On a Lower Estimate for the First Eigenvalue of a Sturm–Liouville Problem

S. Ezhak, M. Telnova

Plekhanov Russian University of Economics, Moscow, Russia E-mails: svetlana.ezhak@gmail.com; mytelnova@yandex.ru

1 Introduction

Consider the Sturm–Liouville problem

$$y'' + Q(x)y + \lambda y = 0, \ x \in (0, 1),$$
(1)

$$y(0) = y(1) = 0, (2)$$

where Q belongs to the set $T_{\alpha,\beta,\gamma}$ of all locally integrable on (0,1) functions with non-negative values such that the following integral conditions hold:

$$\int_{0}^{1} x^{\alpha} (1-x)^{\beta} Q^{\gamma}(x) \, dx = 1, \ \gamma \neq 0, \tag{3}$$

$$\int_{0}^{1} x(1-x)Q(x)\,dx < \infty. \tag{4}$$

A function y is a solution of problem (1), (2) if it is absolutely continuous on the segment [0, 1], satisfies (2), its derivative y' is absolutely continuous on any segment $[\rho, 1 - \rho]$, where $0 < \rho < \frac{1}{2}$, and equality (1) holds almost everywhere in the interval (0, 1).

In Theorem 1 [2], it was proved that if condition (4) does not hold, then for any $0 \le p \le \infty$, there is no non-trivial solution y of equation (1) with properties y(0) = 0, y'(0) = p.

If $\gamma < 0$, $\alpha \leq 2\gamma - 1$ or $\beta \leq 2\gamma - 1$, then the set $T_{\alpha,\beta,\gamma}$ is empty; for other values α , β , γ , $\gamma \neq 0$, the set $T_{\alpha,\beta,\gamma}$ is not empty [4, Chapter 1, §2, Theorem 3]. Since for $\gamma < 0$, $\alpha \leq 2\gamma - 1$ or $\beta \leq 2\gamma - 1$ there is no function Q satisfying (3) and (4) taken together, then problem (1)–(4) is not considered for these parameters.

This work gives estimates for

$$m_{\alpha,\beta,\gamma} = \inf_{Q \in T_{\alpha,\beta,\gamma}} \lambda_1(Q).$$

Consider the functional

$$R[Q,y] = \frac{\int_{0}^{1} {y'}^2 \, dx - \int_{0}^{1} Q(x)y^2 \, dx}{\int_{0}^{1} y^2 \, dx}$$

If condition (4) is satisfied, then the functional R[Q, y] is bounded below in $H_0^1(0, 1)$ [3]. It was proved [2,3] that for any $Q \in T_{\alpha,\beta,\gamma}$,

$$\lambda_1(Q) = \inf_{y \in H^1_0(0,1) \setminus \{0\}} R[Q, y].$$

For any $Q \in T_{\alpha,\beta,\gamma}$, we have

$$m_{\alpha,\beta,\gamma} = \inf_{Q \in T_{\alpha,\beta,\gamma}} \inf_{y \in H_0^1(0,1) \setminus \{0\}} R[Q,y] \le \inf_{y \in H_0^1(0,1) \setminus \{0\}} \frac{\int_0^1 {y'}^2 \, dx}{\int_0^1 y^2 \, dx} = \pi^2$$

2 Main results

Theorem 2.1. If $\gamma > 1$, $\alpha, \beta < 2\gamma - 1$, then there exist functions $Q_* \in T_{\alpha,\beta,\gamma}$ and $u \in H^1_0(0,1)$, u > 0 on (0,1) such that $m_{\alpha,\beta,\gamma} = R[Q_*, u]$. Moreover, u satisfies the equation

$$u'' + mu = -x^{\frac{\alpha}{1-\gamma}} (1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{\gamma+1}{\gamma-1}}$$
(5)

and the integral condition

$$\int_{0}^{1} x^{\frac{\alpha}{1-\gamma}} (1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{2\gamma}{\gamma-1}} dx = 1.$$
 (6)

Theorem 2.2.

