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In this paper, we are concerned with the existence and uniqueness of weak and strong solutions
to stochastic functional differential equations in a Hilbert space of the form

du(t) =
[
Au(t) + f(ut, yt)

]
dt+ σ(ut, yt) dW (t),

dy(t) = g(ut, yt) dt, t ≥ 0,

u(t) = ϕ(t), y(t) = ψ(t), t ∈ [−h, 0], h > 0.

(0.1)

Here ut = u(t+θ), yt = y(t+θ), θ ∈ [−h, 0], A is an infinitesimal generator of an analytic semigroup
of bounded linear operators {S(t) : t ≥ 0} in a separable Hilbert space H, W (t) is a Q-Wiener
process on a separable Hilbert space K, u(t) is a state process, the functionals f and g map the
space of functions continuous on [−h, 0] into H, σ maps the same space into a special space of
Hilbert–Schmidt operators. Finally, ϕ, ψ : [−h, 0] → H are the initial condition functions.

Functional differential equations are mathematical models of processes whose evolution depends
on their previous states. The paired stochastic equations of type (0.1) arise in various applications;
for instance, the bidomain equation (defibrillator model), the Hodgkin–Huxley equation for nerve
axons, the nuclear reactor dynamics equation, etc. These equations are characterized by the fact
that one of them is a partial differential equation (infinite-dimensional), and the other is an ordinary
one (finite-dimensional). The nonlinearities in such equations do not satisfy the Lipschitz condition,
which complicates the proof of the existence and uniqueness. However, as a rule, the right-hand
sides of these equations satisfy some monotonicity conditions, which makes it possible to apply
Galerkin approximations. This method is the main technique for obtaining the existence and
uniqueness of weak solutions in this paper.
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1 Preliminaries and main results
Let K and H be two separable Hilbert spaces and let V ⊂ H be a reflexive Banach space with the
dual space H ′. By identifying H with its dual H ′, we have V ⊂ H ∼= H ′ ⊂ V ′, where the inclusions
are assumed to be continuous and dense. (V,H, V ′) is called a Gelfand triple. Let the norms in
V,H and V ′ be denoted by ∥ · ∥V , ∥ · ∥ and ∥ · ∥V ′ , respectively. The inner product in H and
the duality scalar product between V and V ′ will be denoted by ( · , · ), and ⟨ · , · ⟩. The norm and
inner product in K will be denoted by ∥ · ∥K and ( · , · ), respectively.

Let (Ω,F , P ) be a complete probability space equipped with the normal filtration {Ft : t ≥ 0}
generated by the Q-Wiener process W on (Ω,F , P ) with the linear bounded covariance operator
such that trQ < ∞. We assume that there exist a complete orthonormal system {ek} in K and a
sequence of nonnegative real numbers λk such that

Qek = λkek, k = 1, 2, . . . , and
∞∑
k=1

λk <∞.

The Wiener process admits the expansion

W (t) =

∞∑
k=1

√
λk βk(t)ek,

where βk(t) are real valued Brownian motions mutually independent on (Ω,F , P ).
Let U0 = Q

1
2 (U) and L0

2 = L2(U0,H) be the space of all Hilbert-Schmidt operators from U0 to H
with the inner product (Φ,Ψ)L0

2
= tr[ΦQΨ∗] and the norm ∥Φ∥L0

2
, respectively. C := C([−h, 0];H)

is the space of continuous mappings from [−h, 0] to H equipped with the norm ∥u∥C = sup
[−h,0]

∥u(θ)∥,

and L2
V := L2((−h, 0);V ) is the space of V -valued mappings with the norm

∥u∥2L2
V
=

0∫
−h

∥u(t)∥2V dt.

We impose the following conditions on the operator A:
(A1) A is a linear operator with domain D(A) dense in H such that A : V → V ′.

(A2) For any u, v ∈ V there exists α > 0 such that

|⟨Au, v⟩| ≤ α∥u∥V · ∥v∥V .

(A3) A satisfies the coercivity condition: there exist constants β > 0 and γ such that

⟨Av, v⟩ ≤ −β∥v∥2V + γ∥v∥2, ∀ v ∈ V.

Conditions on nonlinearities:
(N1) f and g are mappings from C ∩ L2

V × C to H, and σ is a mapping from C ∩ L2
V × C to L0

2.

