{(\mathbf{2})} & =f\left(\mathbf{x}, \widetilde{\mathcal{D}}^{\mathbf{2}}[u]\right)  \tag{1}\\
\left.u \nu_{1}\right|_{\partial E}=\nu_{1}(\mathbf{x}) \psi_{1}(\mathbf{x}),\left.\quad u^{(2,0,0)} \nu_{2}\right|_{\partial E} & =\nu_{2}(\mathbf{x}) \psi_{2}(\mathbf{x}),\left.\quad u^{(2,2,0)} \nu_{3}\right|_{\partial E}=\nu_{3}(\mathbf{x}) \psi_{3}(\mathbf{x}) \tag{2}
\end{align*}
$$

Here $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \partial E$ is the boundary of $E$, and $\boldsymbol{\nu}(\mathbf{x})=\left(\nu_{1}(\mathbf{x}), \nu_{2}(\mathbf{x}), \nu_{3}(\mathbf{x})\right)$ is the outward unit normal vector at point $\mathbf{x} \in \partial E, \mathbf{2}=(2,2,2), \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a multi-index,

$$
\mathcal{D}^{\mathbf{2}}[u]=\left(u^{(\boldsymbol{\alpha})}\right)_{\boldsymbol{\alpha} \leq \mathbf{2}}, \quad \widetilde{\mathcal{D}}^{\mathbf{2}}[u]=\left(u^{(\boldsymbol{\alpha})}\right)_{\boldsymbol{\alpha}<\mathbf{2}}, \quad u^{(\boldsymbol{\alpha})}(\mathbf{x})=\frac{\partial^{\alpha_{1}+\alpha_{2}+\alpha_{3}} u(\mathbf{x})}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \partial x_{3}^{\alpha_{3}}},
$$

$f(\mathbf{x}, \mathbf{z})$ is a continuous function on $\overline{\mathbf{E}} \times \mathbb{R}^{23}, \mathbf{z}=\left(z_{000}, z_{100}, z_{010}, z_{001}, \ldots, z_{221}, z_{212}, z_{122}\right), \psi_{i} \in C(\bar{E})$ $(i=1,2,3)$ and $\bar{E}$ is the closure of $E$.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function $u \in C^{2,2,2}(E)$ having continuous on $\bar{E}$ partial derivatives $u^{(2,0,0)}$ and $u^{(2,2,0)}$, and satisfying equation (1) and the boundary conditions (2) everywhere in $E$ and $\partial E$, respectively.