- (1) If $\gamma = 1$, $\alpha, \beta \leq 0$, then $m_{\alpha,\beta,\gamma} \geq \frac{3}{4}\pi^2$.
- (2) If $\gamma = 1$, $\beta \leq 0 < \alpha \leq 1$ or $\alpha \leq 0 < \beta \leq 1$, then $m_{\alpha,\beta,\gamma} \geq 0$.
- (3) If $\gamma = 1$, $0 < \alpha, \beta \leq 1$, then $m_{\alpha,\beta,\gamma} \geq 0$.
- (4) If $\gamma > 1$, $\alpha, \beta \leq \gamma$, then $m_{\alpha,\beta,\gamma} = 0$.
- (5) If $\gamma > 1$, $\gamma < \alpha \leq 2\gamma 1$ or $\gamma < \beta \leq 2\gamma 1$, then $m_{\alpha,\beta,\gamma} \leq 0$.
- (6) If $\gamma < 0$, $\alpha, \beta > 2\gamma 1$, $0 < \gamma < 1$, $-\infty < \alpha, \beta < +\infty$ or if $\gamma \ge 1$, $\alpha > 2\gamma 1$ or $\beta > 2\gamma 1$, then $m_{\alpha,\beta,\gamma} = -\infty$.

Let us show that if $\gamma \ge 1$, $\alpha > 2\gamma - 1$, $-\infty < \beta < \infty$, then we have $m_{\alpha,\beta,\gamma} = -\infty$ (the case $\gamma \ge 1$, $\beta > 2\gamma - 1$, $-\infty < \beta < \infty$ is similar).

Consider the functions $Q_{\varepsilon} \in T_{\alpha,\beta,\gamma}$ and $y_0 \in H_0^1(0,1)$:

$$Q_{\varepsilon}(x) = \begin{cases} (\alpha+1)^{\frac{1}{\gamma}} \varepsilon^{-\frac{\alpha+1}{\gamma}} (1-x)^{-\frac{\beta}{\gamma}}, & x \in [0,\varepsilon], \\ 0, & x \in (\varepsilon,1], \end{cases}$$
$$y_0(x) = \begin{cases} x^{\theta}, & x \in \left[0,\frac{1}{2}\right], \\ (1-x)^{\theta}, & x \in \left(\frac{1}{2},1\right], & \theta > \frac{1}{2}. \end{cases}$$

We have

$$\int_{0}^{1} Q_{\varepsilon}(x) y_{0}^{2} dx \ge L \cdot \varepsilon^{2\theta + 1 - \frac{\alpha + 1}{\gamma}},$$

where L is a constant. Since $\alpha > 2\gamma - 1$, there is a number $\theta > \frac{1}{2}$ such that $2\theta + 1 < \frac{\alpha+1}{\gamma}$. Thus,

$$\begin{split} \lambda_1(Q_\varepsilon) &= \inf_{y \in H^1_0(0,1) \setminus \{0\}} R[Q_\varepsilon,y] \leqslant R[Q_\varepsilon,y_0], \\ \inf_{Q \in T_{\alpha,\beta,\gamma}} \lambda_1(Q) \leqslant \lim_{\varepsilon \to 0} \lambda_1(Q_\varepsilon) \leqslant \lim_{\varepsilon \to 0} R[Q_\varepsilon,y_0] = -\infty. \end{split}$$

References

- [1] Yu. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, 89. Birkhäuser Verlag, Basel, 1996.
- [2] S. Ezhak and M. Telnova, On conditions on the potential in a Sturm-Liouville problem and an upper estimate of its first eigenvalue. *Differential and difference equations with applications*, 481–496, Springer Proc. Math. Stat., 333, Springer, Cham, 2020.
- [3] S. Ezhak and M. Telnova, On some estimates for the first eigenvalue of a Sturm-Liouville problem. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2021, Tbilisi, Georgia, December 18-20, pp. 66-69; http://www.rmi.ge/eng/QUALITDE-2021/Ezhak_Telnova_workshop_2021.pdf.
- [4] K. Z. Kuralbaeva, Some optimal estimates for eigenvalues of Sturm–Liouville problems. *Thesis* for the Degree of Candidate of Physical and Mathematical Sciences, 1996.