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1 Introduction
We consider an extremum problem with weighted integral cost functional for the following parabolic
mixed problem

ut = (a(x, t)ux)x + b(x, t)ux + h(x, t)u, (x, t) ∈ QT = (0, 1)× (0, T ), T > 0, (1.1)
u(0, t) = φ(t), ux(1, t) = ψ(t), 0 < t < T, (1.2)

u(x, 0) = ξ(x), 0 < x < 1, (1.3)

where the real functions a, b and h are smooth in QT , 0 < a0 ≤ a(x, t) ≤ a1 < ∞, φ ∈ W 1
2 (0, T ),

ψ ∈ W 1
2 (0, T ), ξ ∈ L2(0, 1). Here W 1

2 (0, T ) is the Sobolev space of weakly differentiable functions
with the norm

‖u‖2W 1
2 (0,T ) =

T∫
0

(u′
2
+ u2) dt.

We study the control problem with pointwise observation: by controlling the temperature φ at
the left end of the segment (the functions ψ and ξ are assumed to be fixed), we try to make at some
point x0 ∈ (0, 1) the temperature u(x0, t) close to the given function z(t) over the entire time interval
(0, T ). This problem arises in the model of climate control in industrial greenhouses [1, 6]. Note
that extremal problems for parabolic equations were considered in [11,15,17,18] (as usual, problems
with final or distributed observation). But the results and methods of investigation are not similar
to our methods. The proposed paper develops and generalizes the authors’ results of [1–8]. Here
we study a more general equation with a variable diffusion coefficient a, a convection coefficient b,
and a potential h called the depletion potential. We state a problem of double minimization to our
functional obtain by finding first minimum of the functional in some class of control functions and
iterated minimum by weight. For such problem we prove the existence of a pair of minimizers.

As well as in [13, p. 6], we denote by V 1,0
2 (QT ) the Banach space of functions u ∈ W 1,0

2 (QT )
with the finite norm

‖u‖
V 1,0
2 (QT )

= sup
0≤t≤T

‖u( · , t)‖L2(0,1) + ‖ux‖L2(QT )

such that t 7→ u( · , t) is a continuous mapping from [0, T ] to L2(0, 1). Let W̃ 1
2 (QT ) be set of all

functions η ∈W 1
2 (QT ) satisfying the conditions η( · , T ) = 0, η(0, · ) = 0.
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Definition 1.1. A function u ∈ V 1,0
2 (QT ), satisfying the condition u(0, t) = φ(t) and the equality∫

QT

(a(x, t)uxηx − b(x, t)uxη − h(x, t)uη − uηt) dx dt

=

1∫
0

ξ(x)η(x, 0) dx+

T∫
0

a(1, t)ψ(t) η(1, t) dt (1.4)

for all η ∈ W̃ 1
2 (QT ), is called a weak solution to problem (1.1)–(1.3).

2 Main Results
Theorem 2.1. The problem (1.1)–(1.3) has a unique weak solution u ∈ V 1,0

2 (QT ), which satisfies
the inequality

‖u‖
V 1,0
2 (QT )

≤ C1

(
‖φ‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T ) + ‖ξ‖L2(0,1)

)
(2.1)

with some constant C1 independent of φ, ψ and ξ.

Corollary 2.1. The solution u to problem (1.1)–(1.3) continuously depends on the triple (ξ, φ, ψ)
from L2(0, 1)×W 1

2 (0, T )×W 1
2 (0, T ).

We consider a set of control functions φ ∈W 1
2 (0, T ) and a set of objective functions z ∈ L2(0, T ).

These sets are denoted by Φ and Z. Hereafter we suppose that Φ is a non-empty, closed, convex,
and bounded set. Consider the weighted integral cost functional

J [z, ρ, φ] =

T∫
0

(uφ(x0, t)− z(t))2ρ(t) dt, x0 ∈ (0, 1), φ ∈ Φ, z ∈ Z,

where uφ ∈ V 1,0
2 (QT ) is the solution to problem (1.1)–(1.3) with the given control function φ. Here

ρ ∈ L∞(0, T ) is a real-valued weight function such that ess inf
t∈(0,T )

ρ(t) > 0. Assuming the functions

z and ρ to be fixed, consider the minimization problem of finding

m[z, ρ,Φ] = inf
φ∈Φ

J [z, ρ, φ].

