The Exponential Solution to Quaternion Dynamic Equations Based on a New Quaternion Hyper-Complex Space with Hyper Argument

Chao Wang
Department of Mathematics, Yunnan University, Kunming, Yunnan, People's Republic of China
E-mail: chaowang@ynu.edu.cn
Ravi P. Agarwal ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Texas A $\mathcal{G} M$ University-Kingsville, TX 78363-8202, Kingsville, TX, USA
${ }^{2}$ Distinguished University Professor of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, United States
E-mail: Ravi.Agarwal@tamuk.edu

Abstract

In this short communication, we will introduce the notion of quaternion hyper argument to construct the non-commutative quaternion hyper argument space. By virtue of the structure of the Hilger complex plane and hyper argument space theory, we establish a theoretical framework of the quaternion hyper-complex space in which the new quaternion hyper-complex exponent, the hyper-complex logarithm are introduced. Note that the quaternion exponential functions introduced here is a solution of the linear homogeneous dynamic equation $x^{\Delta}(t)=f(t) x(t)$ under the non-commutative quaternion function f.

1 Quaternion hyper argument space and calculus

The notion of quaternion was introduced by Hamilton in 1843, which provides a type of hypercomplex numbers and extends the filed \mathbb{C} of the complex numbers to a novel non-commutative division ring under the addition and multiplication operation. The study quaternion dynamic equations becomes a hot topic and some basic results were established on time scales by Wang and Agarwal et al. (see [1-6]).

In the literature [4], some important notions of the hyper-complex polar form of the quaternion numbers and a notion of the quaternion hyper argument are presented as follows.
Definition 1.1 ([4]). Let $q=q_{0}+q_{1} i+q_{2} j+q_{3} k \in \mathbb{Q}, \cos ^{\mathbb{Q}}, \sin ^{\mathbb{Q}}: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$, we define the quaternion polar form of q by

$$
q:=|q| e^{\arg ^{\mathbb{Q}}(q)}=|q| e^{\Theta}=|q|\left[\cos ^{\mathbb{Q}} \Theta+\sin ^{\mathbb{Q}} \Theta j\right],
$$

where

$$
\begin{gathered}
\Theta=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}, \quad q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{R}, \quad \theta^{(1)}, \theta^{(2)} \in(-\pi, \pi], \quad \theta^{(3)} \in\left[0, \frac{\pi}{2}\right], \\
\cos ^{\mathbb{Q}} \Theta=\cos \theta^{(1)} \cos \theta^{(3)}+\sin \theta^{(1)} \cos \theta^{(3)} i, \quad \sin ^{\mathbb{Q}} \Theta=\cos \theta^{(2)} \sin \theta^{(3)}+\sin \theta^{(2)} \sin \theta^{(3)} i,
\end{gathered}
$$

and $\theta^{(1)}, \theta^{(2)}, \theta^{(3)}$ satisfy the following conditions:
(i) $\cos \theta^{(1)}=\frac{q_{0}}{\sqrt{q_{0}^{2}+q_{1}^{2}}}$ and $\sin \theta^{(1)}=\frac{q_{1}}{\sqrt{q_{0}^{2}+q_{1}^{2}}}$ if $q_{0}+q_{1} i \neq 0 ; \theta^{(1)}=0$ if $q_{0}+q_{1} i=0$;
(ii) $\cos \theta^{(2)}=\frac{q_{2}}{\sqrt{q_{2}^{2}+q_{3}^{2}}}$ and $\sin \theta^{(2)}=\frac{q_{3}}{\sqrt{q_{2}^{2}+q_{3}^{2}}}$ if $q_{2} j+q_{3} k \neq 0 ; \theta^{(2)}=0$ if $q_{2} j+q_{3} k=0$;
(iii) $\cos \theta^{(3)}=\frac{\sqrt{q_{0}^{2}+q_{1}^{2}}}{|q|}$ and $\sin \theta^{(3)}=\frac{\sqrt{q_{2}^{2}+q_{3}^{2}}}{|q|}$ if $q \neq 0 ; \theta^{(1)}=\theta^{(2)}=\theta^{(3)}=0$ if $q=0$,
we call Θ the quaternion hyper-principle argument. Generally, we define the quaternion hyper $\operatorname{argument} \operatorname{Arg}^{\mathbb{Q}}(q)$ of q satisfying

