On Non-Linear Boundary Value Problems for Iterative Differential Equations

A. Rontó
Brno University of Technology, Faculty of Business and Management Brno, Czech Republic
E-mail: rontoa@fbm.vutbr.cz

M. Rontó

Institute of Mathematics, University of Miskolc, Miskolc, Hungary
E-mail: matronto@uni-miskolc.hu

I. Varga

Uzhhorod National University, Faculty of Mathematics, Uzhhorod, Ukraine
E-mail: iana.varga@uzhnu.edu.ua

We study the general form boundary value problem

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t, x(t), x(x(t))), \quad t \in[a, b], \tag{1}
\end{equation*}
$$

for the system of so called iterative differential equations (see, e.g., $[1,5]$ and the references therein) under the non-linear boundary conditions

$$
\begin{equation*}
\Phi(x(t), x(x(t)))=d, \tag{2}
\end{equation*}
$$

where $f \in C\left([a, b] \times D \times D ; \mathbb{R}^{n}\right), d \in \mathbb{R}^{n}$ is a given vector, Φ is a continuous n-dimensional vector functional and there exist some $n \times n$ matrices K_{1}, K_{2} with non-negative entries such that for all $t \in[a, b], u_{i}, v_{i} \in D, i=1,2$ the inequality

$$
\begin{equation*}
\left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq K_{1}\left|u_{1}-v_{1}\right|+K_{2}\left|u_{2}-v_{2}\right| \tag{3}
\end{equation*}
$$

holds.
The domain $D \sqsubseteq[a, b]^{n}$ will be defined in Eqs. (10) and (11).
We deal only with such solutions

$$
\begin{equation*}
x:[a, b] \rightarrow D \sqsubseteq[a, b]^{n}, \tag{4}
\end{equation*}
$$

of problem (1), (2), which belong to the set

$$
\begin{equation*}
S:=\left\{x \in C([a, b] ; D):\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b]\right\}, \tag{5}
\end{equation*}
$$

where L is a given diagonal matrix with non-negative entries $L=\operatorname{diag}\left(L_{1}, \ldots, L_{n}\right)$. On the base of conditions (3) and (5), we obtain

$$
\begin{equation*}
\left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq K_{1}\left|u_{1}-v_{1}\right|+K_{2} L\left|u_{1}-v_{1}\right|=\left[K_{1}+K_{2} L\right]\left|u_{1}-v_{1}\right|, \tag{6}
\end{equation*}
$$

$t \in[a, b]$. Thus, we prescribed some restrictions for the values of the derivative of the possible solutions similarly to that of [5] and [1].

To study the BVP (1), (2) we will use an approach similar to [2]. Note that this technique can be applied also in the case when, instead of (5), the condition

$$
S:=\left\{x \in C\left([a, b] ;\left[a_{1}, b_{1}\right]^{n}\right):\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in\left[a_{1}, b_{1}\right]\right\}
$$

is fulfilled and in addition there are given some initial functions

$$
\beta \in C\left(\left[a_{1}, a\right], D\right), \quad \gamma \in C\left(\left[b, b_{1}\right], D\right)
$$

For vectors $x=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ the obvious notation $|x|=\operatorname{col}\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ is used and the inequalities between vectors are understood componentwise. The same convention is adopted for operations like "max" and "min".
\mathbf{I}_{n} and $\mathbf{0}_{n}$ are the unit and zero matrices of dimension n, respectively. $r(K)$ is the maximal (in modulus) eigenvalue of the matrix K.

