The Boundary Value Problem for One Class of Nonlinear Systems of Partial Differential Equations

Sergo Kharibegashvili
Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
E-mail: kharibegashvili@yahoo.com

In Euclidean space \mathbb{R}^{n+1} of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t consider a nonlinear system of partial differential equations of the form

$$
\begin{equation*}
L_{f} u:=\frac{\partial^{4 k} u}{\partial t^{4 k}}-\sum_{i, j=1}^{n} A_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+f(u)=F, \tag{1}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), F=\left(F_{1}, \ldots, F_{N}\right)$ are the given and $u=\left(u_{1}, \ldots, u_{N}\right)$ is an unknown vector functions, $N \geq 2 ; A_{i j}$ are the given constant quadratic matrices of order N, besides $A_{i j}=A_{j i}$, $i, j=1, \ldots, n, n \geq 2, k$ is a natural number.

For system (1) consider the following boundary value problem: in cylindrical domain $D_{T}:=$ $\Omega \times(0, T)$, where Ω is an open Lipschitz domain in \mathbb{R}^{n}, find a solution $u=u(x, t)$ to system (1.1) according to the following boundary conditions

$$
\begin{align*}
\left.u\right|_{\Gamma} & =0, \tag{2}\\
\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}} & =0, \quad i=0, \ldots, 2 k-1, \tag{3}
\end{align*}
$$

where $\Gamma:=\partial \Omega \times(0, T)$ is a lateral face of the cylinder $D_{T}, \Omega_{0}: x \in \Omega, t=0$ and $\Omega_{T}: x \in \Omega, t=T$ are upper and lower bases of this cylinder, respectively.

Denote by $C^{2,4 k}\left(\bar{D}_{T}\right)$ the space of continuous in \bar{D}_{T} vector functions $u=\left(u_{1}, \ldots, u_{N}\right)$, having continuous in \bar{D}_{T} partial derivatives $\frac{\partial u}{\partial x_{i}}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, \frac{\partial^{l} u}{\partial t^{t}}, i, j=1, \ldots, n ; l=1, \ldots, 4 k$. Let

$$
C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{2,4 k}\left(\bar{D}_{T}\right):\left.\quad u\right|_{\Gamma}=0,\left.\quad \frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}}=0, \quad i=0, \ldots, 2 k-1\right\} .
$$

Consider the Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$, which is obtained by completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{1,2 k}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[|u|^{2}+\sum_{i=1}^{2 k}\left|\frac{\partial^{i} u}{\partial t^{i}}\right|^{2}+\sum_{i=1}^{n}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right] d x d t \tag{4}
\end{equation*}
$$

of the classical space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$, where $|\cdot|$ is the norm in the space \mathbb{R}^{N}.
Remark 1. From (4) it follows that if $u \in W_{0}^{1,2 k}\left(D_{T}\right)$, then $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ and $\frac{\partial^{i} u}{\partial t^{i}} \in L_{2}\left(D_{T}\right)$, $i=1, \ldots, 2 k$. Here $W_{2}^{1}\left(D_{T}\right)$ is a well-known Sobolev space consisting of elements from $L_{2}\left(D_{T}\right)$ and having generalized partial derivatives of the first order from $L_{2}\left(D_{T}\right)$, and

$$
\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\},
$$

where the equality $\left.u\right|_{\partial D_{T}}=0$ must be understood in the sense of the trace theory.

Below, we impose on nonlinear vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ from (1) the following requirements

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{N}\right), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad u \in \mathbb{R}^{N} \tag{5}
\end{equation*}
$$

where $M_{i}=$ const $\geq 0, i=1,2$, and

$$
\begin{equation*}
0 \leq \alpha=\text { const }<\frac{n+1}{n-1} \tag{6}
\end{equation*}
$$

Remark 2. The embedding operator $I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ represents a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}, n>1$. At the same time the Nemitsky operator $K: L_{q}\left(D_{T}\right) \rightarrow$ $L_{2}\left(D_{T}\right)$, acting by the formula $K u=f(u)$, where $u=\left(u_{1}, \ldots, u_{N}\right) \in L_{q}\left(D_{T}\right)$ and vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfies condition (5), is continuous and bounded if $q \geq 2 \alpha$. Therefore, if $\alpha<\frac{n+1}{n-1}$, then there exists such number q that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Therefore, in this case the operator

$$
K_{0}=K I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)
$$

is continuous and compact. Then from $u \in W_{2}^{1}\left(D_{T}\right)$ it follows that $f(u) \in L_{2}\left(D_{T}\right)$ and, if $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, then $f\left(u^{m}\right) \rightarrow f(u)$ in $L_{2}\left(D_{T}\right)$.

