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Conditional Partial Integrals of Polynomial Hamiltonian Systems
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1 Introduction
Consider a canonical Hamiltonian odinary differential system with n degrees of freedom

dqi
dt

= ∂pi
H(q, p),

dpi
dt

= − ∂qi
H(q, p), i = 1, . . . , n, (1.1)

where q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ Rn are the generalized coordinates and
momenta, t ∈ R, and the Hamiltonian H : R2n → R is a polynomial of degree h > 2.

In this paper, using the Darboux theory of integrability [4] and the notion of conditional partial
integral [5,7], we will study the existence of additional first integrals of the Hamiltonian system (1.1).

The Darboux theory of integrability (or the theory of partial integrals) was established by
the French mathematician Jean-Gaston Darboux [4] in 1878, which provided a link between the
existence of first integrals and invariant algebraic curves (or partial integrals) for polynomial au-
tonomous differential systems. For the polynomial differential systems, the Darboux theory of
integrability is one of the best theories for studying the existence of first integrals (see, for ex-
ample, [5, 6, 11, 14, 15]). Note that the Darboux theory of integrability is related to the Poincaré
problem [13], which asks to find the upper bound of invariant algebraic curves of planar polynomial
differential systems. The Darboux theory of integrability is also involved in the study of Hilbert’s
16-th problem (see, for example, the paper by Yu. Ilyashenko [9]). For the current state of the
theory of integrability of differential systems see the monographs [2, 6, 8, 10, 11, 14, 15] and the
references therein.

To avoid ambiguity, we give the following notation and definitions.
The Poisson bracket of functions u, v ∈ C1(G) on a domain G ⊂ R2n is the function

[
u(q, p), v(q, p)

]
=

n∑
i=1

(
∂qi

u(q, p) ∂pi
v(q, p)− ∂pi

u(q, p) ∂qi
v(q, p)

)
for all (q, p) ∈ G.

A function F ∈ C1(G) is called a first integral on the domain G of the Hamiltonian system (1.1)
if the functions F and H are in involution, i.e.,[

F (q, p),H(q, p)
]
= 0 for all (q, p) ∈ G ⊂ R2n.

The Hamiltonian differential system (1.1) is completely integrable (in the Liouville sense) if it
has n functionally independent first integrals which are in involution. Notice that the Hamiltonian
H is a first integral of the Hamiltonian differential system (1.1).
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A set of functionally independent on a domain G ⊂ R2n first integrals Fl ∈ C1(G), l = 1, . . . , k,
of the Hamiltonian system (1.1) is called a basis of first integrals (or integral basis) on the domain
G of system (1.1) if any first integral F ∈ C1(G) of system (1.1) can be represented on G in the
form

F (q, p) = Φ
(
F1(q, p), . . . , Fk(q, p)

)
for all (q, p) ∈ G,

where Φ is some continuously differentiable function. The number k is said to be the dimension of
basis of first integrals on the domain G for the Hamiltonian differential system (1.1).

The autonomous Hamiltonian differential system (1.1) on a domain without equilibrium points
has an integral basis (autonomous) of dimension 2n− 1 [1, pp. 167 – 169].

A real polynomial w is a partial integral of the Hamiltonian system (1.1) if the Poisson bracket[
w(q, p),H(q, p)

]
= w(q, p)M(q, p) for all (q, p) ∈ R2n,

where the polynomial M (cofactor of the partial integral w) is such that degM 6 h− 2.
Suppose w be a partial integral of the Hamiltonian differential system (1.1). Then the alge-

braic hypersurface {(q, p) : w(q, p) = 0} is invariant by the flow of the Hamiltonian differential
system (1.1) and if the cofactor M of the partial integral w is zero, then w is a polynomial first
integral.

