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The classical stability analysis based on Lyapunov functions is the main tool in the theory
of ordinary differential equations. However, applications of this method to functional differential
equations often encounters serious difficulties. A successful alternative, known as the “N. V. Azbelev
W -method”, is based on searching auxiliary equations instead of Lyapunov functionals. The W -
method is also efficient in studying various classes of stochastic delay differential equations.

However, application of the W -method to nonlinear functional equations remains less efficient,
even if N .V. Azbelev and P. M. Simonov formulated some general results for nonlinear deterministic
functional differential equations in their monograph [2].

In this work we study global Lyapunov stability of solutions of systems of nonlinear differential
Itô equations with delays. We describe a nonlinear modification of the W -method based on the
theory of inverse-positive matrices and provide sufficient conditions for the moment stability of
solutions in terms of the coefficients for rather general classes of Itô equations.

Let T = (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and
an increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E
we denote the expectation on this probability space.

We study the moment exponential stability of solutions to the following system of nonlinear Itô
differential equations with delay:

dx(t) =−
N∑
j=1

Aj(t)x(hj(t)) dt+ F
(
t, x(h01(t)), . . . , x(h

0
m0

(t))
)
dt

+
m∑
i=1

Gi
(
t, x(hi1(t), . . . , x(h

i
mi

(t)))
)
dBi(t) (t ≥ 0) (0.1)

with respect to the initial data

x(t) = φ(t) (t < 0), (0.1a)
x(0) = b, (0.1b)

where x = (x1, . . . , xn)
T is an unknown n-dimensional random process on the interval (−∞,∞)

called a solution to problem (0.1), (0.1a), (0.1b).
We assume that problem (0.1), (0.1a), (0.1b) satisfies the following
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Conditions 1:

• Aj = (ajsl)
n
s,l=1 are n × n-matrices, whose entries are progressively measurable (with respect

to the stochastic basis T ), scalar stochastic processes, the trajectories of which are almost
surely (a.s.) locally integrable for all j = 1, . . . , N .

• F ( · , u) = (F1( · , u1, . . . , um0), . . . , Fn( · , u1, . . . , um0))
T are progressively measurable, n-di-

mensional stochastic processes on the interval [0,∞) with a.s. locally integrable trajectories
for all u ∈ Rm0 , and F (t, · ) are P × µ-almost everywhere continuous functions on Rm0 ,
satisfying the condition F ( · , 0) = 0.

• For all i = 1, . . . ,m the functions Gi( · , u) = (Gi
1( · , u1, . . . , umi), . . . , G

i
n( · , u1, . . . , umi))

T

(u ∈ Rmi) are progressively measurable, n-dimensional stochastic processes on the interval
[0,∞) with a.s. locally square integrable trajectories, and Gi(t, · ) are P×µ-almost everywhere
continuous functions on Rmi , satisfying the condition Gi( · , 0) = 0.

• hj , j = 1, . . . , N , hij , i = 0, . . . ,m, j = 1, . . . ,mi are Borel measurable functions on [0,∞)

such that hj(t) ≤ t, j = 1, . . . , N , hij(t) ≤ t, i = 0, . . . ,m, j = 1, . . . ,mi (t ≥ 0) µ-almost
everywhere.

• φ is an F0-measurable n-dimensional stochastic process on the interval(−∞, 0).

• b is an F0-measurable n-dimensional random variable.

• For any initial conditions (0.1a) and (0.1b), which satisfy the above requirements, there exists
a unique strong global solution x(t, b, φ) to problem (0.1), (0.1b), i.e., a solution defined on
the initial stochastic basis and on the whole interval (−∞,∞).

The moment exponential stability is defined in

Definition 0.1. System (0.1) is called exponentially q-stable with respect to the initial data if
there are positive numbers c, λ such that all solutions x(t, b, φ) (t ∈ (−∞,∞)) of the initial value
problem (0.1), (0.1a), (0.1b) satisfy the estimate(

E|x(t, b, φ)|q
)1/q ≤ c exp{−λt}

((
E|b|q

)1/q
+ ess sup

ς<0

(
E|φ(ς)|q

)1/q)
(t ≥ 0).

The next definition is used in the main result of the paper.

Definition 0.2. An invertible matrix B = (bij)
m
i,j=1 is called inverse-positive if all entries of the

matrix B−1 are nonnegative.

According to [3], the matrix B will be inverse-positive if bij ≤ 0 for i, j = 1, . . . ,m, i ̸= j
and all diagonal minors of the matrix B are positive. In particular, matrices with strict diagonal
dominance and non-positive off-diagonal entriess are inverse-positive.

