On a Lower Estimate for the First Eigenvalue of a Sturm-Liouville Problem

S. Ezhak, M. Telnova
Plekhanov Russian University of Economics, Moscow, Russia
E-mails: svetlana.ezhak@gmail.com; mytelnova@yandex.ru

1 Introduction

Consider the Sturm-Liouville problem

$$
\begin{gather*}
y^{\prime \prime}+Q(x) y+\lambda y=0, \quad x \in(0,1), \tag{1}\\
y(0)=y(1)=0, \tag{2}
\end{gather*}
$$

where Q belongs to the set $T_{\alpha, \beta, \gamma}$ of all locally integrable on $(0,1)$ functions with non-negative values such that the following integral conditions hold:

$$
\begin{gather*}
\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) d x=1, \quad \gamma \neq 0 \tag{3}\\
\int_{0}^{1} x(1-x) Q(x) d x<\infty \tag{4}
\end{gather*}
$$

A function y is a solution of problem (1),(2) if it is absolutely continuous on the segment $[0,1]$, satisfies (2), its derivative y^{\prime} is absolutely continuous on any segment [$\rho, 1-\rho$], where $0<\rho<\frac{1}{2}$, and equality (1) holds almost everywhere in the interval $(0,1)$.

In Theorem 1 [2], it was proved that if condition (4) does not hold, then for any $0 \leq p \leq \infty$, there is no non-trivial solution y of equation (1) with properties $y(0)=0, y^{\prime}(0)=p$.

If $\gamma<0, \alpha \leq 2 \gamma-1$ or $\beta \leq 2 \gamma-1$, then the set $T_{\alpha, \beta, \gamma}$ is empty; for other values $\alpha, \beta, \gamma, \gamma \neq 0$, the set $T_{\alpha, \beta, \gamma}$ is not empty [4, Chapter 1, §2, Theorem 3]. Since for $\gamma<0, \alpha \leq 2 \gamma-1$ or $\beta \leq 2 \gamma-1$ there is no function Q satisfying (3) and (4) taken together, then problem (1)-(4) is not considered for these parameters.

This work gives estimates for

$$
m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) .
$$

Consider the functional

$$
R[Q, y]=\frac{\int_{0}^{1} y^{\prime 2} d x-\int_{0}^{1} Q(x) y^{2} d x}{\int_{0}^{1} y^{2} d x}
$$

If condition (4) is satisfied, then the functional $R[Q, y]$ is bounded below in $H_{0}^{1}(0,1)$ [3]. It was proved [2,3] that for any $Q \in T_{\alpha, \beta, \gamma}$,

$$
\lambda_{1}(Q)=\inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R[Q, y] .
$$

For any $Q \in T_{\alpha, \beta, \gamma}$, we have

$$
m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R[Q, y] \leq \inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} \frac{\int_{0}^{1} y^{\prime 2} d x}{\frac{0}{1} \int_{0}^{2} y^{2} d x}=\pi^{2} .
$$

2 Main results

Theorem 2.1. If $\gamma>1, \alpha, \beta<2 \gamma-1$, then there exist functions $Q_{*} \in T_{\alpha, \beta, \gamma}$ and $u \in H_{0}^{1}(0,1)$, $u>0$ on $(0,1)$ such that $m_{\alpha, \beta, \gamma}=R\left[Q_{*}, u\right]$. Moreover, u satisfies the equation

$$
\begin{equation*}
u^{\prime \prime}+m u=-x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{\gamma+1}{\gamma-1}} \tag{5}
\end{equation*}
$$

and the integral condition

$$
\begin{equation*}
\int_{0}^{1} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{2 \gamma}{\gamma-1}} d x=1 . \tag{6}
\end{equation*}
$$

Theorem 2.2.