Theorem 2.2 ([5, 8, 9]). For any z ∈ L2(0, T ) there exists a unique function φ0 ∈ Φ such that

m[z, ρ,Φ] = J [z, ρ, φ0].

Take ˜̃ρ > ρ̃ > 0, we consider the set P ⊂ L∞(0, T ) of all weight functions ρ with

ess inf
t∈(0,T )

ρ(t) > ρ̃, ess sup
t∈(0,T )

ρ(t) 6 ˜̃ρ.
Let us state for some subset P̃ ⊂ P the double minimum problem

µ[z, P̃ ,Φ] = inf
ρ∈P̃

m[z, ρ,Φ].

Definition 2.1 ([12]). Let X be a Banach space. The set Y ⊂ X∗ is called a regularly convex if
for any y /∈ Y there exists an element x0 ∈ X such that

sup
f∈Y

f(x0) < y(x0).
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Theorem 2.3. Let the set P̃ be regularly convex in L∞(0, T ). Then for all z ∈ L2(0, T ) there exist
functions ρ0 ∈ P̃ and φ0 ∈ Φ such that

µ[z, P̃ ,Φ] = J [z, ρ0, φ0].

3 Proofs
At first we establish the following generalization of the classical maximum principle (see [13, Ch. 3,
Par. 7]).

Lemma 3.1. If u ∈ V 1,0
2 (QT ) is a solution to the problem

ut = (a(x, t)ux)x + b(x, t)ux + h(x, t)u, (x, t) ∈ QT , (3.1)
u(0, t) = φ(t), ux(1, t) = 0, 0 < x < 1, t > 0,

u(x, 0) = 0, 0 < x < 1,

then the inequality
ess sup

(x,t)∈QT

|u(x, t)| ≤ C2 sup
t∈[0,T ]

|φ(t)| (3.2)

holds with a constant C2 > 0 depending only on the coefficients of equation (3.1).

Also we will use the following statements to prove Theorem 2.3.

Theorem 3.1 ([12, Theorem 10]). Let X be a separable Banach space. Then a set Y ⊂ X∗ is
regularly convex if and only if it is convex and ∗-weakly closed.

Theorem 3.2 ( [10, Ch. 8, § 7]). For any bounded sequence (ρk)k∈N in L∞(0, T ) there exist a
subsequence (ρkj )j∈N and a function ρ0 ∈ L∞(0, T ) such that

lim
j→+∞

T∫
0

ρkj (t)ζ(t) dt =

T∫
0

ρ0(t)ζ(t) dt

for any function ζ ∈ L1(0, T ).

Proof of Theorem 2.3. Put d = µ[z, P̃ ,Φ]. Then there exists a sequence of weight functions
ρ1, ρ2, . . . ∈ P̃ such that

m[z, ρk,Φ] → d, k → ∞. (3.3)

So, by (3.3) and Theorem 2.2 there exists a sequence of control functions φ1, φ2, · · · ∈ Φ satisfying

J [z, ρk, φk] = m[z, ρk,Φ] → d, k → ∞.

The functions φk belong to Φ, so, the sequence of norms ‖φk‖W 1
2 (0,T ) is bounded due to boundedness

of the set Φ. Therefore, there exists a subsequence (φkj )j∈N converging weakly inW 1
2 (0, T ) to some

function φ0 ∈ Φ due to closeness of the set Φ. Now, by compact embedding of W 1
2 (0, T ) into

C([0, T ]), the sequence (φkj )j∈N converges to φ0 by norm of C([0, T ]):

‖φkj − φ0‖C([0,T ]) → 0, j → ∞. (3.4)

Further we write φk instead if φkj .
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The next step is to study behavior of the sequence of solutions uk = uφk
, k = 1, 2, . . . , to

problem (1.1)–(1.3) in the space W 1,0
2 (QT ). Functions uk are solutions of the following mixed

problems:

ukt = (a(x, t)ukx)x + b(x, t)ukx + h(x, t)uk, (x, t) ∈ QT ,

uk(0, t) = φk(t), ukx(1, t) = ψ(t), 0 < t < T,

uk(x, 0) = ξ(x), 0 < x < 1.