1 Sufficient stability conditions
As we have already mentioned, we study the moment stability of system (0.1) with respect to the
initial data by the W -method, which is based on auxiliary systems. Therefore, along with system
(0.1) we consider the following system of linear differential equations with random coefficients:

dx̂(t) = (−B(t)x̂(t) + f0(t)) dt+
n∑

i=1

fi(t) dBi(t) (t ≥ 0), (1.1)
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where x̂ = (x̂1, . . . , x̂n)
T is an unknown n-dimensional stochastic process on (−∞,∞), B(t) is

an n × n-matrix, the entries of which are scalar, progressively measurable stochastic processes on
[0,∞) with the a.s. locally integrable trajectories, while f0(t), fi(t) (i = 1, . . . , n) are n-dimensio-
nal, progressively measurable stochastic processes on [0,∞) with the a.s. locally square integrable
trajectories.

Lemma. The solutions x̂(t) of system (1.1) can be represented as

x̂(t) = X̂(t)x̂(0) +

t∫
0

X̂(t, ς)f0(ς) dς +

n∑
i=1

t∫
0

X̂(t, ς)fi(ς) dBi(ς) (t ≥ 0),

where X̂(t, ς) (t ≥ 0, 0 ≤ ς ≤ t) is the n × n-matrix, the columns of which are solutions of the
system dx̂(t) = B(t)x̂(t) dt (t ≥ 0), satisfying X̂(t, t) = E (t ≥ 0), while X̂(t) ≡ X̂(t, 0).

By using the auxiliary system (1.1) and the stated lemma, we can rewrite problem (0.1), (0.1a),
(0.1b) in the following equivalent form, where the unknown n-dimensional stochastic process x(t)
replaces the solution x(t) of system (0.1):

x(t) = X̂(t)b+ (Θ(x+ φ))(t) (t ≥ 0),

where

(Θ(x+ φ))(t) =

t∫
0

X̂(t, ς)
[
B(ς)x(ς)−

N∑
j=1

Aj(ς)(x(hj(ς)) + φ(hj(ς)))
]
dς

+

t∫
0

X̂(t, ς)F
(
ς, x(h01(ς)) + φ(h01(ς)), . . . , x(h

0
m0

(ς)) + φ(h0m0
(ς))

)
dς

+
m∑
i=1

t∫
0

X̂(t, ς)Gi
(
ς, x(hi1(ς)) + φ(hi1(ς)), . . . , x(h

i
mi

(ς)) + φ(himi
(s))

)
dBi(ς).

Given 1 ≤ q < ∞, λ > 0 and a stopping time η we introduce the following vectors:

• x(q, λ) = (x1(q, λ), . . . , xn(q, λ))
T , where

xi(q, λ) = sup
t≥0

(
E|eλtxi(t)|q

)1/q
, i = 1, . . . , n;

• x η(q, λ) = (xη1(q, λ), . . . , x
η
n (q, λ))T , where

x η
i (q, λ) = sup

t≥0

(
E|eλtx η

i (t)|
q
)1/q

, i = 1, . . . , n.

Assume that using some auxiliary equation (1.1) we obtain the following estimate:

Enx
η(q, λ) ≤ Cx η(q, λ) + c

((
E|b|q

)1/q
+ ess sup

ς<0

(
E|φ(ς)|q

)1/q)
en, (1.2)

where C is some nonnegative n×n-matrix, c ≥ 0, En is the identity n×n-matrix, en = (1, . . . , 1)T

is the n-dimensional vector, and 0 ≤ η ≤ ∞ is an arbitrary stopping time.
We remind that the stopping time [4] is a random variable η : Ω → [0,∞] satisfying the property

{ω ∈ Ω : η(ω) ≤ t} ∈ Ft for any t ≥ 0, while the “stopped” stochastic process zη(t) is defined by
zη(t) ≡ z(t ∧ η), where t ∧ η = min{t; η}.
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Theorem 1.1. Assume that 1 ≤ q < ∞ and Conditions 1 are satisfied. Assume further that
estimate (1.2) is satisfied for all admissible b, φ and any stopping time 0 ≤ η ≤ ∞.

Then system (0.1) is exponentially q-stable with respect to the initial data if the matrix En −C
is inverse-positive.

To be able to formulate the main result we need
Conditions 2:

• λ is some positive number;

• There exist nonnegative numbers τj , j = 1, . . . , N , τij , i = 0, . . . ,m, j = 1, . . . ,mi such that
0 ≤ t − hj(t) ≤ τj , j = 1, . . . , N , 0 ≤ t − hij(t) ≤ τij , i = 0, . . . ,m, j = 1, . . . ,mi (t ≥ 0)
µ-almost everywhere.