Throughout the paper the following notations will be used:
$\mathbf{0}=(0,0,0), \mathbf{1}=(1,1,1), \boldsymbol{\alpha}_{i}=\left(0, \ldots, \alpha_{i}, \ldots, 0\right), \boldsymbol{\alpha}_{i j}=\boldsymbol{\alpha}_{i}+\boldsymbol{\alpha}_{j}$.
$\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)<\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \Longleftrightarrow \alpha_{i} \leq \beta_{i}(i=1,2,3)$ and $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$.
$\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leq \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \Longleftrightarrow \boldsymbol{\alpha}<\boldsymbol{\beta}$, or $\boldsymbol{\alpha}=\boldsymbol{\beta}$.
$\|\boldsymbol{\alpha}\|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\left|\alpha_{3}\right|$.
$\boldsymbol{\Xi}=\{\boldsymbol{\sigma} \mid \mathbf{0}<\boldsymbol{\sigma}<\mathbf{1}\}$.
$\mathbf{\Upsilon}_{\mathbf{2}}=\left\{\boldsymbol{\alpha}<\mathbf{2}: \quad \alpha_{i}=2\right.$ for some $\left.i \in\{1,2,3\}\right\}$.
The variables $z_{\boldsymbol{\alpha}}\left(\boldsymbol{\alpha} \in \mathbf{\Upsilon}_{\mathbf{2}}\right)$ are called principal phase variables of the function $f(\mathbf{x}, \mathbf{z})$.
$\mathbf{z}=\left(z_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha}<\mathbf{2}} ; f_{\boldsymbol{\alpha}}(\mathbf{x}, \mathbf{z})=\frac{\partial f(\mathbf{x}, \mathbf{z})}{\partial z_{\boldsymbol{\alpha}}}$.
$\operatorname{supp} \boldsymbol{\alpha}=\left\{i: \alpha_{i}>0\right\}$.
$\mathbf{x}_{\boldsymbol{\alpha}}=\left(\chi\left(\alpha_{1}\right) x_{1}, \chi\left(\alpha_{2}\right) x_{2}, \chi\left(\alpha_{3}\right) x_{3}\right)$, where $\chi(\alpha)=0$ if $\alpha=0$, and $\chi(\alpha)=1$ if $\alpha>0$.
$\widehat{\mathbf{x}}_{\boldsymbol{\alpha}}=\mathbf{x}-\mathbf{x}_{\boldsymbol{\alpha}}$.
$\mathbf{x}_{\boldsymbol{\alpha}}$ will be identified with $\left(x_{i_{1}}, \ldots, x_{i_{l}}\right)$, where $\left\{i_{1}, \ldots, i_{l}\right\}=\operatorname{supp} \boldsymbol{\alpha}$. Furthermore, $\mathbf{x}_{\boldsymbol{\alpha}}$ will be identified with ( $\mathbf{x}_{\boldsymbol{\alpha}}, \widehat{\mathbf{0}}_{\boldsymbol{\alpha}}$ ), and $\mathbf{x}$ will be identified with ( $\mathbf{x}_{\boldsymbol{\alpha}}, \widehat{\mathbf{x}}_{\boldsymbol{\alpha}}$ ), or with ( $\mathbf{x}_{\boldsymbol{\alpha}}, \mathbf{x}_{\widehat{\alpha}}$ ).
$\Omega_{\boldsymbol{\sigma}}=\left[0, \omega_{i_{1}}\right] \times \cdots \times\left[0, \omega_{i_{l}}\right]$, where $\left\{i_{1}, \ldots, i_{l}\right\}=\operatorname{supp} \boldsymbol{\sigma}$.
$\Omega_{i j}=\left(0, \omega_{i}\right) \times\left(0, \omega_{j}\right)(1 \leq i<j \leq 3)$.
$C^{\mathbf{m}}(\bar{E})$ is the Banach space of functions $u: \bar{E} \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(\boldsymbol{\alpha})}$ ( $\boldsymbol{\alpha} \leq \mathbf{m}$ ), endowed with the norm

$$
\|u\|_{C^{\mathbf{m}}(\bar{E})}=\sum_{\alpha \leq \mathbf{m}}\left\|u^{(\boldsymbol{\alpha})}\right\|_{C(\bar{E})} .
$$

$\widetilde{C}^{\mathbf{m}}(\bar{E})$ is the Banach space of functions $u: \bar{E} \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(\boldsymbol{\alpha})}$ ( $\alpha<\mathbf{m}$ ), endowed with the norm

$$
\|u\|_{C^{\mathbf{m}}(\bar{E})}=\sum_{\boldsymbol{\alpha}<\mathbf{m}}\left\|u^{(\boldsymbol{\alpha})}\right\|_{C(\bar{E})} .
$$

If $u_{0} \in C^{\mathbf{m}}(\bar{E})$ and $r>0$, then $\mathbf{B}^{\mathbf{m}}\left(u_{0} ; r\right)=\left\{u \in C^{\mathbf{m}}(\bar{E}):\left\|u-u_{0}\right\|_{C^{\mathbf{m}}} \leq r\right\}$.
If $u_{0} \in \widetilde{C}^{\mathbf{m}}(\bar{E})$ and $r>0$, then $\widetilde{\mathbf{B}}^{\mathbf{m}}\left(u_{0} ; r\right)=\left\{u \in \widetilde{C}^{\mathbf{m}}(\bar{E}):\left\|u-u_{0}\right\|_{\widetilde{C}^{\mathbf{m}}} \leq r\right\}$.
The boundary conditions (2) can be written int the following way

$$
\begin{align*}
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=\varphi_{1 k}\left(x_{2}, x_{3}\right), \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=\varphi_{2 k}\left(x_{1}, x_{3}\right) \\
u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=\varphi_{3 k}\left(x_{1}, x_{2}\right) \quad(k=1,2), \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
\varphi_{1 k}\left(x_{2}, x_{3}\right)=\psi_{1}\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right), \quad \varphi_{2 k}\left(x_{1}, x_{3}\right) & =\psi_{2}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right) \\
& \varphi_{3 k}\left(x_{1}, x_{2}\right)=\psi_{3}\left(x_{1}, x_{2},(k-1) \omega_{3}\right) \quad(k=1,2) \tag{4}
\end{align*}
$$