Functions uφk
satisfy the condition uφk

(0, t) = φk(t) and by (1.4) the equalities∫
QT

(a(x, t)uφkxηx − b(x, t)uφkxη − h(x, t)uφk
η − uφk

ηt) dx dt

=

1∫
0

ξ(x)η(x, 0) dx+

T∫
0

a(1, t)ψ(t) η(1, t) dt (3.5)

for all η ∈ W̃ 1
2 (QT ). It follows from (2.1) that

‖uφk
‖
W 1,0

2 (QT )
≤ C3‖uφk

‖
V 1,0
2 (QT )

≤ C4

(
‖φk‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T ) + ‖ξ‖L2(0,1)

)
≤ C5

with a constant C5 independent of k. So, there exists a subsequence uφkj
(we denote it by uj) such

that uj → u0, j → ∞, weakly for some u0 ∈ W 1,0
2 (QT ). From (3.5) and the weak convergence of

the sequence uj in W 1,0
2 (QT ), it follows that the weak limit (the function u0) satisfies equality (1.4)

for all η ∈ W̃ 1
2 (QT ). Now, we prove that u0|x=0 = φ0. By the Banach–Saks theorem [16, Ch. 2,

Sec. 38] we have a subsequence (we denote it by uj too) such that

‖ûk − u0‖W 1
2 (QT ) → 0, k → ∞, ûk =

1

k

k∑
j=1

uj . (3.6)

Therefore,
‖ûk(0, t)− u0(0, t)‖L2(0,T ) ≤ C6‖ûk − u0‖W 1

2 (QT ) → 0, k → ∞. (3.7)

But it follows from (3.6), (3.7) that in the L2(0, T ) space we have

u0(0, · ) = s− lim
k→∞

1

k

k∑
j=1

φj( · ) = w − lim
k→∞

1

k

k∑
j=1

φj( · ) = w − lim
k→∞

φk( · ) = φ0( · ).

(If φk converges to φ0 weakly in W 1
2 (0, T ), then it converges weakly to φ0 in L2(0, T ) too.) So, the

limit function u satisfies u0|x=0 = φ0. It means that u is a solution to problem (1.1)–(1.3) with the
control function φ = φ0. Let vk = uφk

− uφ0 . Functions vk are solutions to the following mixed
problems:

vkt = (a(x, t)vkx)x + b(x, t)vkx + h(x, t)vk, (x, t) ∈ QT ,

vk(0, t) = φk(t)− φ0(t), vkx(1, t) = 0, 0 < t < T,

vk(x, 0) = 0, 0 < x < 1.

By inequalities (3.2) and (3.4) we obtain that

‖vk(x0, t)‖L2(0,T ) ≤
√
T ‖vk(x0, t)‖C([0,T ]) → 0, k → ∞.
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So, the sequence of functions {(uk(x0, · )− z( · ))2}∞k=1 converges by norm in the L1(0, T ) space to
the function (u0(x0, · )−z( · ))2. Now, by Theorem 3.1 we can extract from the minimizing sequence
of weight functions ρk(t) a subsequence (we will denote it also ρk(t)) that *-weakly converges in
L∞(0, T ) to some ρ0 ∈ P̃ . Combining this with Theorem 3.2, we obtain the following relation:

µ[z, P̃ ,Φ] = lim
k→∞

T∫
0

(uφk
(x0, t)− z(t))2ρk(t) dt =

T∫
0

(uφ0(x0, t)− z(t))2ρ0(t) dt = J [z, ρ0, φ0].

Proof of Theorem 2.3 is completed.
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