An exponential function ω(q, p) = exp v(q, p) for all (q, p) ∈ R2n with some real polynomial v is
called a conditional partial integral of the Hamiltonian system (1.1) if the Poisson bracket[

v(q, p),H(q, p)
]
= S(q, p) for all (q, p) ∈ C2n,

where the polynomial S (cofactor of the conditional partial integral ω) is such that degS 6 h− 2.
We stress that a conditional partial integral is a special case of exponential factor (or exponential

partial integral) [3, 5, 11] for the polynomial Hamiltonian ordinary differential system (1.1).

2 Main results
Suppose the Hamiltonian differential system (1.1) has real partial integrals wl with the cofactors
Ml, l = 1, . . . , s, respectively, such that the Poisson brackets[

wl(q, p),H(q, p)
]
= wl(q, p)Ml(q, p) for all (q, p) ∈ R2n, degMl 6 h− 2, l = 1, . . . , s. (2.1)

And moreover, the polynomial Hamiltonian system (1.1) has conditional partial integrals

ων(q, p) = exp vν(q, p) for all (q, p) ∈ R2n, ν = 1, . . . ,m, (2.2)

with polynomials vν , ν = 1, . . . ,m, such that the following identities hold[
vν(q, p),H(q, p)

]
= Sν(q, p) for all (q, p) ∈ R2n, degSν 6 h− 2, ν = 1, . . . ,m. (2.3)

Theorem 2.1. Let the exponential functions (2.2) be conditional partial integrals of the polynomial
Hamiltonian differential system (1.1). Then the scalar function

F (q, p) =
m∑

ν=1

βνvν(q, p) for all (q, p) ∈ R2n, βν ∈ R, ν = 1, . . . ,m,
m∑

ν=1

|βν | ̸= 0, (2.4)

is an additional first integral of the Hamiltonian system (1.1) if and only if
m∑

ν=1

βνSν(q, p) = 0 for all (q, p) ∈ R2n. (2.5)
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Proof. Taking into account the identities (2.3) and bilinearity of Poisson brackets, we calculate the
Poisson bracket of the function (2.4) and the Hamiltonian H:

[
F (q, p),H(q, p)

]
=

[ m∑
ν=1

βνvν(q, p),H(q, p)
]
=

m∑
ν=1

βν
[
vν(q, p),H(q, p)

]
=

m∑
ν=1

βνSν(q, p).

Therefore, by definition of first integral, the function (2.4) is a first integral of the polynomial
Hamiltonian ordinary differential system (1.1) if and only if the identity (2.5) is true.

Theorem 2.2. Suppose the polynomial Hamiltonian differential system (1.1) has the conditional
partial integrals (2.2) such that the identities (2.3) are true under the conditions

Sν(q, p) = µνM(q, p) for all (q, p) ∈ R2n, µν ∈ R, ν = 1, . . . ,m, degM 6 h− 2. (2.6)

Then the scalar function (2.4) is an additional first integral of the Hamiltonian differential sys-
tem (1.1) if real numbers βν are a solution to the linear equation

m∑
ν=1

µνβν = 0 under
m∑

ν=1
|βν | ̸= 0.

Proof. If the representations (2.6) are true and numbers βν are a solution to
m∑

ν=1
µνβν = 0, then

m∑
ν=1

βνSν(q, p) =
m∑

ν=1

βνµνM(q, p) = 0.

This implies that the condition (2.5) is true. Therefore, by Theorem 2.1, the function (2.4) is an
additional first integral of the Hamiltonian system (1.1).

From Theorem 2.2 under m = 2, µ1 = µ2 ̸= 0, we get the following statement.

Corollary 2.1. If the polynomial Hamiltonian differential system (1.1) has the conditional partial
integrals (2.2) under the condition m = 2 such that the identity holds

[v1(q, p),H(q, p)]

[v2(q, p),H(q, p)]
=

v1(q, p)

v2(q, p)
for all (q, p) ∈ G ⊂ R2n,

then an additional first integral of the polynomial Hamiltonian system (1.1) is the function

F : (q, p) → v1(q, p)− v2(q, p) for all (q, p) ∈ R2n.