Along with problem (1), (3) consider the linear homogeneous problem

$$
\begin{gather*}
u^{(\mathbf{2})}=\sum_{\alpha<\mathbf{2}} p_{\boldsymbol{\alpha}}(\mathbf{x}) u^{(\boldsymbol{\alpha})},  \tag{0}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0, u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=0, u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) . \tag{0}
\end{gather*}
$$

For each $\boldsymbol{\sigma} \in \boldsymbol{\Xi}$ in the domain $\Omega_{\boldsymbol{\sigma}}$ consider the homogeneous boundary value problem depending on the parameter $\mathbf{x}_{\hat{\sigma}} \in \Omega_{\widehat{\boldsymbol{\sigma}}}$ :

$$
\begin{gather*}
v^{(2,0,0)}=p_{022}\left(\mathbf{x}_{1}, \widehat{\mathbf{x}}_{1}\right) v+p_{122}\left(\mathbf{x}_{1}, \widehat{\mathbf{x}}_{1}\right) v^{(1,0,0)}  \tag{100}\\
v\left(\eta_{1}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{1}\right)=0, \quad v\left(\eta_{2}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{1}\right)=0  \tag{100}\\
v^{(0,2,0)}=p_{202}\left(\mathbf{x}_{2}, \widehat{\mathbf{x}}_{2}\right) v+p_{212}\left(\mathbf{x}_{2}, \widehat{\mathbf{x}}_{2}\right) v^{(0,1,0)}  \tag{010}\\
v\left(\gamma_{1}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{2}\right)=0, \quad v\left(\gamma_{2}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{2}\right)=0  \tag{010}\\
v^{(0,0,2)}=p_{220}\left(\mathbf{x}_{3}, \widehat{\mathbf{x}}_{3}\right) v+p_{221}\left(\mathbf{x}_{3}, \widehat{\mathbf{x}}_{3}\right) v^{(0,0,1)}  \tag{001}\\
v\left(0, \widehat{\mathbf{x}}_{3}\right)=0, \quad v\left(\omega_{3}, \widehat{\mathbf{x}}_{3}\right)=0 ;  \tag{001}\\
v^{\left(\mathbf{2}_{12}\right)}=\sum_{\alpha<\mathbf{2}_{12}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{12}\left(\mathbf{x}_{12}, \widehat{\mathbf{x}}_{12}\right) v^{(\boldsymbol{\alpha})}}  \tag{110}\\
v\left(\eta_{k}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{12}\right)=0, \quad v^{(2,0,0)}\left(\gamma_{k}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{12}\right)=0 \quad(k=1,2) ; \tag{110}
\end{gather*}
$$

$$
\begin{gather*}
v^{\left(\mathbf{2}_{13}\right)}=\sum_{\boldsymbol{\alpha}<\mathbf{2}_{13}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{13}}\left(\mathbf{x}_{13}, \widehat{\mathbf{x}}_{13}\right) v^{(\boldsymbol{\alpha})},  \tag{101}\\
v\left(\eta_{k}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{13}\right)=0, \quad v^{(2,0,0)}\left((k-1) \omega_{3}, \widehat{\mathbf{x}}_{13}\right)=0 \quad(k=1,2) ;  \tag{101}\\
v^{\left(\mathbf{2}_{23}\right)}=\sum_{\boldsymbol{\alpha}<\mathbf{2}_{23}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{23}\left(\mathbf{x}_{23}, \widehat{\mathbf{x}}_{23}\right) v^{(\boldsymbol{\alpha})},}^{v\left(\gamma_{k}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{23}\right)=0, \quad v^{(2,0,0)}\left((k-1) \omega_{3}, \widehat{\mathbf{x}}_{23}\right)=0 \quad(k=1,2) .} . \tag{011}
\end{gather*}
$$