$$
e^{\operatorname{Arg}^{\mathbb{Q}}(q)}:=e^{\Upsilon}=\cos ^{\mathbb{Q}} \Upsilon+\sin ^{\mathbb{Q}} \Upsilon j,
$$

where $\Upsilon=\left(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}\right)^{\mathbb{Q}} \in \Gamma_{q}$ and

$$
\Gamma_{q}=\left\{\Upsilon \mid \cos ^{\mathbb{Q}} \Theta+\sin ^{\mathbb{Q}} \Theta j=\cos ^{\mathbb{Q}} \Upsilon+\sin ^{\mathbb{Q}} \Upsilon j\right\}
$$

Remark 1.1. Let

$$
\left.q=|q| e^{\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)}\right)^{\varrho}, \quad p=|p| e^{\left(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}\right)^{\varrho}}
$$

then

$$
\arg ^{\mathbb{Q}}(q p) \neq\left(\theta^{(1)}+\gamma^{(1)}, \theta^{(2)}+\gamma^{(2)}, \theta^{(3)}+\gamma^{(3)}\right)^{\mathbb{Q}}
$$

in general.
Remark 1.2. Let

$$
\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}, \quad \arg ^{\mathbb{Q}}(\bar{q})=\left(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}\right)^{\mathbb{Q}}
$$

then

$$
\theta^{(1)}+\gamma^{(1)}=0, \quad\left|\theta^{(2)}-\gamma^{(2)}\right|=\pi \quad \text { and } \theta^{(3)}=\gamma^{(3)} .
$$

Remark 1.3. Note that the quaternion hyper-principle argument

$$
\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}
$$

is unique for each fixed q.
Remark 1.4. Let

$$
\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}} \text { and } \operatorname{Arg}^{\mathbb{Q}}(q)=\left(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}\right)^{\mathbb{Q}}, n_{1}, n_{2}, n_{3} \in \mathbb{Z}
$$

then

$$
\alpha^{(1)}=\theta^{(1)}+2 n_{1} \pi, \quad \alpha^{(2)}=\theta^{(2)}+2 n_{2} \pi, \quad \alpha^{(3)}=\theta^{(3)}+2 n_{3} \pi,
$$

or

$$
\alpha^{(1)}=\theta^{(1)}+2 n_{1} \pi, \quad \alpha^{(2)}=\theta^{(2)}+2 n_{2} \pi+\pi, \quad \alpha^{(3)}=-\theta^{(3)}+2 n_{3} \pi,
$$

or

$$
\alpha^{(1)}=\theta^{(1)}+2 n_{1} \pi+\pi, \quad \alpha^{(2)}=\theta^{(2)}+2 n_{2} \pi+\pi, \quad \alpha^{(3)}=\theta^{(3)}+2 n_{3} \pi+\pi,
$$

etc., this indicates that Γ_{q} is an infinite set.

Remark 1.5. Note that

$$
\left\{q \mid q \in \mathbb{Q}, \arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}, \theta^{(3)}=0\right\}=\mathbb{C}
$$

and

$$
\left\{q \mid q \in \mathbb{Q}, \arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}, \theta^{(3)}=0, \theta^{(1)}=0 \text { or } \pi\right\}=\mathbb{R}
$$

Moreover,

$$
\begin{gathered}
e^{\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}}=e^{\theta^{(1)} i} \text { if } \theta^{(3)}=0 ; \\
q \in \mathbb{R} \text { and } e^{\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}}=1 \text { if } \theta^{(3)}=\theta^{(1)}=0 ; \\
e^{\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)}=e^{\theta^{(2)}} j \text { if } \theta^{(3)}=\frac{\pi}{2} .
\end{gathered}
$$

Remark 1.6. Note that for $\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}$, it follows that

$$
q=a+b j=|a| e^{\theta^{(1)} i}+|b| e^{\theta^{(2)} i} j=|q|\left(e^{\theta^{(1)} i} \cos \theta^{(3)}+e^{\theta^{(2)} i} \sin \theta^{(3)} j\right),
$$

where $a, b \in \mathbb{C}$.

