The Boundary Value Problem for One Class of Nonlinear Systems of Partial Differential Equations

Sergo Kharibegashvili

Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia

E-mail: kharibegashvili@yahoo.com

In Euclidean space \mathbb{R}^{n+1} of variables $x = (x_1, \ldots, x_n)$ and t consider a nonlinear system of partial differential equations of the form

$$L_f u := \frac{\partial^{4k} u}{\partial t^{4k}} - \sum_{i,j=1}^n A_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + f(u) = F,$$
(1)

where $f = (f_1, \ldots, f_N)$, $F = (F_1, \ldots, F_N)$ are the given and $u = (u_1, \ldots, u_N)$ is an unknown vector functions, $N \ge 2$; A_{ij} are the given constant quadratic matrices of order N, besides $A_{ij} = A_{ji}$, $i, j = 1, \ldots, n, n \ge 2$, k is a natural number.

For system (1) consider the following boundary value problem: in cylindrical domain $D_T := \Omega \times (0,T)$, where Ω is an open Lipschitz domain in \mathbb{R}^n , find a solution u = u(x,t) to system (1.1) according to the following boundary conditions

$$u\big|_{\Gamma} = 0,\tag{2}$$

$$\frac{\partial^{i} u}{\partial t^{i}}\Big|_{\Omega_{0}\cup\Omega_{T}} = 0, \quad i = 0,\dots, 2k-1,$$
(3)

where $\Gamma := \partial \Omega \times (0, T)$ is a lateral face of the cylinder $D_T, \Omega_0 : x \in \Omega, t = 0$ and $\Omega_T : x \in \Omega, t = T$ are upper and lower bases of this cylinder, respectively.

Denote by $C^{2,4k}(\overline{D}_T)$ the space of continuous in \overline{D}_T vector functions $u = (u_1, \ldots, u_N)$, having continuous in \overline{D}_T partial derivatives $\frac{\partial u}{\partial x_i}, \frac{\partial^2 u}{\partial x_i \partial x_j}, \frac{\partial^l u}{\partial t^l}, i, j = 1, \ldots, n; l = 1, \ldots, 4k$. Let

$$C_0^{2,4k}(\overline{D}_T,\partial D_T) := \left\{ u \in C^{2,4k}(\overline{D}_T) : u \big|_{\Gamma} = 0, \frac{\partial^i u}{\partial t^i} \big|_{\Omega_0 \cup \Omega_T} = 0, \quad i = 0, \dots, 2k-1 \right\}.$$

Consider the Hilbert space $W_0^{1,2k}(D_T)$, which is obtained by completion with respect to the norm

$$\|u\|_{W_0^{1,2k}(D_T)}^2 = \int_{D_T} \left[|u|^2 + \sum_{i=1}^{2k} \left| \frac{\partial^i u}{\partial t^i} \right|^2 + \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right|^2 \right] dx \, dt \tag{4}$$

of the classical space $C_0^{2,4k}(\overline{D}_T, \partial D_T)$, where $|\cdot|$ is the norm in the space \mathbb{R}^N .

Remark 1. From (4) it follows that if $u \in W_0^{1,2k}(D_T)$, then $u \in \overset{\circ}{W}_2^1(D_T)$ and $\frac{\partial^i u}{\partial t^i} \in L_2(D_T)$, $i = 1, \ldots, 2k$. Here $W_2^1(D_T)$ is a well-known Sobolev space consisting of elements from $L_2(D_T)$ and having generalized partial derivatives of the first order from $L_2(D_T)$, and

$$\check{W}_{2}^{1}(D_{T}) = \left\{ u \in W_{2}^{1}(D_{T}) : u |_{\partial D_{T}} = 0 \right\},$$

where the equality $u|_{\partial D_T} = 0$ must be understood in the sense of the trace theory.

Below, we impose on nonlinear vector function $f = (f_1, \ldots, f_N)$ from (1) the following requirements

$$f \in C(\mathbb{R}^N), \quad |f(u)| \le M_1 + M_2 |u|^{\alpha}, \quad u \in \mathbb{R}^N,$$
(5)

where $M_i = const \ge 0, i = 1, 2$, and

$$0 \le \alpha = const < \frac{n+1}{n-1}.$$
(6)

Remark 2. The embedding operator $I: W_2^1(D_T) \to L_q(D_T)$ represents a linear continuous compact operator for $1 < q < \frac{2(n+1)}{n-1}$, n > 1. At the same time the Nemitsky operator $K: L_q(D_T) \to L_2(D_T)$, acting by the formula Ku = f(u), where $u = (u_1, \ldots, u_N) \in L_q(D_T)$ and vector function $f = (f_1, \ldots, f_N)$ satisfies condition (5), is continuous and bounded if $q \ge 2\alpha$. Therefore, if $\alpha < \frac{n+1}{n-1}$, then there exists such number q that $1 < q < \frac{2(n+1)}{n-1}$ and $q \ge 2\alpha$. Therefore, in this case the operator

$$K_0 = KI : W_2^1(D_T) \to L_2(D_T)$$

is continuous and compact. Then from $u \in W_2^1(D_T)$ it follows that $f(u) \in L_2(D_T)$ and, if $u^m \to u$ in the space $W_2^1(D_T)$, then $f(u^m) \to f(u)$ in $L_2(D_T)$.