Remark 3. Let $u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ be a classical solution of problem (1)-(3). Multiplying scalarly both parts of system (1) by an arbitrary vector function $\varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ and integrating by parts the obtained equality on the domain D_{T}, we have

$$
\begin{array}{r}
\int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} A_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] d x d t+\int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \tag{7}\\
\forall \varphi \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)
\end{array}
$$

We consider equality (7) as a basis for defining a weak generalized solution of problem (1)-(3).
Definition 1. Let the vector function f satisfy conditions (5), (6) and $F \in L_{2}\left(D_{T}\right)$. A vector function $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ is called a weak generalized solution of problem (1)-(3) if the integral equality (7) is valid for any vector function $\varphi \in W_{0}^{1,2 k}\left(D_{T}\right)$, i.e.,

$$
\begin{array}{r}
\int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \cdot \frac{\partial^{2 k} \varphi}{\partial t^{2 k}}+\sum_{i, j=1}^{n} A_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}\right] d x d t+\int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \tag{8}\\
\forall \varphi \in W_{0}^{1,2 k}\left(D_{T}\right) .
\end{array}
$$

Note that due to Remark 2, the integral $\int_{D_{T}} f(u) \varphi d x d t$ in equality (8) is defined correctly, since from $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ it follows $f(u) \in L_{2}\left(D_{T}\right)$ and, therefore, $f(u) \varphi \in L_{1}\left(D_{T}\right)$.

It is easy to verify that if the solution u of problem $(1)-(3)$ belongs to the class $C_{0}^{2,4 k}\left(D_{T}, \partial D_{T}\right)$ in the sense of Definition 1, then it will also be a classical solution of this problem.

Below we assume that the operator

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \tag{9}
\end{equation*}
$$

is strictly elliptic, i.e., the matrix $Q(\xi)=\sum_{i, j=1}^{n} A_{i j} \xi_{i} \xi_{j}$ is positively defined for each $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in$ $\mathbb{R}^{n} \backslash\{(0, \ldots, 0)\}:$

$$
\begin{equation*}
(Q(\xi) \eta, \eta)_{\mathbb{R}^{N}}>0 \quad \forall \eta \in \mathbb{R}^{N} \backslash\{(0, \ldots, 0)\} \tag{10}
\end{equation*}
$$

where $(\cdot, \cdot)_{\mathbb{R}^{N}}$ is a standard scalar product in the euclidian space \mathbb{R}^{N}. Note that in the scalar case the operator from (9) represents an elliptic operator and in this case the linear part of the operator L_{f} from (1), i.e. L_{0} is semielliptic.

At fulfilment of condition (10) in the space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$, together with the scalar product

$$
\begin{equation*}
(u, v)_{o}=\int_{D_{T}}\left[u v+\sum_{i=1}^{2 k} \frac{\partial^{i} u}{\partial t^{i}} \frac{\partial^{i} v}{\partial t^{i}}+\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}\right] d x d t \tag{11}
\end{equation*}
$$

with norm $\|\cdot\|_{0}=\|\cdot\|_{W_{0}^{1,2 k}\left(D_{T}\right)}$, defined by the right-hand side of equality (4), let us introduce the following scalar product

$$
\begin{equation*}
(u, v)_{1}=\int_{D_{T}}\left[\frac{\partial^{2 k} u}{\partial t^{2 k}} \frac{\partial^{2 k} v}{\partial t^{2 k}}+\sum_{i, j=1}^{n} A_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right] d x d t \tag{12}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|u\|_{1}^{2}=\int_{D_{T}}\left[\left|\frac{\partial^{2 k} u}{\partial t^{2 k}}\right|^{2}+\sum_{i, j=1}^{n} A_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right] d x d t \tag{13}
\end{equation*}
$$

where $u, v \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$.
It is proved the validity of the following inequalities

$$
c_{1}\|u\|_{0} \leq\|u\|_{1} \leq c_{2}\|u\|_{0} \quad \forall u \in C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)
$$

with positive constants c_{1} and c_{2}, not dependent on u. Hence it follows that if we complete the space $C_{0}^{2,4 k}\left(\bar{D}_{T}, \partial D_{T}\right)$ under norm (13), then in view of (11) we obtain the same Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$ with equivalent scalar products (11) and (12). Further, it can be proved the unique solvability of the linear problem correspondent to (1)-(3), i.e., when $f=0$: for any $F \in L_{2}\left(D_{T}\right)$ there exists the unique solution $u=L_{0}^{-1} F \in W_{0}^{1,2 k}\left(D_{T}\right)$ of this problem, where the linear operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow W_{0}^{1,2 k}\left(D_{T}\right)
$$

is continuous. Thus, the nonlinear problem (1)-(3) is reduced to the following functional equation

$$
\begin{equation*}
u=L_{0}^{-1}[-f(u)+F] \tag{14}
\end{equation*}
$$

in the Hilbert space $W_{0}^{1,2 k}\left(D_{T}\right)$.
At fulfillment of the condition