2 The quaternion hyper-complex space

Definition $2.1([4])$. Let $h>0, \mathbb{Q}=\mathbb{C}_{1} \times \mathbb{C}_{2}, q=\left(q_{0}+q_{1} i\right)+\left(q_{2}+q_{3} i\right) j \in \mathbb{Q}, q_{0}+q_{1} i \in \mathbb{C}_{1}$ and $q_{2}+q_{3} i \in \mathbb{C}_{2}$. Then \mathbb{C}_{1} is called the sub-complex plane of the quaternion hyper-complex space, and \mathbb{C}_{2} is called the imaginary-complex plane of the quaternion hyper-complex space. Moreover, we define the Hilger quaternion number set as

$$
\mathbb{Q}_{h}:=\left\{q \in \mathbb{Q}: q \neq-\frac{1}{h}\right\} .
$$

Let $q=a+b j \in \mathbb{Q}_{h}, a, b \in \mathbb{C}, \theta^{(1)}=\operatorname{Im}_{h}(a), \theta^{(2)}=\operatorname{Im}_{h}(b), \theta^{(3)}=\operatorname{Im}_{h}(|a|+|b| j)$, then the schematic diagram of the quaternion hyper-complex space is showed by Figure 1. For $h=0$, then $\mathbb{Q}_{0}=\mathbb{Q}$.

Now, let

$$
\chi_{h}(q)=\left\{\begin{array}{ll}
\frac{\ln |1+h q|}{h} & \text { for } h>0, \\
q_{0} & \text { for } h=0,
\end{array} \quad \mathbb{A}_{h}(q)= \begin{cases}\frac{1}{h} \cdot \arg ^{\mathbb{Q}}(1+h q) & \text { for } h>0 \\
\lim _{h \rightarrow} \frac{1}{h} \cdot \arg ^{\mathbb{Q}}(1+h q) & \text { for } h=0\end{cases}\right.
$$

we introduce the hyper-complex cylinder transformation $\xi_{h}^{\mathbb{Q}}: \mathbb{Q}_{h} \rightarrow \mathbb{Z}_{h}^{\mathbb{Q}}$ by

$$
\xi_{h}^{\mathbb{Q}}(q)=\chi_{h}(q)+\mathbb{A}_{h}(q)= \begin{cases}\frac{\ln |1+h q|}{h}+\frac{1}{h} \cdot \arg ^{\mathbb{Q}}(1+h q) & \text { for } h>0 \\ q_{0}+\lim _{h \rightarrow 0} \frac{1}{h} \cdot \arg ^{\mathbb{Q}}(1+h q) & \text { for } h=0\end{cases}
$$

where

$$
\mathbb{Z}_{h}^{\mathbb{Q}}=\left\{q \in \mathbb{Q}: \theta^{(1)}, \theta^{(2)} \in\left(-\frac{\pi}{h}, \frac{\pi}{h}\right], \theta^{(3)} \in\left[0, \frac{\pi}{2}\right]\right\} .
$$

The imaginary-complex plane \mathbb{C}_{2}

$$
\theta^{(1)}=\operatorname{Im}_{h}(a), \theta^{(2)}=\operatorname{Im}_{h}(b), \theta^{(3)}=\operatorname{Im}_{h}(|a|+|b| j)
$$

The quaternion hyper-complex space

Figure 1. The geometric diagram of the quaternion hyper-complex space.