For any non-negative vector $\rho \in \mathbf{R}^{n}$ under the componentwise ρ-neighbourhood of a point $z \in \mathbf{R}^{n}$, we understand the set

$$
\begin{equation*}
O_{\rho}(z):=\left\{\xi \in \mathbf{R}^{n}:|\xi-z| \leq \rho\right\} \tag{7}
\end{equation*}
$$

Similarly, the ρ-neighbourhood of a domain $\Omega \subset \mathbf{R}^{n}$ is defined as

$$
\begin{equation*}
O_{\rho}(\Omega):=\bigcup_{z \in \Omega} O_{\rho}(z) \tag{8}
\end{equation*}
$$

A particular kind of vector ρ will be specified below in relation (11).
Let us choose certain compact convex sets $D_{a} \subset \mathbb{R}^{n}, D_{b} \subset \mathbb{R}^{n}$ and define the set

$$
\begin{equation*}
D_{a, b}:=(1-\theta) z+\theta \eta, \quad z \in D_{a}, \quad \eta \in D_{b}, \quad \theta \in[0,1] \tag{9}
\end{equation*}
$$

moreover, according to (8) its ρ - neighbourhood

$$
\begin{equation*}
D=O_{\rho}\left(D_{a, b}\right) \tag{10}
\end{equation*}
$$

with a non-negative vector $\rho=\operatorname{col}\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
\rho \geq \frac{b-a}{2} \delta_{[a, b], D \times D}(f), \tag{11}
\end{equation*}
$$

where $\delta_{[a, b], D \times D}(f)$ denotes the half of the oscillation of the function f over $[a, b] \times D \times D$, i.e.,

$$
\begin{equation*}
\delta_{[a, b], D \times D}(f):=\frac{\max _{(t, x, y) \in[a, b] \times D \times D} f(t, x, y)-\min _{(t, x, y) \in[a, b] \times D \times D} f(t, x, y)}{2} \tag{12}
\end{equation*}
$$

Instead of the original boundary value problem (1), (2), we will consider the following auxiliary two-point parametrized boundary value problem

$$
\begin{gather*}
\frac{d x(t)}{d t}=f(t, x(t), x(x(t))), \quad t \in[a, b] \tag{13}\\
x(a)=z, \quad x(b)=\eta \tag{14}
\end{gather*}
$$

where z and η are treated as free parameters.

Let us connect with problem (13), (14) the sequence of functions

$$
\begin{array}{rl}
x_{m+1}(t, z, \eta)=z+\int_{a}^{t} & f\left(s, x_{m}(s, z, \eta), x_{m}\left(x_{m}(s, z, \eta), z, \eta\right)\right) d s \\
& -\frac{t-a}{b-a} \int_{a}^{b} f\left(s, x_{m}(s, z, \eta), x_{m}\left(x_{m}(s, z, \eta), z, \eta\right)\right) d s \\
& +\frac{t-a}{b-a}[\eta-z], \quad t \in[a, b], \quad m=0,1,2, \ldots \tag{15}
\end{array}
$$

satisfying (14) for arbitrary $z, \eta \in \mathbb{R}^{n}$, where

$$
\begin{equation*}
x_{0}(t, z, \eta)=z+\frac{t-a}{b-a}[\eta-z]=\left(1-\frac{t-a}{b-a}\right) z+\frac{t-a}{b-a} \eta, \quad t \in[a, b] . \tag{16}
\end{equation*}
$$

It is easy to see from (16) that $x_{0}(t, z, \eta)$ is a linear combination of vectors z and η, when $z \in D_{a}$ and $\eta \in D_{b}$.

The following statement establishes the uniform convergence of sequence (15) to some parameterized limit function.

Theorem 1. Let conditions (6), (11) be fulfilled, moreover, for the matrix

$$
\begin{equation*}
Q=\frac{3(b-a)}{10} K, \quad K=K_{1}+K_{2} L \tag{17}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
r(Q)<1 \tag{18}
\end{equation*}
$$

hold.
Then, for all fixed $(z, \eta) \in D_{a} \times D_{b}$:

1. The functions of sequence (15) belonging to the domain D of form (10) are continuously differentiable on the interval $[a, b]$ and satisfy conditions (14).
2. The sequence of functions (15) for $t \in[a, b]$ uniformly converges as $m \rightarrow \infty$ with respect to the domain $(t, z, \eta) \in[a, b] \times D_{a} \times D_{b}$ to the limit function

$$
\begin{equation*}
x_{\infty}(t, z, \eta)=\lim _{m \rightarrow \infty} x_{m}(t, z, \eta) \tag{19}
\end{equation*}
$$

satisfying conditions (14).
3. The function $x_{\infty}(t, z, \eta)$ for all $t \in[a, b]$ is a unique continuously differentiable solution of the integral equation

$$
\begin{equation*}
x(t)=z+\int_{a}^{t} f(s, x(s), x(x(s))) d s-\frac{t-a}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) d s+\frac{t-a}{b-a}[\eta-z] \tag{20}
\end{equation*}
$$

i.e., it is the solution to the Cauchy problem for the modified system of integro-differential equations:

$$
\begin{gather*}
\frac{d x}{d t}=f(t, x(t), x(x(t)))+\frac{1}{b-a} \Delta(z, \eta) \\
x(a)=z \tag{21}
\end{gather*}
$$

where $\Delta(z, \eta): D_{a} \times D_{b} \rightarrow \mathbb{R}^{n}$ is a mapping given by the formula

$$
\begin{equation*}
\Delta(z, \eta)=[\eta-z]-\int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta), x_{\infty}\left(x_{\infty}(s, z, \eta), z, \eta\right)\right) d s \tag{22}
\end{equation*}
$$

4. The error estimation

$$
\begin{equation*}
\left|x_{\infty}(t, z, \eta)-x_{m}(t, z, \eta)\right| \leqslant \frac{10}{9} \alpha_{1}(t) Q^{m}\left(1_{n}-Q\right)^{-1} \delta_{[a, b], D \times D}(f), \quad t \in[a, b], \quad m \geq 0 \tag{23}
\end{equation*}
$$

holds, where

$$
\alpha_{1}(t)=2(t-a)\left(1-\frac{t-a}{b-a}\right) \leq \frac{b-a}{2}, \quad t \in[a, b]
$$

The following statement gives a relation of the parameterized limit function $x_{\infty}(t, z, \eta)$ to the solution of the original boundary value problem (1), (2).

Theorem 2. Under the assumptions of Theorem 1, the limit function

$$
x_{\infty}(t, z, \eta)=\lim _{m \rightarrow \infty} x_{m}(t, z, \eta)
$$

of sequence (15) is a solution of the boundary value problem (1), (2) with property (5) if and only if the pair of parameters (z, η) satisfies the system of $2 n$ algebraic equations

$$
\begin{gather*}
\Delta(z, \eta):=[\eta-z]-\int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta), x_{\infty}\left(x_{\infty}(s, z, \eta), z, \eta\right)\right) d s=0 \tag{24}\\
\Phi(z, \eta):=\Phi\left(x_{\infty}(t, z, \eta)\right), \quad x_{\infty}\left(x_{\infty}(t, z, \eta)\right)-d=0
\end{gather*}
$$

We apply the above techniques to the following model BVP in \mathbf{R}^{2}

$$
\begin{align*}
& \frac{d x_{1}(t)}{d t}=\left[x_{1}\left(x_{1}(t)\right)\right]^{2}-\frac{1}{8} x_{2}(t)+\frac{1}{2}=f_{1}\left(x_{1}, x_{2}, x_{1}\left(x_{1}(t)\right), x_{2}\left(x_{2}(t)\right)\right), \quad t \in[a, b]=\left[0, \frac{1}{2}\right] \\
& \frac{d x_{2}(t)}{d t}=x_{2}\left(x_{2}(t)\right)-\frac{t}{2} x_{1}(t) \cdot x_{2}(t)+t=f_{2}\left(x_{1}, x_{2}, x_{1}\left(x_{1}(t)\right), x_{2}\left(x_{2}(t)\right)\right) \tag{25}
\end{align*}
$$

with the iterative integral boundary conditions

$$
\begin{align*}
& \Phi_{1}(x(t), x(x(t)))=\int_{0}^{1 / 2}\left[x_{1}(s)+x_{2}(s)\right] d s=\frac{1}{12} \\
& \Phi_{2}(x(t), x(x(t)))=\int_{0}^{1 / 2}\left[x_{1}\left(x_{1}(s)\right)\right]^{2} d s=\frac{1}{384} \tag{26}
\end{align*}
$$