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \inf \frac{u f(u)}{|u|^{2}} \geq 0 \tag{15}
\end{equation*}
$$

it can be proved the a priori estimate of the solution $u \in W_{0}^{1,2 k}\left(D_{T}\right)$ of equation (14), whence due to Remark 2 we have the solvability of this equation, and, therefore, of problem (1)-(3) in the space $W_{0}^{1,2 k}\left(D_{T}\right)$. Therefore the following theorem is valid.

Theorem 1. Let conditions (5), (6), (10) and (15) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$ problem (1)-(3) has at least one generalized solution u in the space $W_{0}^{1,2 k}\left(D_{T}\right)$.

Remark 4. If conditions (5), (6) and (10) are fulfilled and the mapping $f(u): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ satisfies the condition

$$
\begin{equation*}
(f(u)-f(v))(u-v) \geq 0 \quad \forall u, v \in \mathbb{R}^{N}, \tag{16}
\end{equation*}
$$

then the solution of this problem is unique.

Thus, the following theorem is valid.
Theorem 2. Let conditions (5), (6), (10) and (15), (16) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$ problem (1)-(3) has a unique weak generalized solution u in the space $W_{0}^{1,2 k}\left(D_{T}\right)$.

As the examples show, if the conditions imposed on the nonlinear vector function f are violated, then problem (1)-(3) may not have a solution. Indeed, consider the particular case of system (1), when it is split in the main part, i.e., $A_{i j}=a_{i j} I_{N}$, where I_{N} is a unit matrix of order N, and $a_{i j}$ are numbers such that the operator $\sum_{i, j=1}^{n} a_{i j} \partial^{2} / \partial x_{i} \partial x_{j}$ is a scalar elliptic operator.

Consider the following requirement imposed on the vector function f : there exist numbers $l_{1}, \ldots, l_{N}, \sum_{i=1}^{N}\left|l_{i}\right| \neq 0$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} l_{i} f_{i}(u) \leq-d_{0}\left|\sum_{i=1}^{N} l_{i} u_{i}\right|^{\beta} \quad \forall u \in \mathbb{R}^{N}, \quad 1<\beta=\text { const }<\frac{n+1}{n-1}, \tag{17}
\end{equation*}
$$

where $d_{0}=$ const >0. Let the domain Ω be given by the equation $\partial \Omega: \omega(x)=0$, where $\left.\nabla_{x} \omega\right|_{\partial \Omega} \neq 0,\left.\omega\right|_{\Omega}>0, \nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$ and $\omega \in C^{2}\left(\mathbb{R}^{n}\right)$.

Theorem 3. Let the vector function f satisfy conditions (5), (6), (10) and (17). Let $F^{0}=$ $\left(F_{1}^{0}, \ldots, F_{N}^{0}\right) \in L_{2}\left(D_{T}\right), G=\sum_{i=1}^{N} l_{i} F_{i}^{0} \geq 0$ and $\|G\|_{L_{2}\left(D_{T}\right)} \neq 0$. Then there exists a number $\mu_{0}=\mu_{0}(G, \beta)>0$ such that for $\mu>\mu_{0}$ problem (1)-(3) cannot have a weak generalized solution in the space $W_{0}^{1,2 k}\left(D_{T}\right)$ for $F=\mu F_{0}$.

Remark 5. Consider one class of vector functions f :

$$
f_{i}\left(u_{1}, \ldots, u_{N}\right)=\sum_{j=1}^{N} a_{i j}\left|u_{j}\right|^{\beta_{i j}}+b_{i}, \quad i=1, \ldots, N
$$

where constants $a_{i j}, \beta_{i j}$ and b_{i} satisfy the inequalities

$$
a_{i j}>0, \quad 1<\beta_{i j}<\frac{n+1}{n-1}, \quad \sum_{k=1}^{N} b_{k}>0, \quad, i, j=1, \ldots, N .
$$

It is easy to verify that this class satisfies condition (17).

Acknowledgements

The work was supported by the Shota Rustavely National Science Foundation, Grant \# FR-217307.