Remark 2.1. Let $h>0$, the Hilger complex numbers $\mathbb{C}_{h}=\left\{z \in \mathbb{C} \left\lvert\, z \neq-\frac{1}{h}\right.\right\}$, then $\mathbb{C}_{h} \subset \mathbb{Q}_{h}$. In fact, let $p, q \in \mathbb{Q}_{h}$ and $\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}}, \arg ^{\mathbb{Q}}(p)=\left(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}\right)^{\mathbb{Q}}$, we have

$$
\begin{aligned}
\arg ^{\mathbb{Q}}(q) \oplus \mathbb{Q} \arg ^{\mathbb{Q}}(p) & =\theta^{(1)} i+\gamma^{(1)} i, \\
\arg ^{\mathbb{Q}}(q) \ominus \mathbb{Q} \arg ^{\mathbb{Q}}(p) & =\theta^{(1)} i-\gamma^{(1)} i, \\
b \cdot \arg ^{\mathbb{Q}}(q) & =b \theta^{(1)} i,
\end{aligned}
$$

where $b \in \mathbb{R}$ and $\theta^{(2)}=\theta^{(3)}=\gamma^{(2)}=\gamma^{(3)}=0$, it means that the operations $\oplus_{\mathbb{Q}}$ and $\ominus_{\mathbb{Q}}$ will turn into the classical operations + and - when $\theta^{(2)}=\theta^{(3)}=\gamma^{(2)}=\gamma^{(3)}=0$, by Remark 1.5, we can obtain $\mathbb{C}_{h} \subset \mathbb{Q}_{h}$.

Next, we will introduce the quaternion hyper-complex logarithm in the quaternion hypercomplex space.

Definition 2.2 ([4]). Let $q \in \mathbb{Q}, q \neq 0$. We define the quaternion hyper-complex logarithm by

$$
\log ^{\mathbb{Q}}(q):=\ln |q|+\arg ^{\mathbb{Q}}(q) .
$$

Remark 2.2. Note that $e^{\log ^{\mathbb{Q}}(q)}=q$ for any nonzero quaternion number $q \in \mathbb{Q}$. In fact,

$$
e^{\log ^{Q}(q)}=e^{\ln |q|+\arg ^{\mathbb{Q}}(q)}=e^{\ln |q|} e^{\arg ^{\bigotimes}(q)}=|q| e^{\arg ^{\mathbb{Q}}(q)}=q .
$$

Remark 2.3. Let $q, p \in \mathbb{Q}$,

$$
\arg ^{\mathbb{Q}}(q)=\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}} \text { and } \arg ^{\mathbb{Q}}(p)=\left(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}\right)^{\mathbb{Q}},
$$

then

$$
\log ^{\mathbb{Q}}(q p)=\ln |q|+\ln |p|+\left(\theta^{(1)}, \theta^{(2)}, \theta^{(3)}\right)^{\mathbb{Q}} \oplus_{\mathbb{Q}}\left(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}\right)^{\mathbb{Q}} .
$$

3 The quaternion hyper-complex exponential function and dynamic equation on time scales

Definition 3.1 ([4]). Let $t, s \in \mathbb{T}, f: \mathbb{T} \rightarrow \mathbb{Q}, 1+\mu(t) f(t) \neq 0$ for any $t \in \mathbb{T}^{\kappa}$, then we define $\widehat{x}\left(t, t_{0}\right)$ and $\widetilde{x}\left(t, t_{0}\right)$ as follows:
(i) $\widehat{x}(t, s):=e^{\int_{s}^{t} \frac{\ln |1+\mu(\tau) f(\tau)|}{\mu(\tau)} \Delta \tau+\int_{s}^{t} \frac{1}{\mu(\tau)} \cdot \arg ^{\mathbb{Q}}(1+\mu(\tau) f(\tau)) \Delta \tau}$ if $\mu(\tau)>0$ for any $\tau \in[s, t]_{\mathbb{T}}$.
(ii) If $\lim _{u \rightarrow 0} \frac{1}{u} \cdot \arg ^{\mathbb{Q}}(1+u f(t))=\Theta(t)$ and $\Theta(t)$ is an integrable quaternion hyper argument function, then we define