Remark 3. Let $u \in C_0^{2,4k}(\overline{D}_T, \partial D_T)$ be a classical solution of problem (1)–(3). Multiplying scalarly both parts of system (1) by an arbitrary vector function $\varphi \in C_0^{2,4k}(\overline{D}_T, \partial D_T)$ and integrating by parts the obtained equality on the domain D_T , we have

$$\int_{D_T} \left[\frac{\partial^{2k} u}{\partial t^{2k}} \frac{\partial^{2k} \varphi}{\partial t^{2k}} + \sum_{i,j=1}^n A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} \right] dx \, dt + \int_{D_T} f(u) \varphi \, dx \, dt = \int_{D_T} F\varphi \, dx \, dt \qquad (7)$$
$$\forall \varphi \in C_0^{2,4k} (\overline{D}_T, \partial D_T).$$

We consider equality (7) as a basis for defining a weak generalized solution of problem (1)–(3).

Definition 1. Let the vector function f satisfy conditions (5), (6) and $F \in L_2(D_T)$. A vector function $u \in W_0^{1,2k}(D_T)$ is called a weak generalized solution of problem (1)–(3) if the integral equality (7) is valid for any vector function $\varphi \in W_0^{1,2k}(D_T)$, i.e.,

$$\int_{D_T} \left[\frac{\partial^{2k} u}{\partial t^{2k}} \cdot \frac{\partial^{2k} \varphi}{\partial t^{2k}} + \sum_{i,j=1}^n A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} \right] dx dt + \int_{D_T} f(u) \varphi dx dt = \int_{D_T} F\varphi dx dt \qquad (8)$$
$$\forall \varphi \in W_0^{1,2k}(D_T).$$

Note that due to Remark 2, the integral $\int_{D_T} f(u)\varphi \, dx \, dt$ in equality (8) is defined correctly, since from $u \in W_0^{1,2k}(D_T)$ it follows $f(u) \in L_2(D_T)$ and, therefore, $f(u)\varphi \in L_1(D_T)$.

Irom $u \in W_0$ (D_T) it follows $f(u) \in L_2(D_T)$ and, therefore, $f(u)\varphi \in L_1(D_T)$. It is easy to verify that if the solution u of problem (1)–(3) belongs to the class $C_0^{2,4k}(D_T, \partial D_T)$

in the sense of Definition 1, then it will also be a classical solution of this problem.

Below we assume that the operator

$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \tag{9}$$

is strictly elliptic, i.e., the matrix $Q(\xi) = \sum_{i,j=1}^{n} A_{ij}\xi_i\xi_j$ is positively defined for each $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n \setminus \{(0, \dots, 0)\}$:

where $(\cdot, \cdot)_{\mathbb{R}^N}$ is a standard scalar product in the euclidian space \mathbb{R}^N . Note that in the scalar case the operator from (9) represents an elliptic operator and in this case the linear part of the operator L_f from (1), i.e. L_0 is semielliptic.

At fulfilment of condition (10) in the space $C_0^{2,4k}(\overline{D}_T,\partial D_T)$, together with the scalar product

$$(u,v)_o = \int_{D_T} \left[uv + \sum_{i=1}^{2k} \frac{\partial^i u}{\partial t^i} \frac{\partial^i v}{\partial t^i} + \sum_{i=1}^n \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \right] dx \, dt \tag{11}$$

with norm $|| \cdot ||_0 = || \cdot ||_{W_0^{1,2k}(D_T)}$, defined by the right-hand side of equality (4), let us introduce the following scalar product

$$(u,v)_1 = \int_{D_T} \left[\frac{\partial^{2k} u}{\partial t^{2k}} \frac{\partial^{2k} v}{\partial t^{2k}} + \sum_{i,j=1}^n A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} \right] dx \, dt \tag{12}$$

with norm

$$\|u\|_{1}^{2} = \int_{D_{T}} \left[\left| \frac{\partial^{2k} u}{\partial t^{2k}} \right|^{2} + \sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \right] dx dt,$$
(13)

where $u, v \in C_0^{2,4k}(\overline{D}_T, \partial D_T)$.