Definition 1. Problem $\left(1_{\boldsymbol{\sigma}}\right),\left(3_{\boldsymbol{\sigma}}\right)(\boldsymbol{\sigma} \in \boldsymbol{\Xi})$ is called $\boldsymbol{\sigma}$-associated problem of problem $\left(1_{0}\right),\left(3_{0}\right)$.
Along with problem (1), (2) consider the perturbed problem

$$
\begin{gather*}
u^{(\mathbf{2})}=f\left(\mathbf{x}, \widetilde{\mathcal{D}}^{2}[u]\right)+\widetilde{f}\left(\mathbf{x}, \widetilde{\mathcal{D}}^{\mathbf{2}}[u]\right)  \tag{5}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=\varphi_{1 k}\left(x_{2}, x_{3}\right)+\widetilde{\varphi}_{1 k}\left(x_{2}, x_{3}\right) \\
u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=\varphi_{2 k}\left(x_{1}, x_{3}\right)+\widetilde{\varphi}_{2 k}\left(x_{1}, x_{3}\right) \\
u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=\varphi_{3 k}\left(x_{1}, x_{2}\right)+\widetilde{\varphi}_{3 k}\left(x_{1}, x_{2}\right) \quad(k=1,2), \tag{6}
\end{gather*}
$$

where

$$
\begin{align*}
\widetilde{\varphi}_{1 k}\left(x_{2}, x_{3}\right)=\widetilde{\psi}_{1}\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right), \quad \widetilde{\varphi}_{2 k}\left(x_{1}, x_{3}\right) & =\widetilde{\psi}_{2}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right) \\
& \widetilde{\varphi}_{3 k}\left(x_{1}, x_{2}\right)=\widetilde{\psi}_{3}\left(x_{1}, x_{2},(k-1) \omega_{3}\right) \quad(k=1,2) . \tag{7}
\end{align*}
$$

A vector function $\left(\widetilde{f} ; \widetilde{\psi}_{1}, \widetilde{\psi}_{2}, \widetilde{\psi}_{3}\right)$ is said to be an admissible perturbation if $\widetilde{f} \in C\left(\Omega \times \mathbb{R}_{\sim}^{23}\right)$ is locally Lipschitz continuous with respect to the principal phase variables, $\widetilde{\psi}_{1} \in C^{2,2,2}(\bar{E}), \widetilde{\psi}_{2} \in$ $C^{0,2,2}(\bar{E})$ and $\widetilde{\psi}_{2} \in C^{0,0,2}(\bar{E})$.

Definition 2. Let $u_{0}$ be a solution of problem (1), (2), and $r>0$. We say that problem (1), (2) is ( $\left.u_{0}, r\right)$-well-posed, if:
(I) $u_{0}(\mathbf{x})$ is the unique solution of problem (1), (2) in the ball $\widetilde{\mathbf{B}}^{2}\left(u_{0} ; r\right)$;
(II) there exist positive constant $\delta_{0}$ and an increasing continuous $\varepsilon:\left[0, \delta_{0}\right] \rightarrow[0,+\infty)$ such that $\varepsilon(0)=0$ and for any $\delta \in\left(0, \delta_{0}\right]$ and an arbitrary admissible perturbation $\left(\widetilde{f} ; \widetilde{\psi}_{1}, \widetilde{\psi}_{2}, \widetilde{\psi}_{3}\right)$ satisfying the conditions

$$
\begin{gather*}
\left|\widetilde{f}_{\boldsymbol{\alpha}}(\mathbf{x}, \mathbf{z})\right| \leq \delta_{0} \text { for }(\mathbf{x}, \mathbf{z}) \in \Omega \times \mathbb{R}^{23} \quad\left(\boldsymbol{\alpha} \in \mathbf{\Upsilon}_{\mathbf{m}}\right)  \tag{8}\\
|\widetilde{f}(\mathbf{x}, \mathbf{z})| \leq \delta \text { for }(\mathbf{x}, \mathbf{z}) \in \Omega \times \mathbb{R}^{23}  \tag{9}\\
\left\|\widetilde{\psi}_{1}\right\|_{C^{2,2,2}(\bar{E})}+\left\|\widetilde{\psi}_{2}\right\|_{C^{0,2,2}(\bar{E})}+\left\|\widetilde{\psi}_{3}\right\|_{C^{0,0,2}(\bar{E})} \leq \delta \tag{10}
\end{gather*}
$$

problem (4), (5) has at least one solution in the ball $\widetilde{\mathbf{B}}^{\mathbf{2}}\left(u_{0} ; r\right)$, and each such solution belongs to the ball $\mathbf{B}^{2}\left(u_{0} ; \varepsilon(\delta)\right)$.