$$
\widetilde{x}(t, s):=e^{\int_{s}^{t} f_{0}(\tau) \mathrm{d} \tau+\int_{s}^{t} \Theta(\tau) \mathrm{d} \tau}
$$

if $\mu(\tau)=0$ for any $\tau \in[s, t]_{\mathbb{T}}$, where $f(t)=f_{0}(t)+f_{1}(t) i+f_{2}(t) j+f_{3}(t) k$.
Generally, Based on the hyper-complex cylinder transformation $\xi_{\mu(t)}^{\mathbb{Q}}: \mathbb{Q}_{h} \rightarrow \mathbb{Z}_{h}^{\mathbb{Q}}$ by

$$
\begin{aligned}
\xi_{\mu(t)}^{\mathbb{Q}}(f(t)) & =\chi_{\mu(t)}(f(t))+\mathbb{A}_{\mu(t)}(f(t)) \\
& = \begin{cases}\frac{\ln |1+\mu(t) f(t)|}{\mu(t)}+\frac{1}{\mu(t)} \cdot \arg ^{\mathbb{Q}}(1+\mu(t) f(t)) & \text { for } \mu(t)>0, \\
f_{0}(t)+\Theta(t) & \text { for } \mu(t)=0,\end{cases}
\end{aligned}
$$

we define the quaternion hyper-complex exponential function by

$$
e_{f}^{\mathbb{Q}}(t, s):=e^{\int_{s}^{t} \xi_{\mu(\tau)}^{\mathbb{Q}}(f(\tau)) \Delta \tau}=e^{\int_{s}^{t} \chi_{\mu(\tau)}(f(\tau)) \Delta \tau+\int_{s}^{t} \mathbb{A}_{\mu(\tau)}(f(\tau)) \Delta \tau} .
$$

The following result is valid.
Theorem $3.1([4])$. Let $s, r, t \in \mathbb{T}, f: \mathbb{T} \rightarrow \mathbb{Q}, 1+\mu(t) f(t) \neq 0$ for any $t \in \mathbb{T}^{\kappa}$. Then
(i) $e_{f}^{\mathbb{Q}}(s, s)=1$;
(ii) $e_{f}^{\mathbb{Q}}(t, r) e_{f}^{\mathbb{Q}}(r, s)=e_{f}^{\mathbb{Q}}(t, s)$;
(iii) $\left(e_{f}^{\mathbb{Q}}(t, s)\right)^{\Delta}=f(t) e_{f}^{\mathbb{Q}}(t, s)$;
(iv) $\left(e_{f}^{\mathbb{Q}}(s, t)\right)^{\Delta}=e_{f}^{\mathbb{Q}}(s, t)(1+\mu(t) f(t))^{-1}[-f(t)]$ if t is a right scattered point on \mathbb{T}.

References

[1] Z. Li and C. Wang, Cauchy matrix and Liouville formula of quaternion impulsive dynamic equations on time scales. Open Math. 18 (2020), no. 1, 353-377.
[2] Z. Li, C. Wang, R. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales. Stud. Appl. Math. 146 (2021), no. 1, 139-210.
[3] C. Wang, D. Chen and Z. Li, General theory of the higher-order quaternion linear difference equations via the complex adjoint matrix and the quaternion characteristic polynomial. J. Difference Equ. Appl. 27 (2021), no. 6, 787-857.
[4] C. Wang, Z. Li and R. P. Agarwal, A new quaternion hyper-complex space with hyper argument and basic functions via quaternion dynamic equations. J. Geom. Anal. (accepted).
[5] C. Wang, Z. Li and R. P. Agarwal, Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete Contin. Dyn. Syst., Ser. S, 2021; doi: 10.3934/dcdss. 2021041.
[6] C. Wang, G. Qin, R. P. Agarwal and D. O'Regan, \diamond_{α}-Measurability and combined measure theory on time scales. Applic. Anal., 2020;
doi: https://doi.org/10.1080/00036811.2020.1820997.