From Theorem 2.2 under m = 2, µ1 = − µ2 ̸= 0, we obtain the following statement.

Corollary 2.2. If the polynomial Hamiltonian differential system (1.1) has the conditional partial
integrals (2.2) under the condition m = 2 such that the identity holds

[v1(q, p),H(q, p)]

[v2(q, p),H(q, p)]
= −v1(q, p)

v2(q, p)
for all (q, p) ∈ G ⊂ R2n,

then an additional first integral of the polynomial Hamiltonian system (1.1) is the function

F : (q, p) → v1(q, p) + v2(q, p) for all (q, p) ∈ R2n.
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Corollary 2.3. Under the conditions of Theorem 2.2, we get the scalar functions

Fξζ(q, p) = βξvξ(q, p) + βζvζ(q, p) for all (q, p) ∈ R2n, ξ, ζ = 1, . . . ,m, ζ ̸= ξ,

are first integrals of the polynomial Hamiltonian system (1.1), where numbers βξ and βζ are solutions
to the linear homogeneous equations

µξβξ + µζβζ = 0

under
|βξ|+ |βζ | ̸= 0, ξ, ζ = 1, . . . ,m, ζ ̸= ξ.

Theorem 2.3. Suppose the Hamiltonian system (1.1) has the partial integrals wl, l = 1, . . . , s, such
that the identities (2.1) hold with Ml(q, p) = λlM(q, p) for all (q, p) ∈ R2n, λl ∈ R, l = 1, . . . , s,
and the conditional partial integrals (2.2) such that the identities (2.3) under (2.6) are true. Then

Fξζ(q, p) = w
γξ
ξ (q, p) exp

(
βζvζ(q, p)

)
for all (q, p) ∈ G ⊂ R2n, ξ = 1, . . . , s, ζ = 1, . . . ,m, (2.7)

are first integrals of system (1.1), where numbers γξ and βζ are solutions to the equations

λξγξ + µζβζ = 0 under the conditions |γξ|+ |βζ | ̸= 0, ξ = 1, . . . , s, ζ = 1, . . . ,m. (2.8)

Proof. Using the functional identities (2.1) and (2.3), we obtain[
Fξζ(q, p),H(q, p)

]
=

[
w

γξ
ξ (q, p),H(q, p)

]
· exp

(
βζvζ(q, p)

)
+ w

γξ
ξ (q, p) ·

[
exp

(
βζvζ(q, p)

)]
= γξw

γξ−1

ξ (q, p) exp
(
βζvζ(q, p)

)[
wξ(q, p),H(q, p)

]
+ βζw

γξ
ξ (q, p) exp

(
βζvζ(q, p)

)[
vζ(q, p),H(q, p)

]
=

(
λξ!γξ + µζ !βζ

)
M(q, p)w

γξ
ξ (q, p) exp

(
βζvζ(q, p)

)
for all (q, p) ∈ G, ξ = 1, . . . , s, ζ = 1, . . . ,m.

If the real numbers γξ and βζ are solutions to the linear equations (2.8), then the functions (2.7)
are additional first integrals of the polynomial Hamiltonian differential system (1.1).

For example, the polynomial Hamiltonian differential system given by [12]

H(q, p) =
1

2
(p21 + p22) + 2q2p1p2 − q1 for all (q, p) ∈ R4 (2.9)

has the polynomial partial integral w(q, p) = p2 with cofactor M(q, p) = −2p1 and the conditional
partial integral ω(q, p) = exp p21 with cofactor S(q, p) = 2p1. By Theorem 2.3, we can build the
additional first integral of the Hamiltonian system (2.9): F (q, p) = p2 exp p

2
1 for all (q, p) ∈ R4. The

functionally independent first integrals H and F of the Hamiltonian system (2.9) are in involution.
Therefore, the Hamiltonian system (2.9) is completely integrable (in the Liouville sense).
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