(N2) (Growth condition) There exist positive constants α > 0 and γ ≥ 1 such that

∥f(ϕ, ψ)∥+ ∥g(ϕ, ψ)∥ ≤ α

(
1 +

( 0∫
−h

∥ϕ∥V dt
)γ

+ ∥ϕ∥γC + ∥ψ∥γC

)
and

∥σ(ϕ, ψ)∥2L0
2
≤ α

(
1 + ∥ϕ∥2C + ∥ψ∥2C

)
.
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(N3) (Local Lipschitz condition) For any N > 0 there exists a constant KN > 0 such that

∥f(ϕ, ψ)− f(ϕ1, ψ1)∥2 + ∥g(ϕ, ψ)− g(ϕ1, ψ1)∥2 + ∥σ(ϕ, ψ)− σ(ϕ1, ψ1)∥2L0
2

≤ KN

(
∥ϕ− ϕ1∥2C + ∥ψ − ψ1∥2C

)
for any ϕ, ϕ1 ∈ C ∩ L2

V and ψ,ψ1 ∈ C with ∥ϕ∥2C + ∥ψ∥2C < N , ∥ϕ1∥2C + ∥ψ1∥2C < N.

(N4) (Coercivity condition) There exist constants β > 0, λ and C1 such that

⟨Aϕ(0), ϕ(0)⟩+ (f(ϕ, ψ), ϕ(0)) + (g(ϕ, ψ), ψ(0)) + ∥σ(ϕ, ψ)∥2L0
2

≤ −β∥ϕ(0)∥2V + λ
(
∥ϕ∥2C + ∥ψ∥2C

)
+ C1.

(N5) (Monotonicity condition) For any ϕ, ϕ1 ∈ C ∩ L2
V and ψ,ψ1 ∈ C, we have

2
⟨
A(ϕ(0)− ϕ1(0), ϕ(0)− ϕ1(0))

⟩
+ 2

(
f(ϕ, ψ)− f(ϕ1, ψ1), ϕ(0)− ϕ1(0)

)
+ 2

(
g(ϕ, ψ)− g(ϕ1, ψ1), ψ(0)− ψ1(0)

)
+
∥∥σ(ϕ, ψ)− σ(ϕ1, ψ1)

∥∥2
L0
2

≤ δ
(
∥ϕ− ϕ1∥2C + ∥ψ − ψ1∥2C

)
for some constant δ > 0.

Let ϕ(t) ∈ C ∩ L2
V and ψ(t) ∈ C, t ∈ [−h, 0].

Let ΩT = [0, T ]× Ω.
Definition. We call an Ft-adapted random process (u(t), y(t)) ∈ V × H a weak solution of the
initial problem (0.1) on [0, T ] if:

(1) u(t) = ϕ(t), y(t) = ψ(t), t ∈ [−h, 0];

(2) u ∈ L2(ΩT , V ), y ∈ L2(ΩT ,H);

(3) for any v ∈ V and z ∈ H, the equations

(u(t), v) = (u(0), v) +

t∫
0

(
⟨Au(s), v⟩+ (f(us, ys), v)

)
ds+

t∫
0

(σ(us, ys) dW (s), v),

(y(t), z) = (y(0), z) +

t∫
0

(g(us, ys), z) dz

hold a.s. for each t ∈ [0, T ].
Theorem 1.1 (Existence and uniqueness). Suppose that conditions (A1)–(A3) and (N1)–(N5)
hold. Then, for every ϕ ∈ C ∩ L2

V and ψ ∈ C, the initial problem (0.1) has a unique weak solution
(u(t), y(t)) on [0, T ] such that

u ∈ L2(Ω;C([0, T ];H)) ∩ L2(ΩT , V ), y ∈ L2(Ω, C([0, T ];H)).

Moreover, the energy equation holds:

∥u(t)∥2 + ∥y(t)∥2 = ∥u(0)∥2 + ∥y(0)∥2

+ 2

t∫
0

(
⟨Au(s), u(s)⟩+ (f(us, ys), u(s)) + (g(us, ys), y(s))

)
ds

+

t∫
0

∥σ(us, ys)∥2L0
2
ds+ 2

t∫
0

(
σ(us, ys) dW (s), u(s)

)
. (1.1)
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2 Proof of the main result
In this section, we provide the sketch of the proof of Theorem 1.1.

