The Asymptotic of Unboudedly Continuable to the Right Solutions of the Ordinary Differential Equation of Second Order

V. Evtukhov, L. Koltsova
Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mails: evmod@i.ua; koltsova.liliya@gmail.com

We consider the second order ordinary differential equation of the form:

$$
\begin{equation*}
F\left(t, y, y^{\prime}, y^{\prime \prime}\right)=\sum_{k=1}^{n} p_{k}(t) y^{\alpha_{k}}\left|y^{\prime}\right|^{\beta_{k}}\left|y^{\prime \prime}\right|^{\gamma_{k}}=0 \tag{1}
\end{equation*}
$$

$n \in \mathbb{N}, n \geq 2, \alpha_{k}, \beta_{k}, \gamma_{k} \in \mathbb{R}, \sum_{k=1}^{n}\left|\gamma_{k}\right| \neq 0, p_{k} \in \mathrm{C}([a ;+\infty), a>0 ; \mathbb{R})(k=\overline{1, n}), p_{i}(t) \neq 0(i=\overline{1, s}$ for some $2 \leq s \leq n$).

We investigate the question of the existence and asymptotic behavior (as $t \rightarrow+\infty$) of unboudedly continuable to the right solutions (R-solutions) $y(t)$ of equation (1) and the derivatives $y^{\prime}(t)$, $y^{\prime \prime}(t)$ of these solutions.

Earlier in [3] we have considered a similar question of the asymptotic behavior of solutions of equation of the form (1) when $\sum_{k=1}^{n}\left|\gamma_{k}\right|=0$, that is when equation (1) is a first order differential equation.

The main result is obtained under the assumption that there exists a function $v \in \mathrm{C}^{2}\left(\left[t_{1} ;+\infty\right)\right.$, $\left.t_{1}>a ; \mathbb{R}\right)$ which possesses the following properties:
(A) $v(t)>0, v^{\prime \prime}(t) \neq 0$ on $\left[t_{1} ;+\infty\right)$,

$$
\lim _{t \rightarrow+\infty} v(t)=0 \vee+\infty
$$

(B)

$$
\lim _{t \rightarrow+\infty} \frac{v^{\prime \prime}(t) v(t)}{\left(v^{\prime}(t)\right)^{2}}=\mu \quad(0 \neq \mu \in \mathbb{R})
$$

(C)

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \frac{p_{i}(t) v^{\alpha_{i}}(t)\left|v^{\prime}(t)\right|^{\beta_{i}}\left|v^{\prime \prime}(t)\right|^{\gamma_{i}}}{p_{1}(t) v^{\alpha_{1}}(t)\left|v^{\prime}(t)\right|^{\beta_{1}}\left|v^{\prime \prime}(t)\right|^{\gamma_{1}}}=c_{i} \quad\left(0 \neq c_{i} \in \mathbb{R}, \quad i=\overline{1, s}\right), \\
& \sum_{i=1}^{s} \gamma_{i} c_{i} \neq 0, \\
& \lim _{t \rightarrow+\infty} \frac{p_{j}(t) v^{\alpha_{j}}(t)\left|v^{\prime}(t)\right|^{\beta_{j}}\left|v^{\prime \prime}(t)\right|^{\gamma_{j}}}{p_{1}(t) v^{\alpha_{1}}(t)\left|v^{\prime}(t)\right|^{\beta_{1}}\left|v^{\prime \prime}(t)\right|^{\gamma_{1}}}=0 \quad(j=\overline{s+1, n}) .
\end{aligned}
$$

The following lemma is valid.

Lemma. Let in the relation

$$
\begin{equation*}
\Phi\left(t, x_{1}, x_{2}, x_{3}\right)=0 \tag{2}
\end{equation*}
$$

$\left(t, x_{1}, x_{2}, x_{3}\right) \in H, H=[a ;+\infty) \times \prod_{k=1}^{3} H_{k}, H_{k}=\left[-h_{k} ; h_{k}\right], a \in \mathbb{R}, h_{k}>0(k=1,2,3)$, the function $\Phi: H \rightarrow \mathbb{R}$ satisfy the conditions:

1) $\Phi, \frac{\partial \Phi}{\partial x_{1}}, \frac{\partial \Phi}{\partial x_{2}}, \frac{\partial^{2} \Phi}{\partial x_{3}^{2}} \in \mathrm{C}(H ; \mathbb{R})$;
2)

$$
\lim _{t \rightarrow+\infty} \sup _{\left(x_{1} ; x_{2}\right) \in H_{1} \times H_{2}}\left|\Phi\left(t, x_{1}, x_{2}, 0\right)\right|=0 ;
$$