It is proved the validity of the following inequalities

$$c_1 ||u||_0 \le ||u||_1 \le c_2 ||u||_0 \quad \forall u \in C_0^{2,4k}(\overline{D}_T, \partial D_T)$$

with positive constants c_1 and c_2 , not dependent on u. Hence it follows that if we complete the space $C_0^{2,4k}(\overline{D}_T, \partial D_T)$ under norm (13), then in view of (11) we obtain the same Hilbert space $W_0^{1,2k}(D_T)$ with equivalent scalar products (11) and (12). Further, it can be proved the unique solvability of the linear problem correspondent to (1)–(3), i.e., when f = 0: for any $F \in L_2(D_T)$ there exists the unique solution $u = L_0^{-1}F \in W_0^{1,2k}(D_T)$ of this problem, where the linear operator

$$L_0^{-1}: L_2(D_T) \to W_0^{1,2k}(D_T)$$

is continuous. Thus, the nonlinear problem (1)-(3) is reduced to the following functional equation

$$u = L_0^{-1} \left[-f(u) + F \right]$$
(14)

in the Hilbert space $W_0^{1,2k}(D_T)$.

At fulfillment of the condition

$$\lim_{|u| \to \infty} \inf \frac{uf(u)}{|u|^2} \ge 0 \tag{15}$$

it can be proved the a priori estimate of the solution $u \in W_0^{1,2k}(D_T)$ of equation (14), whence due to Remark 2 we have the solvability of this equation, and, therefore, of problem (1)–(3) in the space $W_0^{1,2k}(D_T)$. Therefore the following theorem is valid.

Theorem 1. Let conditions (5), (6), (10) and (15) be fulfilled. Then for any $F \in L_2(D_T)$ problem (1)–(3) has at least one generalized solution u in the space $W_0^{1,2k}(D_T)$.

Remark 4. If conditions (5), (6) and (10) are fulfilled and the mapping $f(u) : \mathbb{R}^N \to \mathbb{R}^N$ satisfies the condition

$$(f(u) - f(v))(u - v) \ge 0 \quad \forall u, v \in \mathbb{R}^N,$$
(16)

then the solution of this problem is unique.

Thus, the following theorem is valid.

Theorem 2. Let conditions (5), (6), (10) and (15), (16) be fulfilled. Then for any $F \in L_2(D_T)$ problem (1)–(3) has a unique weak generalized solution u in the space $W_0^{1,2k}(D_T)$.

As the examples show, if the conditions imposed on the nonlinear vector function f are violated, then problem (1)–(3) may not have a solution. Indeed, consider the particular case of system (1), when it is split in the main part, i.e., $A_{ij} = a_{ij}I_N$, where I_N is a unit matrix of order N, and a_{ij} are numbers such that the operator $\sum_{i,j=1}^{n} a_{ij}\partial^2/\partial x_i\partial x_j$ is a scalar elliptic operator.

Consider the following requirement imposed on the vector function f: there exist numbers $l_1, \ldots, l_N, \sum_{i=1}^{N} |l_i| \neq 0$ such that

$$\sum_{i=1}^{N} l_i f_i(u) \le -d_0 \Big| \sum_{i=1}^{N} l_i u_i \Big|^{\beta} \quad \forall u \in \mathbb{R}^N, \ 1 < \beta = const < \frac{n+1}{n-1},$$

$$(17)$$

where $d_0 = const > 0$. Let the domain Ω be given by the equation $\partial \Omega : \omega(x) = 0$, where $\nabla_x \omega|_{\partial\Omega} \neq 0, \ \omega|_{\Omega} > 0, \ \nabla_x = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ and $\omega \in C^2(\mathbb{R}^n)$.

Theorem 3. Let the vector function f satisfy conditions (5), (6), (10) and (17). Let $F^0 = (F_1^0, \ldots, F_N^0) \in L_2(D_T)$, $G = \sum_{i=1}^N l_i F_i^0 \ge 0$ and $||G||_{L_2(D_T)} \ne 0$. Then there exists a number $\mu_0 = \mu_0(G, \beta) > 0$ such that for $\mu > \mu_0$ problem (1)–(3) cannot have a weak generalized solution in the space $W_0^{1,2k}(D_T)$ for $F = \mu F_0$.

Remark 5. Consider one class of vector functions f:

$$f_i(u_1, \dots, u_N) = \sum_{j=1}^N a_{ij} |u_j|^{\beta_{ij}} + b_i, \ i = 1, \dots, N,$$

where constants a_{ij} , β_{ij} and b_i satisfy the inequalities

$$a_{ij} > 0, \ 1 < \beta_{ij} < \frac{n+1}{n-1}, \ \sum_{k=1}^{N} b_k > 0, \ , i, j = 1, \dots, N.$$

It is easy to verify that this class satisfies condition (17).

Acknowledgements

The work was supported by the Shota Rustavely National Science Foundation, Grant # FR-21-7307.