Proof.
Uniqueness. Suppose that (u(t), y(t)) and (u1(t), y1(t)) are two weak solutions of the initial problem
(0.1). Then, in view of (1.1) and condition (N5), we can easily show that

E∥u(t)− u1(t)∥2 +E∥y(t)− y1(t)∥2 = 2E

t∫
0

⟨
A(u(s)− u1(s)), u(s)− u1(s))

⟩
ds

+ 2E

t∫
0

[(
f(us, ys)− f(u1s, y

1
s), u(s)− u1(s)

)
+
(
g(us, ys)− g(u1s, y

1
s), y(s)− y1(s)

)]
ds

+E

t∫
0

∥∥σ(us, ys)− σ(u1s, y
1
s)
∥∥2
L0
2
ds ≤ δE

t∫
0

(
∥us − u1s∥2C + ∥ys − y1s∥2C

)
ds. (2.1)

In what follows, we will need the following obvious statement.

Lemma. The following inequality holds:

E sup
t∈[0,T ]

(
∥ut∥2C + ∥yt∥2C

)
≤ E

(
∥ϕ∥2C + ∥ψ∥2C

)
+E sup

t∈[0,T ]

(
∥u(t)∥2 + ∥y(t)∥2

)
. (2.2)

So, taking into account (2.2), from (2.1) we obtain

sup
s∈[0,T ]

E
(
∥u(s)− u1(s)∥2 + ∥y(s)− y1(s)∥2

)
≤ δ

t∫
0

sup
τ∈[0,s]

E
(
∥uτ − u1τ∥2C + ∥yτ − y1τ∥2C

)
ds

≤ δ

t∫
0

sup
τ∈[0,s]

E
(
∥u(τ)− u1(τ)∥2 + ∥y(τ)− y1(τ)∥2

)
ds,

which, by Gronwall’s inequality, yields

E
(
∥u(s)− u1(s)∥2 + ∥y(s)− y1(s)∥2

)
= 0, ∀ t ∈ [0, T ],

which establishes the uniqueness.
Existence. We will prove the existence by using Galerkin approximations.
Step 1. Finite-dimensional case. Approximate solutions.

Let {vk} be a complete orthonormal basis for H with vk ∈ V , and let Hn = span{v1, . . . , vn}.
Suppose that Pn : H → Hn is an orthogonal projector such that

Pnh =
n∑

k=1

(h, vk)vk for h ∈ H.

We extend Pn to the projection operator P ′
n : V ′ → V ′

n defined as

P ′
nw =

n∑
k=1

⟨w, vk⟩vk for w ∈ V ′.
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Obviously, Vn = Hn = V ′
n.

Let Kn = span{e1, . . . , en}. We denote by Πn a projection operator from K to Kn such that

Πna =
n∑

k=1

(a, ek)ek.

Let us introduce the following notation:

Anu = P ′
nAu, fn(ϕ, ψ) = Pnf(ϕ, ψ), gn(ϕ, ψ) = Png(ϕ, ψ), σn(ϕ, ψ) = Pnσ(ϕ, ψ),

for u ∈ V, ϕ ∈ C ∩ L2
V , and ψ ∈ C.

We consider the approximate equations to equations (0.1):

dun(t) =
[
Anun(t) + fn(unt , y

n
t )
]
dt+ σn(unt , y

n
t ) dW

n(t),

dyn(t) = gn(unt , y
n
t ) dt,

un(t) = Pnϕ(t), yn(t) = Pnψ(t), t ∈ [−h, 0],
(2.3)

for t ∈ [0, T ], where Wn(t) = ΠnW (t).
The above equations can be regarded as Itô equations in Rn. It can be shown that, under

conditions (N1)–(N5), the coefficients fn, σn and gn of these equations are locally bounded and
Lipschitz continuous and monotone. Hence, (2.3) has a unique solution (un(t), yn(t)) in Vn on any
finite time interval [0, T ]. Moreover, it satisfies the property un ∈ L2(Ω, C([0, T ];H)) ∩ L2(ΩT , V )
and yn ∈ L2(Ω, C([0, T ];H)).

Step 2. A priori estimate.
Next, we will establish a priori estimates with some positive constant A:

E sup
t∈[0,T ]

(
∥un(t)∥2 + ∥yn(t)∥2

)
+

T∫
0

E∥un(s)∥2V ds ≤ A. (2.4)

Step 3. Weak limits.
It follows from (2.4) that there exists subsequences, denoted for convenience by un and yn such

that un → u weakly in L2(ΩT , V ) and yn → y weakly in L2(ΩT , V ). Next, we justify the passage
to the limit in the finite-dimensional equation, which proves the theorem.
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