Clearly, problem $(25),(26)$ is a particular case of $(1),(2)$ with $a=0, b=\frac{1}{2}, d=\operatorname{col}\left(\frac{1}{8}, \frac{1}{384}\right)$. It is easy to check that $x_{1}(t)=\frac{t}{2}, x_{2}(t)=\frac{t^{2}}{2}$ is a continuously differentiable solution to problem (25), (26).

One can check that all the conditions of Theorem 1 for this example are fulfilled for the following choosing and computation of corresponding sets, vectors, matrices:

$$
\begin{equation*}
D_{a}=D_{b}=\left\{\left(x_{1}, x_{2}\right):-0.05 \leq x_{1} \leq 0.3,-0.05 \leq x_{2} \leq 0.2\right\}, \quad D_{a, b}=D_{a}=D_{b} \tag{27}
\end{equation*}
$$

$$
\begin{gathered}
\rho:=\operatorname{col}(0.15,0.15), \quad O \rho\left(D_{a, b}\right)=D=\left\{\left(x_{1}, x_{2}\right):-0.2 \leq x_{1} \leq 0.45, \quad-0.2 \leq x_{2} \leq 0.35\right\}, \\
K_{1}=\left[\begin{array}{cc}
0 & \frac{1}{8} \\
0.25 & 0.25
\end{array}\right], \quad K_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad L=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
K=K_{1}+K_{2} L=\left[\begin{array}{cc}
1 & \frac{1}{8} \\
0.25 & 1.25
\end{array}\right], \quad Q=\frac{3(b-a)}{10} K=\left[\begin{array}{cc}
0.15 & 0.01875 \\
0.0375 & 0.1875
\end{array}\right], \quad r(Q) \approx 0.2<1, \\
\\
\delta_{[a, b], D \times D}(f)::=\left[\begin{array}{c}
0.176875 \\
0.415
\end{array}\right], \quad \rho=\left[\begin{array}{c}
0.15 \\
0.15
\end{array}\right] \geq \frac{b-a}{2} \delta_{[a, b], D \times D}(f)=\left[\begin{array}{c}
0.03546875 \\
0.08125
\end{array}\right] .
\end{gathered}
$$

In the case of Maple computations for iterative systems it is more appropriate to use instead of (15) a scheme with polynomial interpolation, $[3,4]$, when instead of (15), we introduce the sequence $\left\{x_{m+1}^{q+1}(t, z, \eta)\right\}_{m=0}^{\infty}$ of vector polynomials $x_{m+1}^{q+1}(t, z, \eta)=\operatorname{col}\left(x_{m+1,1}^{q+1}(t, z, \eta), x_{m+1,2}^{q+1}(t, z, \eta)\right)$ of degree $(q+1)$

$$
\begin{align*}
& x_{m+1, j}^{q+1}(t, z, \eta):=a_{m+1, j, 0}(z, \eta)+a_{m+1, j, 1}(z, \eta) t+a_{m+1, j, 2}(z, \eta) t^{2}+\cdots+a_{m+1, j, q+1}(z, \eta) t^{q+1} \\
&=z+\int_{a}^{t}\left[A_{m, j, 0}(z, \eta)+A_{m, j, 1}(z, \eta) t+A_{m, j, 2}(z, \eta) t^{2}+\cdots+A_{m, j, q}(z, \eta) t^{q}\right] d t \\
&-\frac{t-a}{b-a} \int_{a}^{b}\left[A_{m, j, 0}(z, \eta)+A_{m, j, 1}(z, \eta) t+A_{m, j, 2}(z, \eta) t^{2}+\cdots+A_{m, j, q}(z, \eta) t^{q}\right] d t \\
&+\frac{t-a}{b-a}\left[\eta_{j}-z j\right], \quad t \in[a, b], \quad m=0,1,2, \ldots, \quad j=1,2 \tag{28}
\end{align*}
$$