(1) If $\gamma=1, \alpha, \beta \leqslant 0$, then $m_{\alpha, \beta, \gamma} \geqslant \frac{3}{4} \pi^{2}$.
(2) If $\gamma=1, \beta \leqslant 0<\alpha \leqslant 1$ or $\alpha \leqslant 0<\beta \leqslant 1$, then $m_{\alpha, \beta, \gamma} \geqslant 0$.
(3) If $\gamma=1,0<\alpha, \beta \leqslant 1$, then $m_{\alpha, \beta, \gamma} \geqslant 0$.
(4) If $\gamma>1, \alpha, \beta \leqslant \gamma$, then $m_{\alpha, \beta, \gamma}=0$.
(5) If $\gamma>1, \gamma<\alpha \leqslant 2 \gamma-1$ or $\gamma<\beta \leqslant 2 \gamma-1$, then $m_{\alpha, \beta, \gamma} \leqslant 0$.
(6) If $\gamma<0, \alpha, \beta>2 \gamma-1,0<\gamma<1,-\infty<\alpha, \beta<+\infty$ or if $\gamma \geqslant 1, \alpha>2 \gamma-1$ or $\beta>2 \gamma-1$, then $m_{\alpha, \beta, \gamma}=-\infty$.

Let us show that if $\gamma \geqslant 1, \alpha>2 \gamma-1,-\infty<\beta<\infty$, then we have $m_{\alpha, \beta, \gamma}=-\infty$ (the case $\gamma \geqslant 1, \beta>2 \gamma-1,-\infty<\beta<\infty$ is similar).

Consider the functions $Q_{\varepsilon} \in T_{\alpha, \beta, \gamma}$ and $y_{0} \in H_{0}^{1}(0,1)$:

$$
\begin{aligned}
& Q_{\varepsilon}(x)= \begin{cases}(\alpha+1)^{\frac{1}{\gamma}} \varepsilon^{-\frac{\alpha+1}{\gamma}}(1-x)^{-\frac{\beta}{\gamma}}, & x \in[0, \varepsilon], \\
0, & x \in(\varepsilon, 1],\end{cases} \\
& y_{0}(x)= \begin{cases}x^{\theta}, & x \in\left[0, \frac{1}{2}\right], \\
(1-x)^{\theta}, & x \in\left(\frac{1}{2}, 1\right],\end{cases} \\
& \hline \quad \theta>\frac{1}{2} .
\end{aligned}
$$

We have

$$
\int_{0}^{1} Q_{\varepsilon}(x) y_{0}^{2} d x \geqslant L \cdot \varepsilon^{2 \theta+1-\frac{\alpha+1}{\gamma}}
$$

where L is a constant. Since $\alpha>2 \gamma-1$, there is a number $\theta>\frac{1}{2}$ such that $2 \theta+1<\frac{\alpha+1}{\gamma}$.
Thus,

$$
\begin{gathered}
\lambda_{1}\left(Q_{\varepsilon}\right)=\inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R\left[Q_{\varepsilon}, y\right] \leqslant R\left[Q_{\varepsilon}, y_{0}\right], \\
\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) \leqslant \lim _{\varepsilon \rightarrow 0} \lambda_{1}\left(Q_{\varepsilon}\right) \leqslant \lim _{\varepsilon \rightarrow 0} R\left[Q_{\varepsilon}, y_{0}\right]=-\infty .
\end{gathered}
$$

References

[1] Yu. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, 89. Birkhäuser Verlag, Basel, 1996.
[2] S. Ezhak and M. Telnova, On conditions on the potential in a Sturm-Liouville problem and an upper estimate of its first eigenvalue. Differential and difference equations with applications, 481-496, Springer Proc. Math. Stat., 333, Springer, Cham, 2020.
[3] S. Ezhak and M. Telnova, On some estimates for the first eigenvalue of a Sturm-Liouville problem. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2021, Tbilisi, Georgia, December 18-20, pp. 66-69; http://www.rmi.ge/eng/QUALITDE-2021/Ezhak_Telnova_workshop_2021.pdf.
[4] K. Z. Kuralbaeva, Some optimal estimates for eigenvalues of Sturm-Liouville problems. Thesis for the Degree of Candidate of Physical and Mathematical Sciences, 1996.