3)

$$
\lim _{t \rightarrow+\infty} \frac{\partial \Phi}{\partial x_{3}}(t, 0,0,0)=A_{1} \neq 0
$$

4)

$$
\sup _{D}\left|\frac{\partial^{2} \Phi}{\partial x_{3}^{2}}\left(t, x_{1}, x_{2}, x_{3}\right)\right|=A_{2}<+\infty .
$$

Then in some domain $H^{*}=H_{0} \times H_{3}^{*}, H_{0}=\left[t_{0} ;+\infty\right) \times \prod_{k=1}^{2} H_{k}^{*}, H_{k}^{*}=\left[-h_{k}^{*} ; h_{k}^{*}\right](k=1,2,3)$, where t_{0} and h_{k}^{*} satisfy the inequality $t_{0} \geq a, 0<h_{k}^{*} \leq h_{k}, \frac{4 A_{2} h_{3}^{*}}{\left|A_{1}\right|}<1$, relation (2) defines a unique function $x_{3}: H_{0} \rightarrow \mathbb{R}$ that satisfies the conditions:

$$
x_{3}, \frac{\partial x_{3}}{\partial x_{1}}, \frac{\partial x_{3}}{\partial x_{2}} \in \mathrm{C}\left(H_{0} ; \mathbb{R}\right), \quad \Phi\left(t, x_{1}, x_{2}, x_{3}\left(t, x_{1}, x_{2}\right)\right) \equiv 0, \lim _{t \rightarrow+\infty} x_{3}(t, 0,0)=0
$$

and

$$
x_{3}\left(t, x_{1}, x_{2}\right) \sim-\frac{\Phi\left(t, x_{1}, x_{2}, 0\right)}{\frac{\partial \Phi}{\partial x_{3}}\left(t, x_{1}, x_{2}, 0\right)} .
$$

The following theorem was obtained using the above lemma and the results from $[1,2,4]$.
Theorem. Let there exist a function $v \in \mathrm{C}^{2}\left(\left[t_{1} ;+\infty\right), t_{1}>a ; \mathbb{R}\right)$ which possesses the properties (A)-(C). Then for the R-solution $y(t)$ of the differential equation (1) with the asymptotic representation

$$
\begin{equation*}
y^{(k)}(t) \sim v^{(k)}(t) \quad(k=\overline{0,2}) \tag{3}
\end{equation*}
$$

to exist it is necessary, and if the roots λ_{1}, λ_{2} of the algebraic equation

$$
\lambda^{2}+\left(1+\frac{m \sum_{i=1}^{s}\left(\beta_{i}+\gamma_{i}\right) c_{i}}{\sum_{i=1}^{s} \gamma_{i} c_{i}}\right) \lambda+\frac{m \sum_{i=1}^{s}\left(\alpha_{i}+\beta_{i}+\gamma_{i}\right) c_{i}}{\sum_{i=1}^{s} \gamma_{i} c_{i}}=0
$$

have the property $\operatorname{Re} \lambda_{k} \neq 0(k=1,2)$, then it is also sufficient that $\sum_{i=1}^{s} c_{i}=0$.
Moreover, if $\operatorname{sign}\left(\operatorname{Re} \lambda_{1}\right) \neq \operatorname{sign}\left(\operatorname{Re} \lambda_{2}\right)$, then there exists a one-parametric set of R-solutions with the asymptotic representation (3); if in some suburb of $+\infty$

$$
\operatorname{sign}\left(\operatorname{Re} \lambda_{1}\right)=\operatorname{sign}\left(\operatorname{Re} \lambda_{2}\right) \neq \operatorname{sign}\left(v^{\prime}(t)\right),
$$

then there exists a two-parametric set of R-solutions with the asymptotic representation (3).

References

[1] V. M. Evtukhov and A. M. Samoilenko, Conditions for the existence of solutions of real nonautonomous systems of quasilinear differential equations vanishing at a singular point. Ukrainian Math. J. 62 (2010), no. 1, 56-86.
[2] I. T. Kiguradze and T. A. Chanturiya, Asymptotic Properties of Solutions of Non-Autonomous Ordinary Differential Equations. (Russian) Nauka, Moscow, 1990.
[3] L. Koltsova and A. Kostin, The asymptotic behavior of solutions of monotone type of firstorder nonlinear ordinary differential equations, unresolved for the derivative. Mem. Differ. Equ. Math. Phys. 57 (2012), 51-74.
[4] A. V. Kostin, Asymptotics of the regular solutions of nonlinear ordinary differential equations. (Russian) Differentsial'nye Uravneniya 23 (1987), no. 3, 524-526.