where

$$
A_{m, j, 0}(z, \eta)+A_{m, j, 1}(z, \eta) t+A_{m, j, 2}(z, \eta) t^{2}+\cdots+A_{m, j, q}(z, \eta) t^{q}, \quad j=1,2
$$

are the Lagrange interpolation polynomials of degree q on the Chebyshev nodes, translated from $(-1,1)$ to the interval (a, b), corresponding to the functions

$$
f_{j}\left(t, x_{m, 1}^{q+1}(t, z, \eta), x_{m, 2}^{q+1}(t, z, \eta), x_{m, 1}^{q+1}\left(x_{m, 1}^{q+1}(t, z, \eta)\right), x_{m, 2}^{q+1}\left(x_{m, 2}^{q+1}(t, z, \eta)\right)\right), \quad j=1,2
$$

respectively in (25). Note that the coefficients of the interpolation polynomials depend on the parameters z and η. On the basis of (28), instead of (24) let us define the m th approximate polynomial determining system, which consists of four algebraic equations when $j=1,2$,

$$
\begin{align*}
\Delta_{m, j}^{q}(z, \eta):= & {\left[\eta_{j}-z_{j}\right] } \\
& -\int_{a}^{b}\left[A_{m, j, 0}(z, \eta)+A_{m, j, 1}(z, \eta) t+A_{m, j, 2}(z, \eta) t^{2}+\cdots+A_{m, j, q}(z, \eta) t^{q}\right] d t=0, \tag{29}\\
\Phi_{m, j}^{q}(z, \eta):= & \Phi_{j}\left(x_{m, 1}^{q+1}(t, z, \eta), x_{m, 2}^{q+1}(t, z, \eta), x_{m, 1}^{q+1}\left(x_{m, 1}^{q+1}(t, z, \eta)\right), x_{m, 2}^{q+1}\left(x_{m, 2}^{q+1}(t, z, \eta)\right)\right)-d_{j}=0 .
\end{align*}
$$

By choosing $q=3$, using (28) and solving (29) (applying Maple 14) we obtain the approximate numerical values for the introduced parameters given in table.

The graphs of the zeroth (\times), sixth (\diamond) approximation and the exact solution (solid line) to problem (25), (26) are shown in figure.

	z_{1}	z_{2}	η_{1}	η_{2}
$m=0$	$0.5332693 \cdot 10^{-3}$	-0.194303210^{-2}	0.2491448305	0.1294598825
$m=3$	$1.4024463 \cdot 10^{-7}$	$0.4841504 \cdot 10^{-3}$	0.2500002840	0.1245609255
$m=6$	$1.3907241 \cdot 10^{-7}$	$0.4841505 \cdot 10^{-3}$	0.2500002846	0.1245609251
Exact	0	0	0.25	0.125

References

[1] V. Berinde, Existence and approximation of solutions of some first order iterative differential equations. Miskolc Math. Notes 11 (2010), no. 1, 13-26.
[2] A. Rontó, M. Rontó and J. Varha, A new approach to non-local boundary value problems for ordinary differential systems. Appl. Math. Comput. 250 (2015), 689-700.
[3] A. Rontó, M. Rontó and J. Varha, Investigation of transcendental boundary value problems using lagrange interpolation. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2017, Tbilisi, Georgia, December 24-26, pp. 158-163; http://www.rmi.ge/eng/QUALITDE-2017/Ronto_Ronto_Varha_workshop_2017.pdf.
[4] A. Rontó, M. Rontó and N. Shchobak, Parametrisation for boundary value problems with transcendental non-linearities using polynomial interpolation. Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 59, 22 pp.
[5] I. A. Rus and E. Egri, Boundary value problems for iterative functional-differential equations. Stud. Univ. Babeş-Bolyai Math. 51 (2006), no. 2, 109-126.

