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The differential equation
yn = f(t, y, y′, . . . , yn−1) (1)

is considered. Here n ≥ 2, f : [α, ω[×∆Y0 ×∆Y1 × · · · ×∆Yn−1 → R is some continuous function,
−∞ < α < ω ≤ +∞, Yj equals to zero, or to +∞, ∆Yj is some one-sided neighborhood of Yj ,
j = 0, 1, . . . , n− 1.

The asymptotic estimations for singular, quickly varying, and Kneser solutions of equation (1)
are described in the monograph by I. T. Kiguradze, T. A. Chanturia [4].

Definition 1. The solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ is called
Pω(Y0, Y1, . . . , Yn−1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if the next conditions take place

y(j)(t) ∈ ∆Yj as t ∈ [t0, ω[ , lim
t↑ω

y(j)(t) = Yj (j = 0, 1, . . . , n− 1), lim
t↑ω)

[yn−1(t)]2

yn−2(t)yn(t)
= λ0.

The asymptotic behavior of such solutions earlier has been investigated in the works by V. M. Ev-
tukhov and A. M. Klopot [1–3,5] for the differential equation

yn =
m∑

n−1

aipi(t)
n−1∏
j=0

φij(y
(j)),

where n ≥ 2, αi ∈ {−1; 1}, pi : [α, ω[→ ]0,+∞[ is a continuous function i = 1, . . . ,m, −∞ < α <
ω ≤ +∞, φij : ∆Yj → ]0,+∞[ is a continuous regularly varying as y(j) → Yj function of order

σj , j = 0, 1, . . . , n− 1 (i− 1, . . . ,m).

The aim of the paper is to establish the necessary and sufficient conditions of the existence of
Pω(Y0, Y1, . . . , Yn−1, 1)-solutions of equation (1) and to find the asymptotic representations of such
solutions and their derivatives to the order n− 1 including.

Every Pω(Y0, Y1, . . . , Yn−1, 1)-solution of the differential equation (1) has (see, for example, [1])
the next a priori asymptotic properties

y′(t)

y(t)
∼ y′′(t)

y′(t)
∼ · · · ∼ yn(t)

yn−1(t)
as t ↑ ω, lim

t↑ω

πω(t)y
′(t)

y(t)
= ±∞,

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.
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Definition 2. The function f in the differential equation (1) is called a function, that satisfies the
condition (RN)1, if there exist a number α0 ∈ {−1; 1}, a continuous function p : [α, ω[→ ]0,+∞[
continuous varying as z → Yj (j = 0, 1, . . . , n−1), functions φj : ∆Yj → ]0,+∞[ (j = 0, 1, . . . , n−1)
of orders σj (j = 0, 1, . . . , n− 1), such that for all continuously differentiable functions zj : [α, ω[→
∆Yj (j = 0, 1, . . . , n− 1), satisfying the conditions

lim
t↑ω

zj(t) = Yj , lim
t↑ω

πω(t)z
′
j(t)

zj(t)
= ±∞ (j = 0, 1, . . . , n− 1),

lim
t↑ω

z′n−1(t)zj(t)

zn−1(t)z′j(t)
= 1 (j = 1, . . . , n− 1),

the next representation takes place

f(t, z0(t), z1(t), . . . , zn−1(t)) = α0p(t)
n−1∏
j=0

φj(zj(t))[1 + o(1)] as t ↑ ω.

Furthermore, we will use the following notations.

γ = 1−
n−1∑
j=0

σj , µn =
n−2∑
j=0

σj(n− j − 1),

νj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is the right neighborhood of zero,
−1 if Yj = +∞, or Yj = 0 and ∆Yj is the left neighborhood of zero

(j = 0, 1, . . . , n− 1),

J0(t) =

t∫
A0

p(s) ds, J00(t) =

t∫
A00

J0(s) ds,

where

A0 =


α if

ω∫
α

p(s) ds = +∞,

ω if
ω∫

α

p(s) ds < +∞,

A00 =


α if

ω∫
α

|J0(s)| ds = +∞,

ω if
ω∫

α

|J0(s)| ds < +∞.

Theorem. Let the function f satisfy the condition (RN)1 and γ ̸= 0. Then for the existence of
Pω(Y0, Y1, . . . , Yn−1, 1)-solutions of equation (1) the next conditions are necessary:

p(t)

J0(t)
∼ J0(t)

J00(t)
as t ↑ ω,

lim
t↑ω

πw(t)p(t)

J0(t)
= ±∞, νj lim

t↑ω
|J0(t)|1/γ = Yj (j = 0, 1, . . . , n− 1),

and for t ∈ ]α, ω[ , the next inequalities take place

α0Vn−1γJ0(t) > 0, νjνn−1(γJ0(t))
n−j−1 > 0 (j = 0, 1, . . . , n− 2).

As the algebraic p equation

(1 + p)n =
n−1∑
j=0

σj(1 + pj (2)
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has no roots with zero real part, the conditions are also sufficient for the existence of such solutions
of equation (1). Moreover, for such solutions the next asymptotic representations

yj(t) =
(γJ00(t)

J0(t)

)n−j−1
yn−1(t)[1 + o(1)] (j = 0, 1, . . . , n− 2), (3)

|y(n−1)(t)|γ
n−1∏
j=0

Lj

(γJ00(t)
J0(t)

)n−j−1
yn−1(t)

= γJ0(t)
∣∣∣γJ00(t)
J0(t)

∣∣∣µn

[1 + 0(1)] (4)

take place as t ↑ ω. Here

Lj(y
(j)) = |y(j)|−σjφj(y

(j)(t)) (j = 0, 1, . . . , n− 1).

There exists m-parametric family of such solutions, if among the roots of equation (2) there exists
m roots (taking into account multiple roots), the real parts of which have the sign that is among
opposite to the sign of α0Vn−1.
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