Definition 3. Let $u_{0}$ be a solution of problem (1), (2), and $r>0$. We say that problem (1), (2) is strongly $\left(u_{0}, r\right)$-well-posed, if:
(I) $u_{0}(\mathbf{x})$ is the unique solution of problem (1), (2) in the ball $\widetilde{\mathbf{B}}^{2}\left(u_{0}, r\right)$;
(II) there exist a positive constants $\delta_{0}$ and $M$ such that for any $\delta \in\left(0, \delta_{0}\right]$ and an arbitrary admissible perturbation $\left(\widetilde{f} ; \widetilde{\psi}_{1}, \widetilde{\psi}_{2}, \widetilde{\psi}_{3}\right)$ satisfying conditions (7)-(9), problem (4), (5) has at least one solution in the ball $\widetilde{\mathbf{B}}^{2}\left(u_{0} ; r\right)$, and each such solution belongs to the ball $\widetilde{\mathbf{B}}^{2}\left(u_{0} ; M \delta\right)$.

Definition 4. Problem (1), (2) is called well-posed (strongly well-posed), if it is ( $\left.u_{0}, r\right)$-well-posed (strongly ( $u_{0}, r$ )-well-posed) for every $r>0$.

Definition 5. A solution $u_{0}$ of problem (1), (2) is called strongly isolated, if problem (1), (2) is strongly $\left(u_{0}, r\right)$-well-posed for some $r>0$.

Theorem 1. Let

$$
\begin{equation*}
\eta_{k} \in C^{2}\left(\left[0, \omega_{2}\right]\right) \quad(k=1,2) \tag{11}
\end{equation*}
$$

let the function $f(\mathbf{x}, \mathbf{z})$ be continuously differentiable with respect to the phase variables, and let there exist functions $P_{i \boldsymbol{\alpha}}(\mathbf{x}) \in C(\bar{E})(\boldsymbol{\alpha}<\mathbf{2} ; i=1,2)$ such that:
$\left(E_{1}\right)$

$$
\begin{equation*}
P_{1 \boldsymbol{\alpha}}(\mathbf{x}) \leq f_{\boldsymbol{\alpha}}(\mathbf{x}, \mathbf{z}) \leq P_{2 \boldsymbol{\alpha}}(\mathbf{x}) \text { for }(\mathbf{x}, \mathbf{Z}) \in \bar{E} \times \mathbb{R}^{23} \quad(\boldsymbol{\alpha}<\mathbf{2}) \tag{12}
\end{equation*}
$$

( $E_{2}$ ) For every $\boldsymbol{\sigma} \in \boldsymbol{\Xi} \cup\{\mathbf{1}\},{ }^{1} \widehat{\mathbf{x}}_{\boldsymbol{\sigma}} \in \bar{E}_{\widehat{\boldsymbol{\sigma}}}$ and arbitrary measurable functions $p_{\boldsymbol{\alpha}} \in L^{\infty}\left(E_{\boldsymbol{\sigma}}\right)\left(\boldsymbol{\alpha}<\mathbf{2}_{\boldsymbol{\sigma}}\right)$ satisfying the inequalities

$$
\begin{equation*}
P_{1 \boldsymbol{\alpha}+\widehat{\boldsymbol{\imath}}_{\boldsymbol{\sigma}}}\left(\mathbf{y}, \widehat{\mathbf{x}}_{\boldsymbol{\sigma}}\right) \leq p_{\boldsymbol{\alpha}}(\mathbf{y}) \leq P_{2 \boldsymbol{\alpha}+\widehat{\mathbf{2}}_{\boldsymbol{\sigma}}}\left(\mathbf{y}, \widehat{\mathbf{x}}_{\boldsymbol{\sigma}}\right) \text { for } \mathbf{y} \in E_{\boldsymbol{\sigma}}\left(\boldsymbol{\alpha}<\mathbf{2}_{\boldsymbol{\sigma}}\right), \tag{13}
\end{equation*}
$$