• There exist nonnegative numbers F
j
sl, j = 1, . . . ,m0, s, l = 1, . . . , n such that

∣∣Fs(t, u1, . . . , um0)
∣∣ ≤ m0∑

j=1

n∑
l=1

F
j
sl|ulj |, s = 1, . . . , n, t ≥ 0, P × µ-almost everywhere.

• There exist nonnegative numbers G
ij
sl , i = 1, . . . ,m, j = 1, . . . ,mi, s, l = 1, . . . , n such that

∣∣Gi
s(t, u1, . . . , umi)

∣∣ ≤ mi∑
j=1

n∑
l=1

G
ij
sl |ulj |,

s = 1, . . . , n, i = 1, . . . ,m, t ≥ 0, P × µ-almost everywhere.

• There are subsets Is ⊂ {1, . . . , N} (s = 1, . . . , n), positive numbers λs, s = 1, . . . , n and
nonnegative numbers a j

sl, j = 1, . . . , N , s, l = 1, . . . , n such that∑
j∈Is

ajss(t) ≥ λs, s = 1, . . . , n,

|ajsl(t)| ≤ a j
sl, j = 1, . . . , N, s, l = 1, . . . , n, t ≥ 0, P × µ-almost everywhere.

Stability conditions will be formulated in terms of the special n × n-matrix C, whose entries
are defined as follows:

css =
1

λs

[∑
j∈Is

a j
ssτj

( N∑
j=1

a j
ss + F ss +

cp√
τj

Gss

)
+

N∑
j=1,j /∈Is

a j
ss + F ss

]
+

cp√
2λs

Gss, s = 1, . . . , n,

csl =
1

λs

[∑
j∈Is

a j
ssτj

( N∑
j=1

a j
sl + F sl +

cp√
τj

Gsl

)
+

N∑
j=1

a j
sl + F sl

]
+

cp√
2λs

Gsl, s, l=1, . . . , n, s ̸= l,

where

F sl =

m0∑
j=1

F
j
sl, Gsl =

m∑
i=1

mi∑
j=1

G
ij
sl , s, l = 1, . . . , n.

Here the constant cp comes from the estimate

(
E

∣∣∣∣
t∫

0

f(ς) dB(ς)
∣∣∣∣2p)1/(2p)

≤ cp

(
E

( t∫
0

|f(ς)|2dς
)p)1/(2p)

, (1.3)
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where f(ς) is an arbitrary scalar, progressive measurable stochastic process and B(ς) is the scalar
Wiener process. Estimate (1.3) follows from the inequality mentioned in [4, p. 65], where the
expressions for cp can be found as well.

Theorem 1.2. Let 1 ≤ p < ∞ and Conditions 1-2 be satisfied. If the matrix En − C is
inverse positive, then system (0.1) is exponentially 2p-stable with respect to initial data for any
0 < λ < min{λs, s = 1, . . . , n}.

2 An example
Let us fix a number 1 ≤ p < ∞ and consider the system of nonlinear Itô equations

dx(t) = −
N∑
j=1

Ajx(t− hj) dt+

m0∑
j=1

A0jxα
0
j (t− h0j ) dt+

m∑
i=1

mi∑
j=1

Aijxα
i
j (t− hij) dBi(t) (t ≥ 0), (2.1)

where Aj = (ajsl)
n
s,l=1, j = 1, . . . , N , Aij = (aijsl)

n
s,l=1, i = 0, . . . ,m, j = 1, . . . ,mi are real n × n-

matrices, hj ≥ 0, j = 1, . . . , N , hij ≥ 0, i = 0, . . . ,m, j = 1, . . . ,mi are real numbers, and αi
j ,

i = 0, . . . ,m, j = 1, . . . ,mi are real numbers satisfying the inequalities 0 < αi
j ≤ 1, i = 0, . . . ,m,

j = 1, . . . ,mi.
Assume that

N∑
j=1

ajss = λs > 0, s = 1, . . . , n

and

F sl =

m0∑
j=1

|a0jsl |, Gsl =

m∑
i=1

mi∑
j=1

|aijsl|, s, l = 1, . . . , n,

and the n× n-matrix En − C is inverse-positive, where C consists of the following entries:

csl =
1

λs

[ N∑
j=1

|ajss|hj
( N∑

j=1

|ajsl|+ F sl +
cp√
hj

Gsl

)
+

N∑
j=1

|ajsl|+ F sl

]
− cp√

λs
Gsl, s, l = 1, . . . , n.

Then from Theorem 1.2 it follows that the nonlinear system (2.1) is exponentially 2p-stable with
respect to the initial data.
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