the $\boldsymbol{\sigma}$-associated problem $\left(1_{\boldsymbol{\sigma}}\right),\left(3_{\boldsymbol{\sigma}}\right)$ has only the trivial solution in $A C^{\mathbf{1}}\left(\bar{E}_{\boldsymbol{\sigma}}\right)$;
$\left(E_{3}\right)$ the problem

$$
\begin{gathered}
u^{(\mathbf{2})}=\sum_{\boldsymbol{\alpha}<\mathbf{2}} P_{1 \boldsymbol{\alpha}}(\mathbf{x}) u^{(\boldsymbol{\alpha})}, \\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0, \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=0, u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2),
\end{gathered}
$$

is well-posed. Then problem (1),(3) is strongly well-posed, and its solution belongs to $C^{2,2,2}(\bar{E})$.

Theorem 2. Let condition (11) hold, the function $f(\mathbf{x}, \mathbf{z})$ be continuously differentiable with respect to the phase variables, and let $u_{0}$ be a solution of problem (1), (3). Then problem (1), (3) is strongly ( $u_{0}, r$ )-well-posed for some $r>0$ if and only if the linear homogeneous problem $\left(1_{0}\right),\left(3_{0}\right)$ is wellposed, where

$$
p_{\boldsymbol{\alpha}}(\mathbf{x})=f_{\boldsymbol{\alpha}}\left(\mathbf{x}, \widetilde{\mathcal{D}}^{2}\left[u_{0}(\mathbf{x})\right]\right)(\boldsymbol{\alpha}<\mathbf{2})
$$

Consider the equations

$$
\begin{align*}
u^{(\mathbf{2})} & =f\left(\mathbf{x}, \widetilde{\mathcal{D}}^{\mathbf{2}}[u]\right)+q\left(\mathbf{x}, \mathcal{D}^{\mathbf{1}}[u]\right),  \tag{14}\\
u^{(\mathbf{2})} & =\left(p_{1}(\mathbf{x}) u^{(1,0,0)}\right)^{(1,0,0)}+\left(p_{2}(\mathbf{x}) u^{(0,1,0)}\right)^{(0,1,0)}+\left(p_{3}(\mathbf{x}) u^{(0,0,1)}\right)^{(0,0,1)}+p_{0}(\mathbf{x}, u),  \tag{15}\\
u^{(\mathbf{2})} & =\sum_{\boldsymbol{\alpha}<\mathbf{2}} \rho_{\boldsymbol{\alpha}}\left(\mathbf{x}, \mathcal{D}^{\mathbf{1}}[u]\right) u^{(\boldsymbol{\alpha})}+q\left(\mathbf{x}, \mathcal{D}^{\mathbf{1}}[u]\right),  \tag{16}\\
u^{(\mathbf{2})} & =\left(p_{1}(\mathbf{x}, u) u^{(1,0,0)}\right)^{(1,0,0)}+\left(p_{2}(\mathbf{x}, u) u^{(0,1,0)}\right)^{(0,1,0)} \\
& \quad+\left(p_{3}(\mathbf{x}, u) u^{(0,0,1)}\right)^{(0,0,1)}+p_{0}(\mathbf{x}, u)+q\left(\mathbf{x}, \mathcal{D}^{\mathbf{1}}[u]\right) . \tag{17}
\end{align*}
$$

Theorem 3. Let the function $f$ satisfy all of the conditions of Theorem 1, and let $q \in C\left(\Omega \times \mathbb{R}^{8}\right)$ be such that

$$
\begin{equation*}
\lim _{\|\mathbf{z}\| \rightarrow+\infty} \frac{|q(\mathbf{x}, \mathbf{z})|}{\|\mathbf{z}\|}=0 \text { uniformly on } \bar{E} . \tag{18}
\end{equation*}
$$

Then problem (14), (3) is solvable and its every solution belongs to $C^{2,2,2}(\bar{E})$.

[^0]Corollary. Let condition (11) hold,

$$
\begin{equation*}
(-1)^{k-1} \eta_{k}^{\prime \prime}\left(x_{2}\right) \geq 0 \text { for } x_{2} \in\left(0, \omega_{2}\right) \quad(k=1,2), \tag{19}
\end{equation*}
$$

and let $p_{1} \in C^{1,0,0}(\bar{E}), p_{2} \in C^{0,1,0}(\bar{E}), p_{3} \in C^{0,0,1}(\bar{E}), p_{0} \in C(\bar{E} \times \mathbb{R})$ satisfy the inequalities

$$
\begin{gather*}
p_{1}(\mathbf{x}) \leq 0, \quad p_{2}(\mathbf{x}) \leq 0, \quad p_{3}(\mathbf{x}) \leq 0 \text { for } \mathbf{x} \in \bar{E}  \tag{20}\\
\left(p_{0}\left(\mathbf{x}, z_{1}\right)-p_{0}\left(\mathbf{x}, z_{2}\right)\right)\left(z_{1}-z_{2}\right) \geq 0 \text { for }\left(\mathbf{x}_{1}, x_{2}, z\right) \in \bar{E} \times \mathbb{R} \tag{21}
\end{gather*}
$$

Then problem (15), (3) is strongly well-posed and its solution belongs to $C^{2,2,2}(\bar{E})$.
Theorem 4. Let conditions (11) and (18) hold, and let there exist functions $P_{i \boldsymbol{\alpha}}(\mathbf{x}) \in C(\bar{E})(\boldsymbol{\alpha}<\mathbf{2}$; $i=1,2)$ satisfying conditions $\left(E_{2}\right)$ and $\left(E_{2}\right)$ of Theorem 1 such that:

$$
\begin{equation*}
P_{1 \alpha}(\mathbf{x}) \leq \rho_{\alpha}(\mathbf{x}, \mathbf{z}) \leq P_{2 \alpha}(\mathbf{x}) \text { for }(\mathbf{x}, \mathbf{z}) \in \bar{E} \times \mathbb{R}^{8} \quad(\boldsymbol{\alpha}<\mathbf{2}) . \tag{22}
\end{equation*}
$$

Then problem (16), (3) is solvable and its every solution belongs to $C^{2,2,2}(\bar{E})$.
Theorem 5. Let conditions (11), (18) and (19) hold, and let $p_{k} \in C^{1}(\bar{E} \times \mathbb{R})(k=1,2,3)$ satisfy the inequalities

$$
\begin{gathered}
p_{k}(\mathbf{x}, z) \leq 0 \text { for }(\mathbf{x}, z) \in \bar{E} \times \mathbb{R}(k=1,2,3), \\
p_{0}(\mathbf{x}, z) z \geq 0 \text { for }(\mathbf{x}, z) \in \bar{\Omega} \times \mathbb{R} .
\end{gathered}
$$

Then problem (17), ( $3_{0}$ ) is solvable and its every solution belongs to $C^{2,2,2}(\bar{E})$.

## References

[1] T. Kiguradze, On the correctness of the Dirichlet problem in a characteristic rectangle for fourth order linear hyperbolic equations. Georgian Math. J. 6 (1999), no. 5, 447-470.
[2] T. Kiguradze, On the Dirichlet problem in a characteristic rectangle for fourth order linear singular hyperbolic equations. Georgian Math. J. 6 (1999), no. 6, 537-552.
[3] T. Kiguradze and R. Alhuzally, On a Dirichlet type boundary value problem in an orthogonally convex cylinder for a class of linear partial differential equations. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2021, Tbilisi, Georgia, December 18-20, pp. 114-119;
http://www.rmi.ge/eng/QUALITDE-2019/Kiguradze_T_AlHuzally_workshop_2021.pdf.
[4] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem for fourth-order linear hyperbolic equations. Nonlinear Anal. 49 (2002), no. 2, Ser. A: Theory Methods, 197-219.


[^0]:    ${ }^{1}$ If $\boldsymbol{\sigma}=\mathbf{1}$, then by $\left(1_{\boldsymbol{\sigma}}\right),\left(3_{\boldsymbol{\sigma}}\right)$ we understand the homogeneous problem $\left(1_{0}\right),\left(3_{0}\right)$.

